
Exercise Set 5 c©2006 Felleisen, Proulx, et. al.

5 Methods for Complex Class Hierarchies; Libraries

Etudes

5.1 Etude

Do as many as you can of the exercises 19.3 - 19.9.

Note:

If you feel that you really understand the concepts covered in these etudes,
you may do only a couple of them. However, make sure you know how to
solve all of them.

Goals:

This assignment has three goals. The first is to understand better how to
design methods for complex class hierarchies. The second goal is to learn
how to determine whether two complex collections of data represent the
same information from the user’s perspective. The third goal is to under-
stand better the relationship between interfaces, abstract classes and their
concrete derived subclasses.

Main Assignment — Part 1: Binary Search Trees

5.2 Problem: Data elements — Books

1. Design the class Book that records the title of the book and the year is
was published.

2. Add the method

int compareTo(Book other)

that produces a negative value if this book comes before the other
book, produces zero, if this and other represent the same book, and
produces a positive value if this book comes after the other book —
the ordering is lexicographical, and by years, if the titles are the same
— both in ascending order. Make examples to make sure you understand
the ordering.

1



c©2006 Felleisen, Proulx, et. al. Exercise Set5

3. Add the method

boolean sameBook(Book b)

that determines whether the two Book objects represent the same book.

5.3 Problem: Data structure - Binary Search Tree

1. Design the classes that represent a binary search tree of Books (the ab-
stract class BST and its derived classes Leaf and Node. Use the com-
pareTo method you designed to determine the ordering of the ele-
ments of the tree. Do not add duplicate books into the tree.

In the BST classes design the following methods:

2. Method insert that inserts a book into the binary search tree.

3. Method count that computes how many books are recorded in the
binary search tree.

4. Method isEmpty that determines whether the binary search tree con-
tains any books.

5. Method contains that determines whether the binary search tree con-
tains a specific book.

6. Method getFirst the produces the first book (in our ordering of books)
among the books in the binary search tree. To invoke this method on
an empty binary search tree is a grave error. For now, we produce a
book with the title ”NoBooksInAnEmptyTree” with the year of pub-
lication 9999. We will learn soon how to properly signal these kinds
of errors.

7. Method removeFirst the produces a new binary search tree, after the
first book (in our ordering of books) among the books in the binary
search tree has been removed. To invoke this method on an empty
binary search tree is a grave error. For now, we just produce an empty
binary search tree. We will learn soon how to properly signal these
kinds of errors.

2



Exercise Set 5 c©2006 Felleisen, Proulx, et. al.

Main Assignment — Part 2: Equality

5.4 Problem

1. Design the method sameBST and any other methods needed to deter-
mine whether two instances of the BST class hierarchy represent the
same data.

Save this work as part one of the assignment.

2. Design the classes LoBooks and the needed subclasses to represent a
sorted list of books.

3. Design the method insert that inserts the given book into the LoBooks
class hierarchy, preserving the ordering.

4. Design the method sameLoBooks and any other methods needed to
determine whether two instances of the LoBooks class hierarchy rep-
resent the same data.

5. Method count that computes how many books are recorded in the list
of books

6. Method isEmpty that determines whether the list of books contains
any books.

7. Method contains that determines whether the list of books contains a
specific book.

8. Method getFirst the produces the first book (in our ordering of books)
among the books in the list of books. To invoke this method on an
empty list is a grave error. For now, we produce a book with the ti-
tle ”NoBooksInAnEmptyTree” with the year of publication 9999. We
will learn soon how to properly signal these kinds of errors.

9. Method removeFirst the produces a new list, after the first book (in
our ordering of books) among the books in the list has been removed.
To invoke this method on an empty list is a grave error. For now, we
just produce an empty list. We will learn soon how to properly signal
these kinds of errors.

Save this work as part two of the assignment.

3



c©2006 Felleisen, Proulx, et. al. Exercise Set5

Main Assignment — Part 3: Abstractions

5.5 Problem: Designing a common interface

We defined two ways of represented an ordered collection of data. For this
part of the assignment, combine in a new file the solutions for the two parts
of the code you wrote before. (Of course, do not repeat twice the definition
of the Book class and its examples.)

1. Design a common interface ISortedBooks that contains all methods
that are the same (or similar) between the BST and LoBooks.

Modify the classes that implement the BST and the classes that im-
plement the LoBooks as needed. Remember to ...

Save this work as part three of the assignment.

2. Extra Credit:

Define a common abstract class ASortedBooks that defines a concrete
method isSorted using only the methods that have been lifted to the
ISortedBooks interface.

Save this work as the extra credit part of the assignment.

4


