
Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

11 Using Java Collections; JUnit

Etude: Eliza Doolittle

In the lab you started working on the Eliza program that allows the com-
puter to interact with the user by providing replies to a series of questions.
As the etude for this assignment, finish the program. Include in your port-
folio a sample transcript of the user-computer interaction.

Preamble

Goals

The first part of this assignment consists of a small program that uses
interfaces and classes either from Java’s standard libraries, or from our ear-
lier labs and assignments. The goal is to give you a bit of design freedom:
You get to decide which parts of the standard libraries, or which classes and
interfaces we already designed are the most suitable to use. If you design
well, this assignment should be fairly straightforward.

The goal of the second part is to give you a practice in designing reusable
library-style classes using the Java program design standards for design,
documentation and also for testing. The program you produce will even-
tually use the JUnit test tools and will include documentation in the style
that allows you to produce Javadoc documentation for your program.

Hints

Some or all of the following interfaces and classes are likely to prove
useful. In the java.lang package: Comparable, Iterator, List, Map, Set, Collec-
tions.

11.1 William Shakespeare

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary?
For this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were to run

1



c©2006 Felleisen, Proulx, et. al. Exercise Set 11

on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Hamlet, for example, contains about 4542 distinct words, and the word
”king” occurs 202 times.
The Problem

Start by downloading the file HW11.zip and making an Eclipse project
HW11 that contains these files. Add jpt.jar as a Variable to your project. Run
the project, to make sure you have all pieces in place. The main method is
in the class Examples.

You are given the file test.txt that contains the entire text of Hamlet and
a file Week11.java that contains the code that generates the words from the
file test.txt one at a time, via an iterator.

Note: Here you will use the imperative Iterator interface that is a part of Java
Standard Library. Make sure to look up the documentation for this interface and
understand how it works.

The classes Tester and Examples contain a test harness similar to the Sim-
pleTestHarness used in the previous two assignments, but improved to catch
exceptions raised while running the tests. More about this later...

Your tasks are the following:

1. Design the class Word to represent one word of Shakespeare’s vocab-
ulary, together with its frequency counter. The constructor takes only
one String (for example the word ”king”) and starts the counter at
one. We consider one Word instance to be equal to another, if they
represent the same word, regardless of the value of the frequency
counter. That means that you have to override the method equals()
as well as the method hashCode().

2. Design the class that implements the Comparator interface, so that the
words can be sorted by frequencies. (Be careful!) When you are done,
place this class definition as the last part of the class definition of the
class Word. This is called an inner class.

3. Include in the class Word the method that allows you to increment the
counter (using mutation), and a method toString that prints one line
with the word and its frequency.

2



Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// records the Word objects generated by the given Iterator.
void countWords (Iterator it) { . . . }

// How many different Words has this WordCounter recorded?
int words() { . . . }

// Prints the n most common words and their frequencies.
void printWords (int n) { . . . }

Here are additional details:

5. countWords consumes an iterator that generates the words and builds
the collection of the appropriate Word instances, with the correct fre-
quencies.

6. words produces the total count of different words that have been con-
sumed.

7. printWords consumes an integer n and prints the top n words with the
highest frequencies (using the toString method defined in the class
Word).

Part 2: The Testing

Of course, you need to test all methods as you are designing them. Design
the tests in three stages:

1. For the class Word use a technique similar to what was done in the
past two assignments, i.e. design a class SimpleTests that instantiates
the class Tester as well as the necessary sample data and collects all
tests in a method void run(). At the end of this method it invokes ei-
ther the testReport or the fullTestReport method to report on the results.

2. When designing the class WordCounter, upgrade to the next level of
the test harness. The class Tester contains the following driver for the
tests:

3



c©2006 Felleisen, Proulx, et. al. Exercise Set 11

// run the tests, accept the class to be tested as a visitor
void runTests(Testable f ) {

this.n = 0;
try {

f.tests(this);
}
catch (Throwable e) { // catch all exceptions

this.errors = this.errors + 1;
console.out.println("Threw exception during test " + this.n);
console.out.println(e);

}
finally {

done();
}

}

// to be run after all tests have been performed
public void done(){

if (this.errors > 0)
console.out.print("Failed " + this.errors + " out of ");

else

console.out.print("Passed all ");
console.out.println (this.n + " tests.");

}

The class Examples implements the Testable interface that contains just
one method:

void tests(Tester t);

Inside of this method the class Examples invokes the appropriate test
methods on the instance t of the Tester.

So we have a chicken and egg problem here. The class Tester wants to
know what is the Examples instance that is running the tests, so that
it can invoke the method tests(Tester t) defined in the Examples class
inside of the Tester’s try clause.

The class Examples in turn needs an instance of the class Tester so that
it can invoke each test method inside of the method tests(Tester t).

4



Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

The main gain is that every invocation of the methods test is wrapped
inside of the try clause and if an exception is thrown, the error report
indicates which one of the tests failed.

The only thing you need to do is to include all your tests and the
needed sample data inside of the tests(Tester t) method in the class
Examples.

This prepares us for the third way of running tests, namely using
JUnit - Java’s standard test framework.

3. Introducing JUnit: Do this for a practice. Then use JUnit for tests in the
Part 3 of this assignment.

You will now rewrite all your tests using the JUnit. In the File menu
select New then JUnitTestCase. When the wizard comes up, select to
include the main method, the constructor, and the setup method. The
tests for each of the methods will then become one test case similar to
this one:

/∗∗
∗ Testing the method toString
∗/

public void testToString(){
assertEquals("Hello: 1\n", this.hello1.toString());
assertEquals("Hello: 3\n", this.hello3.toString());

}

We see that assertEquals is basically the same as the test methods for
our test harnesses, they just don’t include the name of the test. Try to
see what happens when some of the tests fail, when a test throws an
exception, and finally, make sure that at the end all tests succeed.

11.2 Stacks, Queues, and Priority Queues

In our next assignment we will need to keep track of accumulated values —
places we should visit next. However, the way how we add/remove items
from this accumulator will depend on our choice of algorithms. Therefore,
we start with a common interface, and design three different implementa-
tions of this interface.

The Accumulator interface is defined as follows:

5



c©2006 Felleisen, Proulx, et. al. Exercise Set 11

/∗∗
∗ <P>An interface that represents a container for accumulated collection of
∗ data elements. The implementation specifies the desired add and remove
∗ behavior.</P>

∗ <P>The expected implementations are Stack, Queue, and Priority Queue.</P>

∗/
public interface Accumulator<T>{

/∗∗
∗ Does this <CODE>{@link Accumulator}</CODE> contain any data elements?
∗ @return true is there are no elements in this
∗ <CODE>{@link Accumulator}</CODE>.
∗/

public boolean isEmpty();

/∗∗
∗ Change the state of this <CODE>{@link Accumulator}</CODE> by adding
∗ the given element to this <CODE>{@link Accumulator}</CODE>.
∗ @param t the given element
∗/

public void add(T t);

/∗∗
∗ Change the state of this <CODE>{@link Accumulator}</CODE> by removing
∗ the given element to this <CODE>{@link Accumulator}</CODE>.
∗ Produce the removed element.
∗ @return the removed element
∗/

public T remove();
}

1. Design the class MyStack<T> that implements the Accumulator<T>

interface by always removing the most recently added element.

2. Design the class MyQueue<T> that that implements the Accumulator<T>

interface by always removing the least recently added element.

3. Design the class MyPriorityQueue<T> that contains an instance of
a Comparator<T> and implements the Accumulator<T> interface by
always removing the element that has the highest priority as deter-
mined by its Comparator<T>.

4. Use the JUnit for all tests for these classes.

Note: You can decide on your own what will be the class of data that will
provide the elements to use in testing these classes.

6



Exercise Set 11 c©2006 Felleisen, Proulx, et. al.

The Documentation: a concise summary

You may have noticed that the style in which we write documentation for
this assignment has changed. When written in the well formatted javadoc
style, the comments can used to generate web pages of documentation with
cross-references and browsing capabilities. There are a few basic rules, the
rest you should learn on your own, gradually, as you become more and
more skilled Java programmers.

Here are comments to specify the name of the file, and the class defini-
tion:

/∗
∗ @(#)Word.java 17 November 2006
∗
∗/

/∗∗
∗
∗ <P><CODE>Word</CODE> represents one word and its
∗ number of occurrences counted in the
∗ <CODE>{@link WordCounter WordCounter}</CODE> class.</P>

∗
∗ @see Comparable
∗
∗ @author Viera K. Proulx
∗/

public class Word implements Comparable {

The @author and @see identify the author and provide a cross-reference
to other classes as specified.

Each field in the class has its own comment:

/∗∗
∗ the frequency counter
∗/

public int counter;

Each method has a comment that includes a separate line for each pa-
rameter as well as for the return value:

7



c©2006 Felleisen, Proulx, et. al. Exercise Set 11

/∗∗
∗ Compare two <CODE>Object</CODE>s for equality
∗
∗ @param obj the object to compare to
∗ @return true if the two objects have the same contents
∗/

public boolean equals(Object obj){

The @param has to be followed by the identifier used for that param-
eter. The <CODE> and < /CODE> tags specify the formatting for the
document to be the teletype font for representing the code.

Eclipse helps you to write the documentation. If you start the comment
line with /∗∗ and hit the return, the beginnings of remaining comment lines
are generated automatically, and you only need to add the relevant infor-
mation.

When you have finished all the documentation, select the item Gener-

ate Javadoc... in the Project menu. To see your web pages, just open the tab
doc in the Package Explorer window under your project and double click
on the index.html.

8


