
Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

10 Sorting, Performance/Stress Tests

In this problem set you will examine the properties of the different algo-
rithms we have seen as well as see and design new ones. The goal is to
learn to understand the tradeoffs between different ways of writing the
same program, and to learn some techniques that can be used to explore
the algorithm behavior.

Etudes: Sorting Algorithms

To practice working with the ArrayList start by implementing the selection

sort. Because we will work with several different sorting algorithms, yet
want all of them to look the same the selection sort will be a method in the
class that extends the abstract class ASortAlgo. A sorting algorithms needs
to be given the data to sort, the Comparator to use to determine the ordering,
and needs to provide an access to the data it produces. Additionally, the
ASort class also includes a field that represents the name of the implement-
ing sorting algorithm.

abstract class ASortAlgo<T> {
/∗∗ the comparator that determines the ordering of the elements ∗/
public Comparator<T> comp;
/∗∗ the name of this sorting algorithm ∗/
public String algoName;

/∗∗
∗ Initialize a data set to be sorted
∗ with the data generated by the traversal.
∗ @param the given traversal
∗/

abstract public void initData(Traversal<T> tr);

/∗∗
∗ Sort the data set with respect to the given Comparator
∗ and produce a traversal for the sorted data.
∗ @return the traversal for the sorted data
∗/

abstract public Traversal<T> sort();
}

1



c©2006 Felleisen, Proulx, et. al. Exercise Set 10

1. Design the class ArrSortSelection that implements a selection sort and
extends the class ASortAlgo using an ArrayList as the dataset to sort.
The ArrayList becomes an additional field in this class.

• The initData initializes the ArrayList by adding to it all the data
generated by the given Traversal.

• the new method selectionSort implements a mutating selection
sort on this ArrayList. There are numerous lecture notes and
labs from the past several years available online that guide you
through the design of selection sort. The third part of you draft
textbook has a section on selection sort on pages 102-112.

• The sort method invokes a selection sort on this ArrayList and
returns an instance of ALT the Traversal over the data in an Ar-
rayList.

• Do this once you include the code in the main part of your assignment.

Include in the class a self test in the form of a method testSort()
that provides a test for all methods in this class. There is an ex-
ample of this technique in the AListSortInsertion class provided
with this homework.

2. Design the class ArrSortInsertion that implements a mutating inser-
tion sort for an ArrayList and extends the class ASortAlgo in that same
way as was done for the selection sort.

You may work on this part with your partner if you wish — or get
any help you need. However, you must make sure that at the end you
understand every part of the code and how the tests were designed.

Sorting out Sorting

We have seen by now three different ways to sort a collection of data: The
insertion sort, the quicksort, and the binary tree sort.

The binary tree sort was hidden — we first designed the method to in-
sert data into a binary search tree, then we designed the traversal over the
binary search tree that generated the elements in the desired order.

The algorithms all have the same purpose, yet they do not conform to
the same interface. They also deal with the data structured in different
ways. However, we would like to compare these algorithms for efficiency

2



Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

(speed).

ASortAlgo class: Reporting the results

Our first task is to design wrappers for all these algorithms that will al-
lows us to use them interchangeably to sort any collection of data supplied
through an iterator. Of course, we want all of them to produce the data
in a uniform format as well. Therefore, we want all of these algorithms to
produce a traversal for the sorted list.

Because the traversal of a binary search tree involes quite a lot of com-
putation, to make to comparisons fari, we will conclude the binary tree sort
by producing an sorted ArrayList, generated by the data produced by the
traversal of the binary search tree we have constructed.

ASortAlgo class: Initializing the data

The abstract class ASortAlgo introduced in the Etudes provides a uni-
form wrapper for all sorting algorithms. The initData method consumes the
given traversal for the data to be sorted and saves the given data in a data
structure appropriate for this algorithm.

For the algorithms that are based on the ArrayList the initData method
creates a new ArrayList and adds all elements generated by the given
Traversal. For the AListSortInsertion class that implements the insertion sort
for a recursively built AList, the initData method copied the given data into
a new AList. For the quicksort algorithm that is based on recuesively build
lists, this will not be necessary - as the algorithm traverses over the data
and constructs two new lists - the upper and the lower partition, and does
not use any properties of the lists. Finally, for the binary tree sort the task
of constructing the binary tree comprises a substantial amount of work,
and so should be done as a part of the sort method. Therefore, the initData
method just copies the reference to the Traversal.

We provide an example of a class that implements the insertion sort al-
gorithm for data saved as AList<T>.

ASortAlgo class: Running the timing tests

To measure the time each algorithm takes to complete its task, we will
invoke each algorithm in three parts. First, we provide the data to sort and
invoke the initData method. Next we start the timer, invoke the sort method
and stop the timer when the method returns the result. Finally, we check
that the data was indeed sorted and record the result.

We will test each of the several sorting algorithms on several datasets

3



c©2006 Felleisen, Proulx, et. al. Exercise Set 10

(varying the dataset size and whether the data is in the original order as
received from the database, or is randomized). For each dataset we will use
several different Comparators — by name and state, by latitude, and by zip
code.

The results will be recorded in a uniform way, so that we may then look
for patterns of behavior.

Here is a summary of the algorithms you will implement. Please, use
the names given below:

• ArrSortSelection — done as a Part 1 of the Etudes

• ArrSortInsertion — done as Part 2 of the Etudes

• AListSortInsertion — provided

• ABinaryTreeSort — modify the solution to homework 5

• AListSortQuickSort — to be done (modify 8.1 part 9 of homework 8)

• ArrSortQuickSort — to be done

10.1 Problem

Design the method in the Tests class that determines whether the data gen-
erated by the given Traversal iterator is sorted, with regard to the given
Comparator.

Later, you will need the same method in the class TimerTests.

10.2 Problem

Complete the design the classes AListSortSelection and AListSortInsertion.
Include in each class a self test in the form of a method testSort(Tests

tests) that provides a test for all methods in this class.

10.3 Problem

Design the class ABinaryTreeSort that that extends the ASortAlgo class. It
performs the binary tree sort on the data supplied by the Traversal iterator.

The sort method first builds the binary search tree from the data pro-
vided by the iterator, then saves the data generated by the inorder traversal
in an ArrayList or in an AListOfCities data structure.

4



Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

Include in each class a self test in the form of a method testSort(Tests
tests) that provides a test for all methods in this class.

10.4 Problem

Design the class AListSortQuickSort that performs the recursively defined
quicksort on the data supplied by the Traversal iterator and producing an
AListOfCities data structure. You will need a helper method to append two
lists together.

HtDP has a good explanation of quicksort.

Include in each class a self test in the form of a method testSort(Tests
tests) that provides a test for all methods in this class.

10.5 Problem

Design the class ArrSortQuickSort that that extends the ASortAlgo class. It
performs the quicksort sort on an ArrayList. The ArrayList is initialized
from the data supplied by the Traversal iterator.

You may use any textbook or the web to find an implementation of this
algorithm, but you are responsible for the correctness of your implementa-
tion.

Include in each class a self test in the form of a method testSort(Tests
tests) that provides a test for all methods in this class.

Note: If you are having problems with this algorithm, go on to the Time
Trials and finish this only if you have time left.

Part 2: Time Trials

All of the tests we designed as the part of our code sorted only very small
collections of data. It is important to make sure that the programs work
well for large amounts of data as well. It is possible to estimate the amount
of time an algorithm should take in comparison to others. However, we
would like to verify these results on real data, and learn in the process what
other issues we need to take into consideration (for example, the space the
algorithm uses, and whether the data is already sorted or nearly sorted).

5



c©2006 Felleisen, Proulx, et. al. Exercise Set 10

Test Data

The class DataSet represents one set of data to be sorted. It knows the size
of the data set, whether it is a sequential subset of the original data or a
randomly selected set of data. It provides an iterator that generates for the
sorting algorithm all elements in this data set.

The class TestData generates all DataSets we will use, so that we do not
have to repeat this process, and also to make sure that all algorithms will
use sort the same data. This way we can conduct ’controlled’ experiments
— comparing outcomes when solving the same problem.

Timing Tests

The class TimerTests provides a framework for conducting timing experi-
ments. It contains a field that is an instance of TestData so we do not have
to read the file citiesdb.txt of 29470 items for every test.

The method runOneTest runs one test of a sorting algorithm. It con-
sumes a sorting algorithm (an instance of ASortAlgo) and an instance of
DataSet. These two pieces of data determine what is the data to be sorted,
how large it is, whether it is random or sequential, which algorithm is used,
and which comparator is used. It runs the sorting algorithm with a stop-
watch and produces the timing result.

Finally, the method allTests runs timing tests for all the selected combi-
nations of sorting algorithms, comparators, and datasets and collects the
results into an ArrayList of Results.

10.6 Problem

Design the classes that implement the Java Comparator interface and allow
us to compare two cities by their zip codes (class ComparatorByZip) and by
longitude (class ComparatorByLongitude).

10.7 Problem

Study the design of the class Result that holds the results of the timing tests.
For each test we want to remember that the name of the test (for exam-
ple ”Insertion sort with ArrayList”), the size of the data that we sorted,
whether it was sequentially or randomly selected data, and the time it took
to run the algorithm.

6



Exercise Set 10 c©2006 Felleisen, Proulx, et. al.

The method runATest in the class TimerTests modifies the method
runOneTest to produce an instance of the Result.

Modify the method toString in the class Result to produce a String that
represents the result formatted the way you would like to see the results.

10.8 Problem

The method runAllTests that consumes an ArrayList of instances of SortAlgo-
rithm, an ArrayList of instances of Comparators, and the instance of TestData,
and runs the timing tests for each algorithm, using each of the compara-
tors, using both, sequential and random data. The results are produced as
an ArrayList of Results.

Run all possible tests. Make a note of those that fail. Choose a few at a
time (for example all algorithms and comparators for a given dataset) and
record the results into a text file or into a spreadsheet.

10.9 Problem

Look at the results of the timing tests and see what you can learn about the
different ways to sort data.

If one of the algorithms takes too much time or space, you may elimi-
nate it from further trials on larger datasets. However, try to understand
why that may be hapenning.

You may also modify the way the dataset is initialized. For example,
you may want to see how your algorithm performs on sorted data.

Present both the numerical results, and your comments about the mean-
ing of the results in a professionally designed format — possibly with
charts. We care both about the results and about the way you present them
and explain what you learned from them.

7


