
Exercise Set 7: Battleships

Exercise 7.1 The goal of this exercise is to use what you learned about data
structures and class hierarchy design by implementing a battleship game to be
played over the network.
The Battleship game is defined as follows.

Two players play against each other. Each has a board with 10 rows and
10 columns. At the beginning of the game, each player places the available
battleships onto the board, hidden from the opponent’s view. Players then take
turns guessing the locations of the opponent’s ships. The first player to destry
all of the opponent’s ships wins.

Design a program, which simulates one player playing against a human op-
ponent, using the console for communications, as follows:

• When it is compute’s turn, the computer selects a guess of one location on
the board, and sends the message guess(x, y) to the opponent, where x
and y are integers from 1 to the size of the board.

• The computer then awaits for the next message to arrive from the oppo-
nent.

• The opponent reply is through a message reply(response-code), where
the response code can be HIT, or MISS, or WIN, or REPEAT if the player had
guessed the same location more than once.

– If the response is WIN, the computer wins and the game stops.

– If the response is HIT, the computer records the location of the hit
in its board.

– If the response is either HIT or MISS, the computer sends a message
yourTurn() to the other player and awaits the opponent’s move.

• The opponent (for now a human player, but later will be another com-
puterproceeds in a similar fashion. When it receives the guess(x, y)
message, it looks up the record of its ships, records the guess, and deter-
mines the answer.

The preliminary design of the record of the game and a way to play against a
human with console input is available. The code needs refactoring to separate
the communications part from the game record (see below). Try the code to
play against a human player in the console.

• Define IOChannel interface, which allows you to read and write Strings -
one line at a time. The interface contains methods open(), close(), String
read(), and write(String).

12



• Refactor the battleship game, so all communications with the console is
through ConsoleChannel which implements IOChannel interface.

• I will provide later today the code which modifies the number game to
communicate through a similar channel. Use it as example to implement
battleship game to work over a network socket connection.

• Design the methods needed for the computer to play the game. At the
least, the computer may select a random location, which has not been
guessed before.

• Design the methods needed to allow the user to select the location of the
ships before the game starts.

• Make sure you have tests for each part of the game you have developed.
(Do as I say...)

13


