
Exercise Set 6: Graph Algorithms

Exercise 6.1 The goal of this exercise is to learn to represent a graph as a data
structure.
The graph structure is defined as follows.

• A Graph class is a hashtable of Nodes. Use the data Object as the key -
see below.

• A Node is a structure consisting of Object data and Edges edgelist.

• Edges is a list (or other collection) of Edges.

• Edge is a structure consisting of a Node start, a Node finish, and dis-
tance given as integer.

1. Draw the UML diagram of the graph data structure.

2. Implement the method getNodes for the class Graph, which creates the
hashtable of Nodes using a given IRange iterator. Make sure the hashtable
does not have duplicate entries.

3. Implement the method addEdge, which adds an edge to the graph, given
the start and end Object and the distance.

4. Implement the method addEdges, which adds edges to the graph, using
the given IRange iterator.

5. Implement the iterator() method for the class Graph, which returns an
iterator for traversing over the graph nodes.

6. Implement the iterator() method for the class Node, which returns an
iterator for traversing over the edges adjacent to this node.

7. Verify your work by displaying a graph of cities using the GraphDisplay
class.

Exercise 6.2 The goal of this exercise is to implement some basic graph algo-
rithms.
The GraphAlgorithms class contains the following member data:

• FringeQueue fringeQueue that contains the Edges on the fringe, orga-
nized as stack, queue, or one of two possible priority queues.

• HashMap fringeHash that contains the Nodes on the fringe.

• HashMap visited that contains the visited Nodes.

• Graph graph, the graph on which the algorithm is performed.

• Graph result, the graph of relevant edges for the result.

10



• Node start, the node where the algorithm starts.

• Node target, the node which is the target of the algorithm.

1. Define the GraphAlgorithms class and implement the constructor which
takes the graph, the start and target Node, and the fringeQueue as
arguments.

2. Define the method initialize, which inserts the start Node into the
fringeHash, and also into the fringeQueue with distance 0 and the
finish Node being the same as start Node.

3. Define the method processNode, as follows:

• If the fringeQueue is not empty, remove the Edge current from the
fringeQueue - otherwise stop and return.

• Remove finish Node in the current Edge from the fringeHash.

• Insert finish Node in the current Edge into visited.

• Add finish Node in the current Edge and Edge current into re-
sult.

• Define an Iterator for the current Node.

• Process each Edge from the Edges list for the current Node using
processEdge method described below.

4. Define the method processEdge, as follows:

• Get the target Node to be the finish Node in the Edge object.

• If target is in the visited, stop and return.

• Insert the Edge object into the fringeQueue.

• Insert the target Node into the fringeHash.

5. Define the perform method as follows:

• Invoke initialize method.

• While the fringeQueue is not empty, invoke processNode method.

• Return result.

6. Define the getPath method, which for a given start and finish Nodes
returns a list of edges leading from start to finish in the result Graph.

11


