
Exercise Set 3: Collections and Algorithms

Exercise 3.1 The goal of this exercise is to set up a foundation for exploring
and analyzing various algorithms and the data structures they manipulate. The
data set used by the algorithms is created either from user input, or from existing
data structure - such as a cons-list or an array.

1. Draw a UML diagram of al classes we defined to implement IRange. Iden-
tify the connection with the user input/output, or a connection to a file
via link to an oval with the label describing the nature of interaction.

2. Draw a UML diagram of Collection interface, the AbstractCollection
class, and three derived classes: ArrayList, LinkedList, and the class
ArrayCollection, which you started on in the lab.

3. Complete the design and implementation of the class ArrayCollection.
Do not forget to test it.

4. Design the class Algorithms as follows:

• The member data consists of a dataset, which is a Collection, and
of input, which an instance of one of the classes that implement
IRange.

• The constructor is responsible for initializing the dataset. One vari-
ant allows the user to provide an existing dataset. The second vari-
ant expects both the dataset and the input iterator to be given
as arguments for the constructor. The second variant then proceeds
with initializing the dataset using the given input iterator.

• Test the first constructor with existing datasets from the following
classes: ArrayList, LinkedList, and your own ArrayCollection.

• Test the second iterator with existing data values supplied as an array
or as a cons-list, - with the appropriate input iterators.

5. There are three kinds of methods in this class: accessors, queries, and
filters. Accessors allow the access to the dataset through its iterator, and
by returning objects in the dataset. Queries answer questions about the
dataset, leaving its structure intact. Filters modify/mutate the structure
- sorting it, extracting a dataset that satisfies some predicate, or by
mutating the contents according to a given function.
Design the following queries:

• Design the method findCity, which returns a City object with the
given zip code.

• Design the method getZip, which returns the zip code for the city
with the given name and state.

• Design the predicate cityInState, which determines whether there
is a city with the given name in the given state.

4



• Design the method areaCodeFilter, which returns an array of all
City objects, which have the given area code.

6. You will need the following tests. Develop each test suite as part of the
design recipe. Group different test suites together and run them one at a
time as follows:

• Test the ArrayCollection class.

• Test all input ranges - just a reminder that we already did these tests.

• Test the constructors for the Algorithms class with different input
datasets and IRange iterators.

• Test the methods in the Algorithm class on pre-built datasets, using
the first variant of the constructor.

• Design and run comprehensive tests, which test these features in
combination with each other.

5


