Exercise Set 4: Self Referential Class Hierarchies

Exercise 4.1 Given the shopping list of groceries and the UML diagram (Figure
4.1), develop the following methods:

isInList, which determines whether a given item is already on the list;
countItems, which counts how many items are on the shopping list;
removeFromList, which produces a new list with the given item removed;

addToList, which adds a new item to the shopping list.

Exercise 4.2 Develop the collection of classes for representing a list of actors in
a cast. We assume, each actor is listed only once. It is sufficient to just record
actor’s full name as one String: the last name followed by the first name.

Develop the method isInCast, which determines whether some actor is
in the cast.

Develop the method castSize, which determines how many actors are in
the cast.

Develop the method sortList, which return a sorted list of actors.

Develop the method sortedIsInCast, which determines whether some
actor is in the cast, and takes advantage of the fact that the list is already
sorted.

Exercise 4.3 The playbill is a list of actor-role pairs, each actor and each role
can be represented as one String. Every actor plays only one role.

Design the class Role, which represents one role and includes the title of
the role (a String) and the actor of this role (a String).

Develop the collection of classes to represent a playbill for a play.

Develop the method whosePart, which determines the name of the actor
playing the given role. If the role is not in the list, the method should
return the String ”” (a non-empty string of length 0).

Develop the method whatPart, which determines the role played by a
given actor. If the actor is not in the list, the method should return the
String ”” (a non-empty string of length 0).

Develop the method substitute. The method consumes an actor and
a role. It produces a new playbill where the actor for the given role is
replaced by the given actor. If the given role does not appear in the
playbill, the playbill is unchanged.

10

Figure 4.1

Grocery Items List: Class Hierarchy

Class: AGrocery

Member Data:

double size

double price

String brand;

Methods:

double unitPrice();

boolean isCheaperThan(int somePrice);
boolean betterpPriceThan(AGrocery item);

Class: Coffee

Class: Juice

Class: IceCream

Member Data:
string kind

Member Data:
string flavor
string kind

Member Data:
string flavor
string kind

Constructor:

Constructor:

Constructor:

Methods:
boolean isInstant()

Methods:
boolean isFreshQ)

Methods:
boolean isSorbet()

Class: AList

Methods:

(A) boolean isInList(AGrocery anItem);
(A) 1int countItems();
(A) AList addToList(AGrocery anItem);

A

Class: EmptyGroceries

Class: consGroceries

Member Data:

Member Data:
AGrocery first
AList rest

constructor: (not needed)

Constructor:

Methods:

boolean isInList(AGrocery
anItem);

int countItems();

AList addToList(AGrocery
anItem);

Methods:

boolean isInList(AGrocery
anItem);

int countItems();

AList addToList(AGrocery
anItem);

AList removeFromList()

Exercise 4.4 The course information in the registrar’s database contains the
course number (four digits), the course title, and the number of credits.

e Develop the classes to represent a list of courses.

e Develop the method departmentList, which produces a list of all courses
offered in the given department. A department is identified by the first
two digits of the course number.

e Develop the method credits, which determines the number of credits
student earns in a given course.

Exercise 4.5 The grocery store keeps the inventory as a list of lists of grocery
items of different kind (Coffee, IceCream, Juice - see an earlier exercise).

Develop the classes to represent the inventory for this grocery store.

Develop the method grossIncome, which computes the gross income from
all products in the inventory.

Develop the method incomeForBrand, which determines the gross income
for a given brand of products, given the class name for the products.

Draw the UML diagram for this collection of classes.

12

