Research Statement

VISION

Science is at the very center of a modern civilization, and that is more of a requirement than it is a feature. Throughout the course of history, too many empires underrated the impact of technology in favor of culture, military or commerce, thus making their downfall inevitable. The twentieth century taught us, beyond any doubt, that science greatly enhances all other dimensions of civilization, and so education and research should be the critical priorities. Ergo my choice to be a scientist and a teacher.

A new approach to knowledge. In the last few decades we have witnessed a major shift to a digital world that not only affects all of the above – science, military, culture and commerce – but it completely changes long established norms. Consider the concept of a “library”: since ancient times, many organizations collected and archived records, writings and facts into voluminous physical spaces. Today, all the information anyone needs can be stored or accessed on a pocket-size device; for example, all Wikipedia fits into a cell phone while the entire Library of Congress can be stored on a workstation. This is made possible by of major advances in systems, architectures and miniaturization; however we need new tools to make use of the vast majority of data we now have access to. Two newer disciplines are quickly becoming foundations of “modern libraries”: Machine Learning [ML] is responsible for mining and creating knowledge from data, and Information Retrieval [IR] is responsible for accessing the data. My main research interests lie in these two fields and in their integration for various problems; I consistently use ML, Information Theory and statistics as a base to approach IR problems, with notable success on those concerning evaluation.

Search engines are much of IR, but much more than meets the naive eye. Of course, the basic concept is search: a mechanism to answer information needs; but for it to work, a significant infrastructure must be in place, which is even more important than the search mechanism: caching and updating very large datasets, making sense of implicit data structure, dealing with billions of queries a day, personalizing the results etc. My PhD work is focused on search quality; I have developed algorithms and models for efficient evaluation, estimation of query difficulty, metasearch, and exploration of relevant patterns. I also participated to collection-building efforts for research purposes. For this work, my thesis was awarded the Northeastern University Dissertation Completion Fellowship for Spring 2008.

Today, search engines are embedded into all aspects of digital world: in addition to Internet search, all operating systems have integrated search engines that respond even “as you type”, even over the network, even on cell phones; therefore the importance of their efficacy and efficiency cannot be overstated. There are many open possibilities for new ideas, implementations and optimizations in this area; that, combined with the immense interest from both academia and corporations, makes it a very attractive research field.

Foundations, theory and practice. My training is that of a theoretician with a strong background in algorithms and mathematics, and with good programming skills; hence my research relies on mathematical principles or derivations – mostly from geometry, statistics, combinatorics, graph theory, calculus – and the implementations are self-coded.
In Computer Science, there are many things that work well, and it is my firm belief that there are scientific, rigorous explanations for all of them. I accept that sometimes the explanation could be beyond our reach; nevertheless, a solution that works, but that we don’t understand, is just an ad-hoc heuristic for which we should try our best to reason. I want to truly solve real problems; while I know complexity is necessary, I believe in “making everything as simple as possible, but not any simpler” (Einstein). I favor seeing rather than deducing (that is, a good representation may actually solve the problem), hands-on approaches, justifiable outcomes and that ‘why’ and ‘how’ are equally important questions.

PAST AND CURRENT WORK

During my PhD, I studied many facets of ML and IR; lately, my work has been focused on IR performance measurement: Does the search engine answer satisfy the information need? As it turns out, this is a difficult question: first, it is hard to encapsulate the questioner satisfaction with the answer in a formula; second, even if we take a certain performance-measurement formula for granted, it would require a enormous human effort to decide if all relevant pieces were retrieved and also which of the pieces retrieved are in fact not relevant. My PhD thesis proposes a new approach to large scale performance measurement, specifically on how to massively reduce this human effort [PHDTHESIS]. Below are brief summaries of several of my past and current projects; some of these are not part of my thesis.

Maximum entropy method. Over the years, many measurements have been proposed for IR performance, each with different requirements, purpose and features. Some of them became increasingly popular, achieving an unofficial status of “gold standard”, but this happened mostly based on intuition rather than formal reasoning. We used the maximum entropy framework to prove that the “gold standard” measures are indeed the most informative, in a information-theoretic sense [MAXENT].

Geometric representation. For a long time, some of the performance measurements were known to be well correlated, due to empirical evidence. We found a geometric representation of these measures and explained the correlation [RPREC].

Statistical survey applications. It is amazing (naively speaking) how accurately polls can estimate the number of votes a candidate will take across the country, using only about two thousands inquiries; even more, they can give confidence in the predictions. That is because of the mathematical powerhouse of Statistics, but also because of the following design: Say we want to know how many popular votes Hillary Clinton would take as candidate to U.S. presidency (note, however, that in U.S. the presidential election is not decided by direct popular vote). It makes statistical sense to question four times more New Yorkers than Texans - that is to take into account the “prior” belief that Hillary is four times more popular in New York that she is in Texas. Independent of the prior holding or not in reality, Statistics weights this four to one ratio against the population total to make sure the estimates are correct (more precisely: unbiased). What the prior is giving us is that, as long as Hillary is more popular in New York than she is in Texas, the estimates will have lower variance than they would if we were to use a uniform survey over all states.

Similarly, in IR, we can construct a prior of relevance over retrieved documents, and so we can use surveys to estimate many of the popular measures using only 5% of the human effort typically employed [SAMPLING].
TREC, Million Query Track. National Institute for Standards and Technology [NIST] sponsors annually the Text REtrieval Conference [TREC], where various research groups run their search engines on given data-collections and queries and later obtain evaluations of performance. This is a critical event, because most of IR research is verified using TREC data. In the closest track to real live search, the “ad-hoc” track, evaluations of some 50-to-100 picked queries consists in human-assessing of about 80,000 documents for relevance, which takes more than 2 man-years effort (which is why only governmental institutions and big corporations can afford such tasks). In 2007, TREC used our survey-based statistical technique (together with an alternative strategy developed at UMass Amherst) on Million Query Track, in order to evaluate an unprecedented number of 1,800 queries [MQ2007].

Metasearch using online allocation. Metasearch is the problem of combining the output of several search engines (on the same query); practically, it is an internal mechanism used by all major engines, because many search features and techniques are always combined into a single final output. The classical ML online allocation problem and the Hedge algorithm (also used to combine episodic expert advice) are analogous and therefore easily applicable to the IR problem of metasearch. We obtained, besides metasearch, a way to find very relevant documents and to incorporate feedback into the search strategy, and also a fast method for differentiating the search systems in terms of performance [HEDGE].

Query difficulty estimation is addressing the large diversity of the queries that search engines encounter. Some of them are considerably more difficult than others for various reasons: ambiguity, generality, lack of relevant answers, language constructs confusion etc. From the perspective of the search engine, it would be great if queries could be classified before sending out the answer; this could allow hard queries to have special treatment. We developed a technique based on the information-theoretical Jensen-Shannon Divergence that, given two or more search strategies, estimates query difficulty [QDIFFICULT]. Since usually several searches are executed internally, this is an easy add-on to the overall search procedure.

Log analysis tools can be very useful for computer forensics, assuming an intrusion is detected, especially if the intrusion is of the bad kind. In a scenario where there are millions of records and a few system administrators working around the clock to bring the infrastructure back to a functional and safe state, the ability to spot an anomaly is critical. We proposed an approach based on information theory, together with a log visualization utility; currently work is being done on a plugin for the popular network tool Ethereal [LOGTREE].

Performance model by class. There are many schemas proposed for search engines, although most of them are variations of no more than about ten fundamentally different classes of approaches. I have early evidence that the performance of certain schemas can be modeled by the class they belong to.

FUTURE WORK

My short term goals are focused on several ongoing projects I am involved in; I have some plans for medium term work, and also several long term ideas. Here is a summary of my current and future projects, ordered from short term to long term.

Confidence intervals. I am currently working on providing confidence intervals on our estimations of performance. While we showed that the estimates are very good, proving a useable bound on the variance is the ultimate test to pass before large adoption by the research community. Our techniques for estimation are known to support variance estimators, but they need to be adapted to the IR problem where we have to deal with double stage estimations (the population values sampled are also estimated).

Million Query Track, 2008. TREC already approved the proposal for second edition of Million Query Track (in 2008); I am going to be part of it, certainly with the evaluation technique, but I may also be involved in the track infrastructure.
Search engine optimization. An IR performance (or quality) measure can be a key component of a search engine, if internally used as an objective function. Direct learning approaches to search and ranking have been proposed by characterizing this fact [APSVM]. Our study of performance measures combined with our internal-metasearch expertise could potentially lead to a good contribution in this area.

Summarization of search would be of practical interest for a user who just received on his terminal 300,000 results as response for a query. Obviously, such a number of documents is beyond his capability of examination, but say he is willing to spend some time on the results. Can the 300,000 documents be meaningfully summarized into several pages? To make things clear, I am not referring to summarizing each document (this is a well established subfield of IR), but rather summarizing the content of all documents as a whole. My intention is to use survey theory, clustering, and information extraction techniques to achieve the summarization.

Non-list performance measurements. While many search engines present the output as a ranked list, there are approaches based on clustering that usually work like portals: they let the user navigates “a tree” from a given top, and that narrows the area clustered with each click. What would be a good performance measure for this form of output? Minimum Description Length principle could be a good start for solving this problem.

Integration. More access to information is definitely good; but it also produces more chaos, and we humans are excessively good at generating chaos. If all the information will be consistently organized, then perhaps the established field of Databases will serve us well enough. Not only this is not the case, but the more we collect data and we collect at very high rates, the closer we bring the traditional database era to an end.

What we have is vast amounts of unorganized data: text, audio, video, personal records, fingerprints, datasets and, to make matters worse, proprietary formats. We need ML and IR to manage information in natural form, and we need to integrate them with Databases tools. Mathematics can easily be integrated (because mathematics is modeling natural forms), but the SQL language, as it is, cannot. Databases need to adapt to the new realities, while ML and IR need to use the existing database infrastructure. This topic is a very exciting area of research, which is getting increasing attention [DBINTEGRATION]

Other interests. I like games and I think reinforcement learning can be combined with game theory for applications to hard games. One day I would like to come back to an older project of implementing an agent-based learning strategy for playing Bridge.

REFERENCES

[PHDTHESIS]

[SAMPLING]

[MQ2007]
James Allan, Ben Carterette, Javed A. Aslam, Virgil Pavlu, Blagovest Dachev, Evangelos Kanoulas: Million Query Track 2007 Overview

[QDIFFICULT]

[HEDGE]
The Hedge Algorithm for Metasearch at TREC 2006, with Javed Aslam and Carlos Rei, TREC 2006.
Measure-based Metasearch, with Javed Aslam and Emine Yilmaz, SIGIR 2005.

[LOGTREE]
Semi-supervised Data Organization for Interactive Anomaly Analysis, with Javed Aslam and Sergey Bratus, ICMLA 2006.

[MAXENT]

[RPREC]
A Geometric Interpretation of R-precision and Its Correlation with Average Precision, with Javed Aslam and Emine Yilmaz, SIGIR 2005.

[AP SVM]
Yisong Yue, Thomas Finley, Filip Radlinski, Thorsten Joachims: A support vector method for optimizing average precision, SIGIR 07, doi = [http://doi.acm.org/10.1145/1277741.1277790]
Thorsten Joachims: A support vector method for multivariate performance measures, ICML 05 doi = [http://doi.acm.org/10.1145/1102351.1102399]

[DBINTEGRATION]
W. Bruce Croft and Hans-J. Schek: Introduction to the special issue on database and information retrieval integration,
http://www.springerlink.com/content/x7082416710h5357/