CS6140 Machine Learning, Spring 2013

about CS6140            home            schedule       grades      final project     forum


*subject to change
Week
Topic
Reading
Assignment
Jan 8
Administrative
Basic concepts, prerequisites


Decision trees
Regression Trees
Background:
DHS 8.1-8.5
Other Decision Tree notes
HW1 due Jan 29

Jan 15
Linear regression
Logistic regression
Gradient Descent


DHS ch 5
KMPP ch 7,8

Jan 22
Perceptrons
Neural Networks


Other slides (Mitchell)
Mitchell chapter
DHS ch6

Jan 29
Probabilities Primer, Bayesian statistics
Generative Methods
Fitting parameters to data, Maximum Likelihood

DHS ch 2,3
KMPP ch 2,3
Andrew Ng Lecture Notes

HW2 due Feb 19
Feb 5 Gaussian Discriminant Analysis
Naive Bayes
Smoothing
DHS ch 2,3
KMPP ch 3,4

Feb 12
Graphical Models, factor graphs
EM algorithm, Gaussian mixtures

Graphical models - Bishop slides
KMPP ch 20 , KMPP ch 11(EM)
EM code, example
EM wikipedia notes , EM Berkeley notes  ,  EM other notes
EM slides set1 , set2

Feb 19
Boosting, AdaBoost
Online Learning,  Hedge Theory

DHS ch 9
KMPP ch 16
boosting testing error proof
AdaBoost/Hedge paper
boosting preferences/ranking
HW3 due Mar 12
Feb 26
Active Learning
VC dimension
Multiclass: ECOC
VC dimension slides
DHS ch 9.5
KMPP ch 16.6

Mar 5
SPRING BREAK


Mar 12
Support Vector Machines
Convex Optimization , slides
DHS ch 5.11
KMPP ch 14
saddle-point
Chris Burges SVM tutorial , SVM on wikipedia
SVM and VC dimension

Project Proposal due
HW4 due Apr 2
Mar 19
Support Vector Machines
SMO, Kernels (notes scan, some from Andrew Ng)

Andrew NG SVM notes
kernel slides

Mar 26
Locality
Parzen Windows
K-Nearest Neighbor
Learning with harmonic functions

KMPP ch14, ch1
DHS ch 4

Apr 2
Collaborative Filtering
Learning to Rank: RankBoost, LambdaMart


Project Milestone
Apr 9
Clustering, KMeans
Principal Component Analysis
Feature Selection



Apr 16
Project Presentation

Project Presentation
Apr 23


Project due