RIDGE and LASSO
regularization for regression



Feature selection

- Some algorithms perform naturally feature
selection

- for example Decision Trees, Boosting

- Other algorithms have difficulty with correlated
features
- for example Naive Bayes, Regression

- Some algorithms have difficulty with too many
features



Feature selection

- Task(label) Independent, Model independent
— )lmensmnalty reduction, clustering

PCA

- Filter Methods: Task dependent, Model
iIndependent

- compute correlation among pairs of features
- compute correlation of feature with labels

- Wrapper methods: Task dependent, Model
dependent

- try subsets of features with a given ML algorith
pick a “best” subset
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Forward Feature Selection

- Task dependent, Model dependent

- Select one feature at a time, dynamically
- depending on how previous features do

set of features initial empty, S = ()
repeat while improvement > €
for each feature f ¢ S
performance (S U{f}) = performance(model, trained on S U{f})
end for
frnew = argmaxy performance(S U {f})
improvement = performance (S U { frew}) - performance (5)
S=5U {fne'w}

end repeat



Problems with regression

- Free coefficients (unconstrained) can result in
problems
- features canceling each other

- features overwhelming each other
- large complexity with no generalization benefit

- Solution : constrain the coefficients



Regularization for regression

- Regression: same as before, a linear predictor
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- Regularized regression means add a “complexity”
penalty in the objective

- the objective contains the traditional least square (to be
minimized)
- but also R(w) a notion of complexity (to be minimized)

- A tradeoffs the complexity for the objective
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Regularization for regression

- RIDGE penalty : L2 norm

- causes all w coefficients to be small

Ly norm R(w) = 3{[w]l§ = 3 5., w’?

- LASSO penalty: L1 norm

- causes some coefficients to be 0 (feature selection)

Ly norm R(w) = [[ully = S5y ||

- “elastic-net” : mixture of L1 and L2 norms
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- can be written as constrained optimization

- a direct correspondence between A and t

- solved by taking derivatives with Lagrangian
Multipliers
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RIDGE vs LASSO

Figure 1: Source: Figure 3.11 of [4] Estimation picture for LASSO (left) and
RIDGE (right). Solid areas are for regions of constraints |w?!|+|w?| < t (LASSO,
left) and (w!)? + (w?)? < t (RIDGE, right). Red ellipses are the contours of the
objective, here the least square function.
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- the solution w will be in the feasible region (solid blue)



RIDGE vs LASSO

- RIDGE penalty for linear regression is essentially a regression problem

with bigger matrices

- Z = matrix data; n=number of data points, p=number of dimensions/features

The £, criterion is the RSS for the augmented data set:

So:
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- like regression, admits analytical solutlon
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RIDGE vs LASSO

- LASSO does not have an analytical solution

- RIDGE regularized regression can be solved with
Gradient Descent : simply add a term to the
gradient
- same for RIDGE-Logistic regression

- LASSO can be solved via quadratic programming

- or via approximation schemas like “forward
stagewise



Logistic Regression with RIDGE
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- like before, Logistic Regression optimizes max log likelihood
of data

- but now we add tj\be L2 RIDGE penalty
max % > [yilog(P(y = 1]z;) + (1 — y;) log(P(y = 0]z;)] — == R(w)
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- to use Gradient Descent we differentiate for each
component |

- gradient same as the one for logistic regression, except adding
the differential of RIDGE penalty



Logistic Regression with RIDGE

- The differential gives the Gradient Descend rule
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