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Probability theory is nothing but common sense reduced to calculation. — Pierre Laplace, 1812

1 Joint, marginal and conditional distributions

Let X and Y be discrete random variables (rv’s), each with K possible values. (We consider continuous
rv’s in Section 3.)1) The sum rule specifies how to compute a marginal distribution from a joint
distribution:

p(X = i) =

K
∑

j=1

p(X = i, Y = j) (1)

Since the variables are discrete, we can represent p(X, Y ) as a K × K table, and we can represent p(X = i)
as a K × 1 vector. See Figure 1 for an example.

The product rule specifies how to compute a joint distribution from the product of a marginal and a
conditional distribution:

p(X = i, Y = j) = p(X = i|Y = j)p(Y = j) (2)

We can represent p(X |Y ) as a K×K matrix M(Y, X), where each row sums to one (this is called a stochastic
matrix):

K
∑

i=1

M(j, i) = 1 (3)

By symmetry we can write
p(X = i, Y = j) = p(Y = j|X = i)p(X = i) (4)

We can use this definition to compute a conditional probability

p(X = i|Y = j) =
p(X = i, Y = j)

p(Y = j)
∝ p(Y = j|X = i)p(X = i) (5)

This is called Bayes’ rule and is often written

posterior ∝ likelihood × prior (6)

where p(X = i) is the prior probability that X = i, p(Y = j|X = i) is the likelihood that Y has value j
given that X has value i, and p(X = i|Y = j) is the posterior probability that X = i given that we observe
that Y = j. The constant of proportionality is 1/p(Y = j), where p(Y = j) is the marginal likelihood of
the data (marginalized over X).

1We use lower-case p to denote either a probability density function (for continuous rv’s) or a probability mass function (for
discrete rv’s). Also, we follow the standard convention that random variables are denoted by upper case letters, and values
of random variables are denoted by lower case letters. However, when we start treating parameters as random variables (see
Section ??), we will use usually use lower-case greek letters for both the variable and its value.
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Figure 1: Computing p(x, y) =
∑

z p(x, y, z) by marginalizing over dimension Z. Source: Sam Roweis.

Figure 2: Computing p(x, y|z) by extracting the slice from p(x, y, z) corresponding to Z = z and then
renormalizing. Source: Sam Roweis.

We can compute the joint posterior p(X, Y |Z) similarly; the result is a 2D “slice” of the matrix (see
Figure 2) which satisfies

∑

x,y p(x, y|z) = 1.
The product rule can be applied multiple times to yield the chain rule of probability:

p(X1, . . . , Xn) = p(X1)p(X2|X1)p(X3|X2, X1) . . . p(Xn|X1:n−1) (7)

where we introduce the notation 1 : n − 1 to denote {1, 2, . . . , n − 1}.

2 Conditional independence

We can simplify the chain rule by making conditional independence assumptions. We say Z and Y are
conditionally independent given X , written as Z⊥Y |X , if and only if (iff) p(Z, Y |X) = p(Z|X)p(Y |X).
Suppose we make a Markov assumption that the “future” is independent of the “past” given the “present”:

Xi+1⊥X1:i−1|Xi (8)

Then the chain rule simplifies to

p(X1, . . . , Xn) = p(X1)p(X2|X1)p(X3|X2) . . . p(Xn|Xn−1) = p(X1)

n
∏

i=2

p(Xi|Xi−1) (9)
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Figure 3: Computing p(x, y) = p(x)p(y), where X⊥Y . Source: Sam Roweis.

Thus the joint is decomposed into a product of small terms. We shall see other examples of this kind of
simplification in Section ?? below. If X and Y are unconditionally or marginally independent, X⊥Y , we
can write p(X, Y ) = p(X)p(Y ): see Figure 3.

3 Continuous random variables

In the examples above, p(X = i) is the probability that X takes on value i; this probability mass function
(pmf) satisfies

∑

i p(X = i) = 1. If X is a continuous random variable, e.g., X ∈ IR or X ∈ IR+, then we
use a probability density function (pdf) which satisfifes

∫

S
p(X = x)dx = 1, where we integrate over

the support S of the distribution. It is called a density because we can multiply it by an interval of size dx
to find the probability of being in that interval:

p(x)dx ≈ P (x ≤ X ≤ x + dx) (10)

Note that it is possible for p(x) > 1 for any given x, so long as the density integrates to 1.
We will see many examples of pdf’s in this book, but here we introduce the most famous distributon,

namely the Gaussian or Normal distribution. For one-dimensional variables, this is defined as

N (x|µ, σ)
def
=

1√
2πσ2

e−
1

2σ
2
(x−µ)2 (11)

where µ is the mean and σ is the standard deviation, which we explain below. See Figure 4 for an example.
and see Chapter ?? for more details on the Gaussian distribution (such as how to estimate µ and σ from
data).

If Z ∼ N (0, 1), we say Z follows a standard normal distribution. Its cumulative distribution
function (cdf) is defined as

Φ(x) =

∫ x

−∞

p(z)dz (12)

which is called the probit distribution. This has no closed form expression, but is built in to most software
packages (eg. normcdf in the matlab statistics toolbox). In particular, we can compute it in terms of the
error (erf) function

Φ(x; µ, σ) = 1
2 [1 + erf(z/

√
2)] (13)

where z = (x − µ)/σ and

erf(x)
def
=

2√
π

∫ x

0

e−t2dt (14)
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Figure 4: A standard normal pdf and cdf. The matlab code used to produce these plots is
xs=-3:0.01:3; plot(xs,normpdf(xs,mu,sigma)); plot(xs,normcdf(xs,mu,sigma)); , where xs =
[−3,−2.99,−2.98, . . . , 2.99, 3.0] is a vector of points at which the density is evaluated.

Let us see how we can use the cdf to compute how much probability mass is contained in the interval
µ ± 2σ. If X ∼ N (µ, σ2), then Z = (X − µ)/σ ∼ N (0, 1). The amount of mass contained inside the 2σ
interval is given by

p(a < X < b) = p(
a − µ

σ
< Z <

b − µ

σ
) (15)

= Φ(
b − µ

σ
) − Φ(

a − µ

σ
) (16)

Since
p(Z ≤ −1.96) = normcdf(−1.96) = 0.025 (17)

we have
p(−1.96σ < X − µ < 1.96σ) = 1 − 2 × 0.025 = 0.95 (18)

Often we approximate this by replacing 1.96 with 2, and saying that the interval µ± 2σ contains 0.95 mass.
It is also useful to compute quantiles of a distribution. A α-quantile is the value fα = x s.t., f(X ≤

x) = α, where f is the pdf. For example, the median is the 50%-quantile. Also, if Z ∼ N (0, 1), then the
2.5% quantile is N0.025 = Φ−1(0.025) = −1.96, where Φ−1 is the inverse of the Gaussian cdf:

z = norminv(0.025) = −1.96 (19)

p(Z ≤ z) = normcdf(z) = 0.025 (20)

By symmetry of the Gaussian, Φ−1(0.025) = −Φ−1(1 − 0.025) = Φ−1(0.975).

4 Expectation

We define the expected value of an RV X to be

µX
def
= E X

def
=
∑

x

xp(X = x) (21)

We replace the sum by an integral if X is continuous. By linearity of expectation, we can push E inside
∑

:

E

(

∑

i

aiXi

)

=
∑

i

aiE (Xi) (22)
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where the ai are constants. If X is a random vector,

X =







X1

...
Xp






(23)

then its mean is denoted by

~µ =







µ1

...
µp






(24)

Note that we will often just write µ instead of ~µ. If a is a vector and A a matrix, we have the following two
important results (which follow from linearity of expectation):

E (aT X) = aT µ (25)

E (AX) = Aµ (26)

In particular, for any two random variables X ,Y , whether independent or not, we have

E [aX + bY + c] = aE X + bE Y + c (27)

Also, if X ,Y are independent,
E [XY ] = [E X ][E Y ] (28)

The conditional expectation is defined as

E (X |Y = y)
def
=
∑

x

x p(x|y) (29)

Note that whereas E (X) is a number, E (X |Y ) is a function of Y . The important rule of iterated
expectations is

E [E (Y |X)] = E (Y ) (30)

This is easy to prove:

E [E (Y |X)] =
∑

x

E (Y |X = x)p(X = x) (31)

=
∑

x

∑

y

yp(Y = y|X = x)p(X = x) (32)

=
∑

y

y

[

∑

x

p(Y = y, X = x)

]

(33)

=
∑

y

yp(Y = y) (34)

= E Y (35)

5 Variance

The variance is a measure of spread:

σ2 def
= VarX = E(X − µ)2 (36)

=

∫

(x − µ)2p(x)dx (37)

=

∫

x2p(x)dx + µ2

∫

p(x)dx − 2µ

∫

xp(x)dx (38)

= E[X2] − µ2 (39)
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from which we infer the useful result E[X2] = µ2 + σ2. The standard deviation is defined as

σX
def
=

√
Var X (40)

It is easy to show
Var (aX + b) = a2Var (X) (41)

where a and b are constants.
The variance of a sum is

Var [X + Y ] = Var X + Var Y + 2Cov(X, Y ) (42)

The conditional variance is defined as

Var (Y |X = x)
def
=
∑

y

(y − E (Y |x))2 p(y|x) (43)

The rule of iterated variance is

Var (Y ) = E Var (Y |X) + Var E (Y |X) (44)

This can be proved as follows. Let µ = E[Y |X ]. Then

E Var (Y |X) + Var E (Y |X) = E
[

E(Y 2|X) − µ2
]

+ E[µ2] − [E2µ] (45)

= E(Y 2) − E[µ2] + E[µ2] − E2(µ) (46)

= E(Y 2) − (E(E[Y |X ]))2 (47)

= E(Y 2) − (E2Y ) (48)

= Var Y (49)

6 Covariance

The covariance between two RVs X and Y is defined as

Cov(X, Y )
def
= E ((X − µX)(Y − µY )) (50)

= E (XY ) − E (X)E (Y ) (51)

and the correlation is defined as

ρ(X, Y )
def
=

Cov(X, Y )

σXσY
(52)

We can show −1 ≤ ρ(X, Y ) ≤ 1 as follows.

0 ≤ Var (
X

σX
+

Y

σY
) (53)

= Var (
X

σX
) + Var (

Y

σY
) + 2Cov(

X

σX
,

Y

σY
) (54)

=
Var X

σX
+

Var Y

σY
+ 2Cov(

X

σX
,

Y

σY
) (55)

= 1 + 1 + 2ρ (56)

Hence ρ ≥ −1. Similarly,

0 ≤ Var (
X

σX
− Y

σY
) = 2(1 − ρ) (57)
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so ρ ≤ 1.
If Y = aX + b, then ρ(X, Y ) = 1 if a > 0 and ρ(X, Y ) = −1 if a < 0. Thus correlation only measures

linear relationships between RVs. If X and Y are independent, then Cov(X, Y ) = ρ = 0; however, the
converse is not true, as we see below.

The partial correlation coefficient is defined as

rXY |Z
def
=

rXY − rXZrY Z
√

(1 − r2
XZ)(1 − r2

Y Z)
(58)

and measures the linear dependence of X and Y when Z is fixed.
If X is a random vector, its covariance matrix is defined to be

Var (X) = Σ
def
= E [(X − E X)(X − E X)′] =











Var (X1) Cov(X1, X2) · · · Cov(Xp, Xp)
Cov(X2, X1) Var (X2) · · · Cov(X2, Xp)

...
...

. . .
...

Cov(Xp, X1) Cov(Xp, X2) · · · Var (Xp)











(59)

If a is a vector and A a matrix, we have the following two important results:

Var (aT X) = aT Σa (60)

Var (AX) = AΣAT (61)

The conditional covariance is defined as

Cov(X, Y |Z = z)
def
=
∑

x,y

p(x, y|z)(x − E (x|z))(y − E (Y |z)) (62)

which is a function of Z.

7 Uncorrelated does not necessarily imply independent

Consider two RVs X, Y ∈ {−1, 0, 1} with the following joint distribution:

p(X, Y ) =









X/Y | 0 −1 1
−1| 0.25 0 0
0| 0 0.25 0.25
1| 0.25 0 0









(63)

The marginal distributions are clearly p(X) = p(Y ) = (0.25, 0.5, 0.25). We will first show that X and Y are
uncorrelated. We have

E (X, Y ) =
∑

x∈{−1,0,1}

∑

y∈{−1,0,1}

x y p(x, y) (64)

= −1 · 0 · 0.25 + 0 · −1 · 0.25 + 0 · 1 · 0.25 + 1 · 0 · 0.25 = 0 (65)

and

E X =
∑

x∈{−1,0,1}

xp(x) = −1 · 0.25 + 0 · 0.5 + 1 · 0.25 = 0 (66)

Similarly E Y = 0. Hence
Cov(X, Y ) = E (X, Y ) − E (X)E (Y ) = 0 − 0 (67)

However, it is easy to see that X and Y are not independent: i.e., p(X, Y ) 6= p(X)p(Y ). We can simply
multiply out the two marginals, c.f., Figure 3.





0.25
0.5
0.25





(

0.25 0.5 0.25
)

=





0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625



 (68)
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8 Change of variables

Let X be an rv with pdf px(x). Let Y = g(X) where g is differentiable and strictly monotonic (so x = g−1(y)
exists). What is py(y)? Observations falling in the range (x, x + δx) will get transformed into (y, y + δy),
where px(x)δx ≈ py(y)δy. Hence

py(y) = px(x)|dx

dy
| (69)

Now let x1, x2 have joint distribution px(x1, x2) and let (y1, y2) = g(x1, x2), where g is an invertible
transform. Then

py(y1, y2) = px(x1, x2)|Jx/y| = px(x1, x2)|J−1
y/x| (70)

where J is the Jacobian (how much the unit volume changes), defined as

Jx/y =
∂(x1, x2)

∂(y1, y2)

def
= det

(

∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

)

(71)

where det is the determinant (since we use |J | to denote absolute value). More mnemonically , we can write
this as

pnew = pold|Jold/new| = pold|J−1
new/old| (72)

As an example, consider transforming a density from polar (r, θ) to Cartesian (x, y) coordinates:

(r, θ) → (x = r cos θ, y = r sin θ) (73)

Then

Jnew/old =
∂(x, y)

∂(r, θ)
(74)

= det

(

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)

(75)

= det

(

cos θ −r sin θ
sin θ r cos θ

)

(76)

= −r sin2 θ − r cos2 θ (77)

= = −r (78)

Hence

pX,Y (x, y) = pR,Θ(r, θ)|J−1
new/old| = pR,Θ(r, θ)

1

r
(79)

To see this geometrically, notice that

pR,Θ(r, θ)drdθ = P (r ≤ R ≤ r + dr, θ ≤ Θ ≤ θ + dθ) (80)

is the area of the shaded patch in Figure 5, which is clearly rdrdθ, times the density at the center of the
patch. Hence

P (r ≤ R ≤ r + dr, θ ≤ Θ ≤ θ + dθ) = pX,Y (r cos θ, r sin θ)r dr dθ (81)

Hence

pR,Θ(r, θ) = pX,Y (r cos θ, r sin θ)r (82)
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Figure 5: Change of variables from polar to Cartesian. The area of the shaded patch is rdrdθ. Source:
[Ric95] Figure 3.16.

Figure 6: The central limit theorem in pictures. We plot a histogram of 1
M

∑M
i=1 xi, where xi ∼ U(0, 1). As

M→∞, the distribution tends towards a Gaussian. Source: [Bis06] Fig 2.6.

9 Central limit theorem

One reason for the widespread use of Gaussian distributions is because of the central limit theorem, which
says the following. Let X1, . . . , Xn be iid with mean µ and variance σ2. Let Xn = 1

n

∑n
i=1 Xi. Then

Zn =

√
n(Xn − µ)

σ
→ N(0, 1) (83)

i.e., sums of iid random variables (rv’s) converge (in distribution) to a Gaussian. See Figure 6 for an
example. Hence if there are many random factors that exert an additive effect on the output, then rather
than modeling each factor separately, we can model their net effect, which is to add Gaussian noise to the
output. Thus we use a Gaussian to summarize our ignorance of the true causes of the output. (The
Gaussian can also be motivated by the fact that it is the unique distribution which maximizes the entropy
subject to first and second moment constraints. We discuss this later.)
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