
Random Variables

COS 341 Fall 2002, lecture 21

Informally, a random variable is the value of a measurement associated with an experi-
ment, e.g. the number of heads in n tosses of a coin. More formally, a random variable is
defined as follows:

Definition 1 A random variable over a sample space is a function that maps every sample
point (i.e. outcome) to a real number.

An indicator random variable is a special kind of random variable associated with the
occurence of an event. The indicator random variable IA associated with event A has value
1 if event A occurs and has value 0 otherwise. In other words, IA maps all outcomes in the
set A to 1 and all outcomes outside A to 0.

Random variables can be used to define events. In particular, any predicate involving
random variables defines the event consisting of all outcomes for which the predicate is true.
e.g. for random variables R1, R2, R1 = 1 is an event, R2 ≤ 2 is an event, R1 = 1 ∧R2 ≤ 2 is
an event.

Events derived from random variables can be used in expressions involving conditional
probability as well. e.g.

Pr(R1 = 1|R2 ≤ 2) =
Pr(R1 = 1 ∧ R2 ≤ 2)

Pr(R2 ≤ 2)

Independence of Random Variables

Definition 2 Two random variables R1 and R2 are independent, if for all x1, x2 ∈ �
, we

have:
Pr(R1 = x1 ∧ R2 = x2) = Pr(R1 = x1) · Pr(R2 = x2)

An alternate definition is as follows:

Definition 3 Two random variables R1 and R2 are independent, if for all x1, x2 ∈
�

, such
that Pr(R2 = x2) 6= 0, we have:

Pr(R1 = x1|R2 = x2) = Pr(R1 = x1) · Pr(R2 = x2)

In order to prove that two random variables are not independent, we need to exhibit a
pair of values x1, X2 for which the condition in the definition is violated. On the other hand,
proving independence requires an argument that the condition in the definition holds for all
pairs of values x1, x2.
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Mutual Independence

Definition 4 Random variables R1, R2, . . . , Rt are mutually independent if, for all x1, x2, . . . , xt ∈
�

,

Pr

(

t
⋂

i=1

Ri = xi

)

=

t
∏

i=1

Pr(Ri = xi).

Definition 5 A collection of random variables is said to be k-wise independent if all subsets
of k variables are mutually independent.

Consider a sample space consisting of bit sequences of length 2, where all 4 possible
two bit sequences are equally likely. Random variable B1 is the value of the first bit, B2

is the value of the second bit and B3 is B1 ⊕ B2. Here the variables B1, B2, B3 are 2-wise
independent, but they are not mutually independent.

Pairwise independence is another name for 2-wise independence, i.e. when we say that a
collection of variables is pairwise independent, we mean that they are 2-wise independent.

Probability Density Functions

Probability density functions are used to describe the distribution of a random variable, i.e.
the set of values a random variable takes and the probabilities associated with those values.
This description of a random variable is independent of any experiment.

Definition 6 The probability density function (pdf) for a random variable X is the function
fX : (R) → [0, 1] defined by:

fX(t) = Pr(X = t).

For a value t not in the range of X, fX(t) = 0. Note that
∑

t∈ � fX(t) = 1,

Definition 7 The cumulative distribution function (cdf) for a random variable X is the
function FX :

� → [0, 1] defined by:

FX(t) = Pr(X ≤ t) =
∑

s≤t

fX(s).

Two common distributions enountered are the uniform distribution and the binomial
distribution.
Uniform Distribution

Let U be a random variable that takes values in the range {1, . . . , N}, such that each
value is equally likely. Such a variable is said to be uniformly distributed. The pdf and cdf
for this distribution are:

fU(t) =
1

N
, FU(t) =

t

N
, for1 ≤ k ≤ N.

Binomial Distribution
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Let H be the number of heads in n inpdendent tosses of a biased coin. Each toss of the
coin has probability p of being heads and probability 1− p of being tails. Such a variable is
said to have a binomial distribution. The pdf of this distribution is given by

fn,p(k) =

(

n

k

)

pk(1 − p)n−k

As a sanity check, we can verify that
n
∑

k=0

fn,p(k) =
n
∑

k=0

(

n

k

)

pk(1 − p)n−k = (p + (1 − p))n = 1

Expected Value

Definition 8 The expectation E[X] of a random variable X on a sample space S is defined
as:

E[X] =
∑

s ∈ SX(s) · Pr({s}).
An equivalent definition is:

Definition 9 The expectation of a random variable X is

E[X] =
∑

t∈range(X)

t · Pr(X = t).

If the range of a random variable is non-negative integers, there is an another way to
compute the expectation.

Theorem 1 If X is a random variable which takes values in the non-negative integers, then

E[X] =

∞
∑

t=0

Pr(X > i).

Proof: Note that

Pr(X > t) = Pr(X = t + 1) + Pr(X = t + 2) + Pr(X = t + 3) + · · ·
Thus,

∞
∑

t=0

Pr(X > t) = Pr(X > 0) + Pr(X > 1) + Pr(X > 2) + · · ·

= Pr(X = 1) + Pr(X = 2) + Pr(X = 3) + · · ·
Pr(X = 2) + Pr(X = 3) + Pr(X = 4) + · · ·
Pr(X = 3) + Pr(X = 4) + Pr(X = 5) + · · ·

= 1 ·Pr(X = 1) + 2 · Pr(X = 2) + 3 · Pr(X = 3) + · · ·

=

∞
∑

t=0

t ·Pr(X = t)

= E[X].
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Linearity of Expectation

Theorem 2 (Linearity of Expectation) For any random variables X1 and X2, and con-
stants c1, c2 ∈

�
,

E[c1X1 + c2X2] = c1 E[X1] + c2 E[X2]

Note that the above theorem holds irrespective of the dependence between X1 and X2.

Corollary 1 For any random variables X1, . . . , Xk, and constants c1, . . . , ck ∈ �
,

E

[

k
∑

i=1

ciXi

]

=
k
∑

i=1

ci E[Xi].

Conditional Expectation

Definition 10 We define conditional expectation, E[X|A], of a random variable, given
event A, to be

E[X|A] =
∑

k

k ·Pr(X = k|A).

The rules for expectation also apply to conditional expectation:

Theorem 3

E[c1X1 + c2X2|A] = c1 E[X1|A] + c2 E[X2|A].

The following theorem shows how conditional expectation allows us to compute the ex-
pectation by case analysis.

Theorem 4 (Law of Total Expectation) If the sample space is the disjoint union of
events A1, A2, . . ., then

E[X] =
∑

i

E[X|Ai]Pr(Ai).

Expected value of a product

In general, the expected value of the product of two random variables need not be equal
to the product of their expectations. However, this holds when the random variables are
independent:

Theorem 5 For any two independent random variables, X1 and X2,

E[X1 · X2] = E[X1] · E[X2].

Corollary 2 If random variables X1, X2, . . . , Xk are mutually independent, then

E

[

k
∏

i=1

Xi

]

=

k
∏

i=1

E[Xi].
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Note that in general,

E

[

1

T

]

6= 1

E[T ]
.

Linearity of expectation also holds for infinite sums, provided the summations considered
are absolutely convergent:

Theorem 6 (Infinite Linearity of Expectation) Let X1, X2, . . . be random variables such

that

∞
∑

i=1

E[|Xi|] converges. Then

E

[

∞
∑

i=1

Xi

]

=

∞
∑

i−0

E[Xi].

Deviation from the Mean

Theorem 7 (Markov’s Theorem) If X is a nonnegative random variable, then for all
t > 0,

Pr[X ≥ t] ≤ E[R]

t
.

Proof: We will show that E[X] ≥ t ·Pr(X > t).

E[X] =
∑

k

k · Pr(X = k)

≤
∑

k≥t

k · Pr(X = k)

≤
∑

k≥t

t · Pr(X = k)

= t ·
∑

k≥t

Pr(X = k)

= t · Pr(X ≥ t)

Note that in order to apply Markov’s theorem to random variable X, X must be non-
negative. Markov’s theorem need not hold if X can take negative values.

An alternate to express Markov’s theorem is as follows:

Corollary 3 If X is a nonnegative random variable, then for any c > 0,

Pr(X ≥ c ·E[X]) ≤ 1

c
.

Definition 11 The variance, Var[X], of a random variable, X, is:

Var[X] = E[(X − E[X])2].
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Theorem 8 (Chebyshev’s Theorem) Let X be a random variable, then for any k > 0,

Pr(|X − E[X]| ≥ k) ≤ Var[X]

k2
.

Proof: Note that

Pr(|X − E[X]| ≥ k) = Pr((X − E[X])2 ≥ k2.

Now we apply Markov’s theorem to the random variable (X − E[X])2. This gives us the
desired result.

Definition 12 The standard deviation of a random variable X is denoted σX and is defined
to be the square root of the variance:

σX =
√

VarX =
√

E[(X − E[X])2].

Chebyshev’s theorem can be restated in terms of standard deviation as follows:

Corollary 4 If X is a random variable, then for any c > 0,

Pr(|X − E[X]| ≥ c · σX) ≤ 1

c2
.

The variance can also be computed in a alternate, somewhat more convenient way:

Theorem 9

Var[X] = E[X2] − (E[X])2. (1)

Properties of Variance

Theorem 10 Let X be a random variable, and let a and b be constants. Then,

Var[aX + b] = a2 Var[X].

Proof: The proof is left as an exercise. Start with an expression for the variance using (1).

Theorem 11 If X1, X2, . . . , Xn are pairwise independent random variables, then

Var[X1 + X2 + . . . + Xn] =

n
∑

i=1

Var[Xi].

Proof: The proof is left as an exercise. Start with an expression for the variance using
(1), and expand the expressions that you obtain. You will need to use Theorem 5 about the
expectation of the product of two independent random variables.
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