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Document Understanding
Module Introduction



We’ve treated documents as 
sequences of words so far, but 
documents have much richer structure 
and information. 

This module surveys many of the extra 
features we can use as clues of 
relevance.

Document Features

http://en.wikipedia.org/wiki/Susan_Dumais



Some of these features are structural: 
the document’s organization gives 
clues about its topic. 

• The title, headings, and menu give 
fine-grained topic and subtopic 
information. 

• Links and their anchor text provide 
clues about the relevance of other 
pages related to this one.

Structural Features

http://en.wikipedia.org/wiki/Susan_Dumais
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Other features are topical: the 
document’s text may contain special 
words and phrases that pertain to a 
certain topic. 

• Named entities (people, companies, 
places, events…) are strong topical 
clues. 

• Topic modeling discovers the 
vocabulary that tends to be used 
when speaking of a certain topic.

Topical Features

http://en.wikipedia.org/wiki/Susan_Dumais
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Tools from Machine Learning can be 
used to generate additional features for 
a page. 

• Document classifiers are used to 
identify news articles, blogs, reviews, 
and other types of specialized pages. 

• Document clustering can find very 
similar pages, which is useful for 
providing diverse result lists and 
“more like this” functions (e.g. 
clustering news articles by story).

Features from ML

http://en.wikipedia.org/wiki/Susan_Dumais

Document Class: Biographical



When we have collected all the 
document features we’re interested in, 
we can use standard Machine Learning 
classifiers to learn how to predict 
document relevance from document 
features. 

This makes scoring functions such as 
BM25 simply one component of a more 
complicated relevance predictor. 

We will see later how to rank using 
these features. For now, let’s focus on 
the features themselves.

Putting it Together

DocID Body 
BM25

Title 
BM25 In-links … Rel?

1 1.23 1.2 3 1

2 1.2 1.4 12 1

3 17.3 13.2 2 0

4 10.55 0 207 0



Let’s get started!
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In a naive retrieval model, we treat all 
text on the page identically. This 
doesn’t match real page content well. 

• Site menus, ads, and other 
“boilerplate” have little bearing on 
the topic of the page. 

• Some regions of the page, such as 
the title and headings, deserve extra 
emphasis compared to the main 
page content.

Document Boilerplate

http://www.imdb.com/title/tt2084970
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In order to account for different 
document zones, we label document 
text based on its zone type in the index. 

In structured documents such as email, 
we might create a separate index for 
each field. 

In a free-text document, we store zone 
information as a label for a contiguous 
region of the document. In HTML, this 
often means labeling a subtree of the 
DOM based on its offset within the file.

Document Zones
E-mail Fields

HTML Token Ranges

Ti
tle

Su
m

m
ar

y



Many approaches to identifying the zones of a web page have been 
successfully implemented. 

• Rule- or template-based zone identification, for hand-tailored or automatically 
learned rules. May involve building a template for each major web domain 
(Wikipedia and IMDB need different rules). 

• Render the HTML and use image processing on the rendered page to find 
rectangular regions of interest. Use visual cues such as font size, horizontal 
lines, etc. Then find the HTML code which produced the regions of interest. 

• Simple heuristics based on text features also work well, and are simpler to 
implement.

Zone Identification



Kohlschütter et al (2010) developed a 
successful approach based on the 
observation that content and 
boilerplate have very different 
structural patterns, and simple 
heuristic features can often tell the 
difference. 

They also provided a fast 
implementation which is used in many 
places.

Heuristic-based Boilerplate Detection

Paper, data, and implementation at: http://www.l3s.de/~kohlschuetter/boilerplate/

1. Split an HTML document into 
contiguous blocks of text and A 
tags; discard other document tags. 

2. Extract textual features (described 
next). 

3. Train a machine learning classifier 
to label each block as CONTENT or 
BOILERPLATE based on the 
features.

Boilerplate Algorithm

http://www.l3s.de/~kohlschuetter/boilerplate/


In contrast to prior work, they largely 
ignore bag-of-words and deep 
document structural features. 

Surprisingly, they perform as well or 
better than methods that use these 
more complex features, or that use 
sophisticated image processing 
techniques. 

They conclude that the majority of 
HTML blocks are either boilerplate 
“short text” blocks, or content “long 
text” blocks.

Features for Boilerplate Detection
Feature Discussion

Structural Tag 
Presence

Binary features indicating whether 
the block is enclosed by tags such 

as H1, H2, H3, P, DIV, or A.
Block 

Position
The absolute and relative position of 

the block on the page.

Text Features Average word length, average 
sentence length, number of words.

Text Density Number of words divided by number 
of lines

Link Density Number of words in A tags divided 
by number of words

Heuristic 
Features

Number of capitalized or all-caps 
words, number of date/time tokens, 
and ratios of these to other words.



Ignoring document boilerplate text is important for improving retrieval 
performance. This text can easily mislead a ranker. 

It’s also common to weight text differently when it comes from different 
zones. For instance, title terms often count more than standard content 
terms. 

This zone information can either be stored in a separate index for each 
field type, or with labeled document regions in a full text index.

Wrapping Up
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Classification is the Machine Learning task of assigning an object to one of a set of 
classes. Most tasks involving making a decision from a discrete set of options can be 
framed as classification. 

• During indexing, is a document encoded as ASCII, UTF-8, …? Is it a web page, or some 
other document format? 

• During crawling, is a document related to the vertical search topic? Is a URL likely to 
lead to spam? 

• What language is a document written in? 

• Is a document spam? Does it contain adult content? 

• Is a document relevant to a query, or not?

Classification



Classification is a standard ML task that we’ll 
learn more about in the next module. Here 
are the general steps. 

• The developer selects a model (e.g. SVMs, 
or Logistic Regression) and a set of 
features to represent the objects being 
classified. 

• A training collection of sample objects is 
built, and model parameters are chosen to 
perform well on the training collection. 

• Once the model is trained, it can make 
predictions on future objects, given their 
features.

Classification Formalism

ML Model = Hypothesis Space

2(;|:; ɍ)

Feature 1 … Feature m Label
X … X Y
0.25 14 1
0.3 17 1
0 301 0

0.6 0 1



Suppose you want to create a classifier to decide whether a given web domain is run 
by spammers. 

As a first step, you need to decide what information you can collect to provide 
evidence of spam content. This means choosing features which are predictive of 
spam, or of its opposite – high quality content. 

• Page quality features, such as Page Rank, number of in-links, whether out-links 
have corresponding in-links (“edge reciprocity”). 

• Content features, such as the number of pages on the domain, number of words 
on the home page, average page title length, etc. 

• Other features…? (We will explore this more in the module on Adversarial IR)

Example: Spam Classification



Once you have chosen your features, you 
need to prepare a data set. For instance, 
if you have access to a large Internet 
crawl you can sample a collection of 
spammy and non-spammy web pages. 

Calculate the values of your chosen 
features for the selected web pages, and 
divide the web pages into two groups: a 
training set and a test set. 

Train a ML model on the training set, and 
evaluate the model by measuring 
classification error on the test set.

Example: Spam Classification
PageRank … Avg. Page Title 

Length Spam?

X … X Y
12.5 3.6 0
13.5 5.7 1
0.35 2.3 0
0.6 10.9 1

SVM Library

Spam Classifier



We will spend the next module learning more of the details of 
classification. For now, we’ll treat it as a black box. 

It’s straightforward to use standard ML libraries to train effective 
classifiers, so often the most important step is selecting the right 
features for your classification task. 

Many of the features described in this module are also suitable for 
training arbitrary text classifiers for IR.

Wrapping Up
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So far, we have focused mainly on ad-hoc 
web search. This usually starts from a user 
query and tries to find relevant documents. 

Another possible approach is to construct 
a database of facts inferred from online 
text. This database can be used to 
enhance document understanding for 
better ranking and to answer questions 
more directly. This process is called 
Information Extraction. 

The information panels beside search 
results are typically populated from these 
databases.

Information Extraction

Image from bing.com; edited

http://bing.com


In the IE subfield of Named Entity 
Recognition (NER), we use automated 
tools to identify clauses in text which 
correspond to particular people, places, 
organizations, etc. 

Clauses are generally tagged with an 
entity type from a predefined list. Each 
entity type has its own contextual clues for 
identifying entities of that type. 

For instance, times and dates often follow 
a few predictable formats. Peoples’ names 
are often introduced in the surrounding 
text (e.g. “spokesman Tim Wagner”).

Named Entity Recognition

Tag Entity Example
PERS People Pres. Obama
ORG Organization Microsoft
LOC Location Adriatic Sea
GPE Geo-political Mumbai
FAC Facility Shea Stadium
VEH Vehicles Honda

Citing high fuel prices, [ORG United Airlines] 
said [TIME Friday] it has increased fares by 
[MONEY $6] per round trip on flights to some 
cities also served by lower-cost carriers. [ORG 
American Airlines], a unit of [ORG AMR Corp.], 
immediately matched the move, spokesman 
[PERS Tim Wagner] said.

NER Example and Tags



NER systems often have to deal with 
several important types of ambiguity: 

• Reference resolution: the same 
name can refer to different entities of 
the same type. For instance, JFK can 
refer to a former US president or his 
son. 

• Cross-type Confusion: the identical 
entity mentions can refer to entities of 
different types. For instance, JFK also 
names an airport, several schools, 
bridges, etc.

Ambiguity in NER

JFK?



Rule-based systems for NER are 
effective for certain entity classes. 

Many of them use lexicons, which 
lists names, organizations, locations, 
etc. 

Rules can also be crafted using 
regular expressions or other pattern 
matching tools. The rules may be built 
by hand, or with machine learning.

Rule-based NER

“<number> <word> street” for addresses	



“<street address>, <city>” or “in <city>” to 
verify city names	



“<street address>, <city>, <state>” to find new 
cities	



“<title> <name>” to find new names

Entity Patterns



Sequence tagging is a common ML 
approach to NER. 

Tokens are labeled as one of: 

• B: Beginning of an entity 

• I: Inside an entity 

• O: Outside an entity 

We train a Machine Learning model on a 
variety of text features to accomplish this. 
We’ll see how to do this in the next 
session.

NER with Sequence Tagging
Word Label Tag

American B ORG 
Airlines I ORG

a O –
unit O –
of O –

AMR B ORG
Corp. I ORG

immediately O –
matched O –

the O –
move O –

spokesman O –
Tim B PERS

Wagner I PERS
said O –



Features for Sequence Tagging
Feature Type Explanation
Lexical Items The token to be labeled

Stemmed Lexical Items Stemmed version of the token
Shape The orthographic pattern of the word (e.g. case)

Character Affixes Character-level affixes of the target and surrounding words
Part of Speech Part of speech of the word

Syntactic Chunk Labels Base-phrase chunk label
Gazetteer or name list Presence of the word in one or more named entity lists

Predictive Token(s) Presence of predictive words in surrounding text
Bag of words/ngrams Words and/or ngrams in the surrounding text



In English, the shape feature is one of 
the most predictive of entity names. 

It is particularly useful for identifying 
businesses and products like Yahoo!, 
eBay, or iMac. 

Shape is also a strong predictor of 
certain technical terms, such as gene 
names.

Word Shape

Shape Example
Lower cummings

Capitalized Washington
All caps IRA

Mixed case eBay
Capitalized character 

with period H.

Ends in digit A9
Contains hyphen H-P



A full production pipeline for NER will typically combine a few approaches: 

1. First, use high-precision rules to tag unambiguous entities: 

• Use hand-tailored regular expressions, e.g. for dates and times. 

• Or write entity parsers for particular web sites, such as infoboxes on Wikipedia. 

2. Search for substring matches of previously-detected names on the same page, using 
probabilistic string-matching metrics. 

3. Consult application-specific name lists to identify likely name entity mentions from the given 
domain. 

4. Apply sequence tagging using the tags from 1-3 as well as additional features, to find entities 
missed by the rule-based systems.

NER Pipeline



Named Entity Recognition is an important source of features for IR. 

A very large fraction of queries contain named entities, so recognizing 
them as such and finding documents which mention the same entities 
is very important. 

We may also want to treat the named entity as a single token, instead 
of as individual words (e.g. “New York Times). 

Next, we’ll see how to perform NER using sequence tagging.

Wrapping Up
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Rule-based NER systems will inevitably miss some entities. 

• All lexicons are incomplete, because new names are continually 
invented. 

• Pattern matching doesn’t work for every entity type, and is at odds 
with the creativity put into writing. 

Statistical NER techniques instead identify entities using the terms in 
and around them. Today, we’ll look at identifying entities using a 
Hidden Markov Model.

Context-based NER



A Hidden Markov Model (HMM) is a 
ML model for labeling a sequence of 
objects based on the assumption that a 
given label only depends on a small 
number of previous items in the 
sequence. 

Items are tagged in sequence, and use 
decisions made for previous items to 
inform the decision for the next item. 

The entity labels can’t be directly 
observed, so they are “hidden” from us.

HMM Tagging

Sentence With Tags

Sequence Tagging

The  Phoenicians  came  from  the  Red  Sea.
B-ETH B-LOCO O O O I-LOC

2(VK|YK = ±7IE²,

YK�� = ±6IH², VK�� = ±&�03'²)



A HMM describes a process as a series of 
states, each with some probability 
distribution over the vocabulary. 

When we want to assign a tag to some 
word wi in a sentence, we only consider: 

• The properties of wi 

• The properties and tags assigned to wi-1 
through wi-k for some small constant k 

We assume that for words before wi-k or after 
wi have no information about the tag for wi, 
mainly because this simplifies computation.

Markov Models

LOCORG ETH

start

not an 
entity

end

State diagram for NER tagging

* Any entity type state can transition to any other. 
Some arrows omitted for clarity.



HMMs are commonly trained using a dynamic programming technique 
called the Forward-Backward algorithm. This algorithm has three steps: 

1. Forward step: Move through the sequence in increasing order, 
calculating P(ti|w1, …, wi). 

2. Backward step: Move backward through the sequence, calculating 
P(ti|wi+1, …, wn). 

3. Smoothing step: Smooth together the two probabilities to calculate   
P(ti|w1, …, wn).

Forward-Backward Algorithm



We need to calculate the potential of observing tag tj given word wj and the prior tag tj-1. 
Denote this as: 

!

The potential of observing the whole sequence of tags up to tag m is: 

!

In the forward step, we compute this one position at a time: 

!

Forward Step

ɜ(VL, VL��, L) := 2T(VL|VL��)2T(YL|VL)

ɜ(V�, . . . , VO) =
O�

L=�

ɜ(VL, VL��, L) = 2T(Y�, . . . ,YO, V�, . . . , VO)

�V � T :Ɇ(�, V) � ɜ(�UVCTV�, V, �)

�V � T , L � {� . . .O} :Ɇ(L, V) �
�

V��T
Ɇ(L � �, V�) � ɜ(V�, V, L)



In the backward step, we calculate the potential of the latter portion of 
the sequence being preceded by the tag at position j. 

The algorithm uses the same potential function ψ from the forward 
step:

Backward Step

�V � T :ɇ(O, V) � �

�V � T , L � {� . . .O � �} :ɇ(L, V) �
�

V��T
ɇ(L + �, V�) � ɜ(V�, V, L + �)



In the final step, we combine α and β to produce the probabilities we care about: 

The normalizing constant to turn the potentials into probabilities: 

!

The potential of observing word wj with tag a: 

!

The potential of transitioning from tag a to tag b given word wj: 

Smoothing Step

< :=
�

V�T
Ɇ(O, V)

�L � {�, . . . ,O}, V � T : ɑ(L, C) � Ɇ(L, C) � ɇ(L, C)

=
�

V�,...,VO:VL=C

ɜ(V�, . . . , VO)

�L � {�, . . . ,O � �}, C, D � T : ɑ(L, C, D) � Ɇ(L, C) � ɜ(C, D, L + �) � ɇ(L + �, D)

=
�

V�,...,VO:VL=C,VL+�=D

ɜ(V�, . . . , VO)



Hidden Markov Models can be used for many other sequence tagging 
tasks: part of speech recognition, spell checking, and much more. 

When used for entity recognition, they can help find entities that would 
be missed by rule-based systems. 

The resulting entities are strong signals of page relevance, especially 
when the query text mentions the same entity. 

Next, we’ll talk about how to pull together these various types of 
features for IR ranking.

Wrapping Up
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Recall that a Machine Learning algorithm’s job is to choose the most accurate function from a family 
of functions, as measured against some training data. 

!

!

ML techniques are very good, but aren’t magic. They will only work their best if several things hold: 

• If the model you choose is appropriate for the data – how good is the best function in the family? 

• If the features you choose are well correlated with the value you’re trying to predict. 

• If the features provide information about different aspects of the value you’re trying to predict. 

• If you have enough training data to represent all the cases you’re going to see in production.

The Importance of Features

ML Model = Hypothesis Space

2(TGN = �|D, Q; ɍ)



Suppose you have already built a 
ranker using the following document 
features: 

• The BM25 score against the query 

• The document’s PageRank 

• The time the page was last updated 

Which features are likely to 
substantially improve your ranker’s 
performance?

Informative Features
Your Options:!

1. A unigram language model score 

2. The TF-IDF score against the 
query 

3. The language the page is written 
in 

4. The time the page was crawled 

5. The probability the page 
expresses certain topics, from 



Commercial web sites use hundreds of features for their rankers. Feature are generated for 
both documents and queries, and the document and query features are combined into a 
single row for the ranker. 

• Text match features measure how well the text of the document and query match each 
other. TF-IDF, BM25, etc. 

• Topical match features measure how well the topics of the document and query match 
each other. pLSA, LDA, etc. 

• Web graph features are graph-theoretic properties of a page, such as PageRank, HITS, 
number of in-links, etc. 

• Document statistics are basic structural information, such as the number of words in 
different types of tags, number of slashes in the URL, etc.

Features for Ranking



• Document classifiers are used to provide document categories: spam, language, 
news, adult content, page quality, etc.  

• Click data gives the probability a user will click on a page if it’s in the result list, or the 
probability of skipping it, dwell time, click count, etc. 

• External references are supporting evidence from other sites, such as Facebook likes, 
Pinterest tags, etc. (Is this page trending right now?) 

• Time features provide page freshness, date of first appearance on web, update 
frequency, etc. 

Identifying important new features that predict relevance can make a large impact on the 
quality of a search engine. However, it is difficult to find new features that provide unique 
information about page relevance.

Features for Ranking



Query features are also important for the ranking function: 

• Query statistics, such as the number of terms, frequency of the 
query, and frequency of query terms. 

• Query click data, such as click-through rate or how often users 
reformulate the query (and to what). 

• Result set features are functions calculated over the top 
documents from some prior run of the query. This is useful, for 
instance, to indicate whether a query is for adult content.

Query Features



Most modern search engines combine evidence from a variety of 
features to predict document relevance to a query. 

Adding new features can dramatically improve query performance, 
but it’s important that the features provide new information. Redundant 
features can confuse the ML algorithm and decrease performance. 

There are likely many new families of features to be discovered for 
improving performance of various families of queries.

Wrapping Up
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Web pages contain a wealth of 
information about the queries they 
may be relevant to, if we know how to 
look for it. 

There is rich structure to be found in 
HTML documents, in natural language 
text, and in user behavior.

Document Understanding
Title

Topical 
Terms

Links

http://en.wikipedia.org/wiki/Susan_Dumais



When a useful set of features is 
identified, documents and queries can 
be converted into numeric vectors that 
provide this rich information to 
learning algorithms. 

This allows us to leverage the best ML 
techniques for document ranking.

Document Understanding

DocID Body 
BM25

Title 
BM25 In-links … Rel?

1 1.23 1.2 3 1

2 1.2 1.4 12 1

3 17.3 13.2 2 0

4 10.55 0 207 0


