
CS6200: Information Retrieval

Document Understanding
Module Introduction

We’ve treated documents as
sequences of words so far, but
documents have much richer structure
and information.

This module surveys many of the extra
features we can use as clues of
relevance.

Document Features

http://en.wikipedia.org/wiki/Susan_Dumais

Some of these features are structural:
the document’s organization gives
clues about its topic.

• The title, headings, and menu give
fine-grained topic and subtopic
information.

• Links and their anchor text provide
clues about the relevance of other
pages related to this one.

Structural Features

http://en.wikipedia.org/wiki/Susan_Dumais

Title

Bold
Text

Links

Other features are topical: the
document’s text may contain special
words and phrases that pertain to a
certain topic.

• Named entities (people, companies,
places, events…) are strong topical
clues.

• Topic modeling discovers the
vocabulary that tends to be used
when speaking of a certain topic.

Topical Features

http://en.wikipedia.org/wiki/Susan_Dumais

Entities

Topical
Terms

Tools from Machine Learning can be
used to generate additional features for
a page.

• Document classifiers are used to
identify news articles, blogs, reviews,
and other types of specialized pages.

• Document clustering can find very
similar pages, which is useful for
providing diverse result lists and
“more like this” functions (e.g.
clustering news articles by story).

Features from ML

http://en.wikipedia.org/wiki/Susan_Dumais

Document Class: Biographical

When we have collected all the
document features we’re interested in,
we can use standard Machine Learning
classifiers to learn how to predict
document relevance from document
features.

This makes scoring functions such as
BM25 simply one component of a more
complicated relevance predictor.

We will see later how to rank using
these features. For now, let’s focus on
the features themselves.

Putting it Together

DocID Body
BM25

Title
BM25 In-links … Rel?

1 1.23 1.2 3 1

2 1.2 1.4 12 1

3 17.3 13.2 2 0

4 10.55 0 207 0

Let’s get started!

CS6200: Information Retrieval

Boilerplate Detection
Document Understanding, session 2

In a naive retrieval model, we treat all
text on the page identically. This
doesn’t match real page content well.

• Site menus, ads, and other
“boilerplate” have little bearing on
the topic of the page.

• Some regions of the page, such as
the title and headings, deserve extra
emphasis compared to the main
page content.

Document Boilerplate

http://www.imdb.com/title/tt2084970

BOILERPLATE

B
O

IL
ER

PL
AT

E B
O

ILER
PLATE

TITLE

CONTENT

SUMMARY

THUMB
NAIL

In order to account for different
document zones, we label document
text based on its zone type in the index.

In structured documents such as email,
we might create a separate index for
each field.

In a free-text document, we store zone
information as a label for a contiguous
region of the document. In HTML, this
often means labeling a subtree of the
DOM based on its offset within the file.

Document Zones
E-mail Fields

HTML Token Ranges

Ti
tle

Su
m

m
ar

y

Many approaches to identifying the zones of a web page have been
successfully implemented.

• Rule- or template-based zone identification, for hand-tailored or automatically
learned rules. May involve building a template for each major web domain
(Wikipedia and IMDB need different rules).

• Render the HTML and use image processing on the rendered page to find
rectangular regions of interest. Use visual cues such as font size, horizontal
lines, etc. Then find the HTML code which produced the regions of interest.

• Simple heuristics based on text features also work well, and are simpler to
implement.

Zone Identification

Kohlschütter et al (2010) developed a
successful approach based on the
observation that content and
boilerplate have very different
structural patterns, and simple
heuristic features can often tell the
difference.

They also provided a fast
implementation which is used in many
places.

Heuristic-based Boilerplate Detection

Paper, data, and implementation at: http://www.l3s.de/~kohlschuetter/boilerplate/

1. Split an HTML document into
contiguous blocks of text and A
tags; discard other document tags.

2. Extract textual features (described
next).

3. Train a machine learning classifier
to label each block as CONTENT or
BOILERPLATE based on the
features.

Boilerplate Algorithm

http://www.l3s.de/~kohlschuetter/boilerplate/

In contrast to prior work, they largely
ignore bag-of-words and deep
document structural features.

Surprisingly, they perform as well or
better than methods that use these
more complex features, or that use
sophisticated image processing
techniques.

They conclude that the majority of
HTML blocks are either boilerplate
“short text” blocks, or content “long
text” blocks.

Features for Boilerplate Detection
Feature Discussion

Structural Tag
Presence

Binary features indicating whether
the block is enclosed by tags such

as H1, H2, H3, P, DIV, or A.
Block

Position
The absolute and relative position of

the block on the page.

Text Features Average word length, average
sentence length, number of words.

Text Density Number of words divided by number
of lines

Link Density Number of words in A tags divided
by number of words

Heuristic
Features

Number of capitalized or all-caps
words, number of date/time tokens,
and ratios of these to other words.

Ignoring document boilerplate text is important for improving retrieval
performance. This text can easily mislead a ranker.

It’s also common to weight text differently when it comes from different
zones. For instance, title terms often count more than standard content
terms.

This zone information can either be stored in a separate index for each
field type, or with labeled document regions in a full text index.

Wrapping Up

CS6200: Information Retrieval

Document Classification
Document Understanding, session 5

Classification is the Machine Learning task of assigning an object to one of a set of
classes. Most tasks involving making a decision from a discrete set of options can be
framed as classification.

• During indexing, is a document encoded as ASCII, UTF-8, …? Is it a web page, or some
other document format?

• During crawling, is a document related to the vertical search topic? Is a URL likely to
lead to spam?

• What language is a document written in?

• Is a document spam? Does it contain adult content?

• Is a document relevant to a query, or not?

Classification

Classification is a standard ML task that we’ll
learn more about in the next module. Here
are the general steps.

• The developer selects a model (e.g. SVMs,
or Logistic Regression) and a set of
features to represent the objects being
classified.

• A training collection of sample objects is
built, and model parameters are chosen to
perform well on the training collection.

• Once the model is trained, it can make
predictions on future objects, given their
features.

Classification Formalism

ML Model = Hypothesis Space

2(;|:; ɍ)

Feature 1 … Feature m Label
X … X Y
0.25 14 1
0.3 17 1
0 301 0

0.6 0 1

Suppose you want to create a classifier to decide whether a given web domain is run
by spammers.

As a first step, you need to decide what information you can collect to provide
evidence of spam content. This means choosing features which are predictive of
spam, or of its opposite – high quality content.

• Page quality features, such as Page Rank, number of in-links, whether out-links
have corresponding in-links (“edge reciprocity”).

• Content features, such as the number of pages on the domain, number of words
on the home page, average page title length, etc.

• Other features…? (We will explore this more in the module on Adversarial IR)

Example: Spam Classification

Once you have chosen your features, you
need to prepare a data set. For instance,
if you have access to a large Internet
crawl you can sample a collection of
spammy and non-spammy web pages.

Calculate the values of your chosen
features for the selected web pages, and
divide the web pages into two groups: a
training set and a test set.

Train a ML model on the training set, and
evaluate the model by measuring
classification error on the test set.

Example: Spam Classification
PageRank … Avg. Page Title

Length Spam?

X … X Y
12.5 3.6 0
13.5 5.7 1
0.35 2.3 0
0.6 10.9 1

SVM Library

Spam Classifier

We will spend the next module learning more of the details of
classification. For now, we’ll treat it as a black box.

It’s straightforward to use standard ML libraries to train effective
classifiers, so often the most important step is selecting the right
features for your classification task.

Many of the features described in this module are also suitable for
training arbitrary text classifiers for IR.

Wrapping Up

CS6200: Information Retrieval

Named Entity Recognition
Document Understanding, session 8

So far, we have focused mainly on ad-hoc
web search. This usually starts from a user
query and tries to find relevant documents.

Another possible approach is to construct
a database of facts inferred from online
text. This database can be used to
enhance document understanding for
better ranking and to answer questions
more directly. This process is called
Information Extraction.

The information panels beside search
results are typically populated from these
databases.

Information Extraction

Image from bing.com; edited

http://bing.com

In the IE subfield of Named Entity
Recognition (NER), we use automated
tools to identify clauses in text which
correspond to particular people, places,
organizations, etc.

Clauses are generally tagged with an
entity type from a predefined list. Each
entity type has its own contextual clues for
identifying entities of that type.

For instance, times and dates often follow
a few predictable formats. Peoples’ names
are often introduced in the surrounding
text (e.g. “spokesman Tim Wagner”).

Named Entity Recognition

Tag Entity Example
PERS People Pres. Obama
ORG Organization Microsoft
LOC Location Adriatic Sea
GPE Geo-political Mumbai
FAC Facility Shea Stadium
VEH Vehicles Honda

Citing high fuel prices, [ORG United Airlines]
said [TIME Friday] it has increased fares by
[MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG
American Airlines], a unit of [ORG AMR Corp.],
immediately matched the move, spokesman
[PERS Tim Wagner] said.

NER Example and Tags

NER systems often have to deal with
several important types of ambiguity:

• Reference resolution: the same
name can refer to different entities of
the same type. For instance, JFK can
refer to a former US president or his
son.

• Cross-type Confusion: the identical
entity mentions can refer to entities of
different types. For instance, JFK also
names an airport, several schools,
bridges, etc.

Ambiguity in NER

JFK?

Rule-based systems for NER are
effective for certain entity classes.

Many of them use lexicons, which
lists names, organizations, locations,
etc.

Rules can also be crafted using
regular expressions or other pattern
matching tools. The rules may be built
by hand, or with machine learning.

Rule-based NER

“<number> <word> street” for addresses	

“<street address>, <city>” or “in <city>” to
verify city names	

“<street address>, <city>, <state>” to find new
cities	

“<title> <name>” to find new names

Entity Patterns

Sequence tagging is a common ML
approach to NER.

Tokens are labeled as one of:

• B: Beginning of an entity

• I: Inside an entity

• O: Outside an entity

We train a Machine Learning model on a
variety of text features to accomplish this.
We’ll see how to do this in the next
session.

NER with Sequence Tagging
Word Label Tag

American B ORG
Airlines I ORG

a O –
unit O –
of O –

AMR B ORG
Corp. I ORG

immediately O –
matched O –

the O –
move O –

spokesman O –
Tim B PERS

Wagner I PERS
said O –

Features for Sequence Tagging
Feature Type Explanation
Lexical Items The token to be labeled

Stemmed Lexical Items Stemmed version of the token
Shape The orthographic pattern of the word (e.g. case)

Character Affixes Character-level affixes of the target and surrounding words
Part of Speech Part of speech of the word

Syntactic Chunk Labels Base-phrase chunk label
Gazetteer or name list Presence of the word in one or more named entity lists

Predictive Token(s) Presence of predictive words in surrounding text
Bag of words/ngrams Words and/or ngrams in the surrounding text

In English, the shape feature is one of
the most predictive of entity names.

It is particularly useful for identifying
businesses and products like Yahoo!,
eBay, or iMac.

Shape is also a strong predictor of
certain technical terms, such as gene
names.

Word Shape

Shape Example
Lower cummings

Capitalized Washington
All caps IRA

Mixed case eBay
Capitalized character

with period H.

Ends in digit A9
Contains hyphen H-P

A full production pipeline for NER will typically combine a few approaches:

1. First, use high-precision rules to tag unambiguous entities:

• Use hand-tailored regular expressions, e.g. for dates and times.

• Or write entity parsers for particular web sites, such as infoboxes on Wikipedia.

2. Search for substring matches of previously-detected names on the same page, using
probabilistic string-matching metrics.

3. Consult application-specific name lists to identify likely name entity mentions from the given
domain.

4. Apply sequence tagging using the tags from 1-3 as well as additional features, to find entities
missed by the rule-based systems.

NER Pipeline

Named Entity Recognition is an important source of features for IR.

A very large fraction of queries contain named entities, so recognizing
them as such and finding documents which mention the same entities
is very important.

We may also want to treat the named entity as a single token, instead
of as individual words (e.g. “New York Times).

Next, we’ll see how to perform NER using sequence tagging.

Wrapping Up

CS6200: Information Retrieval

NER with Hidden Markov
Models

Document Understanding, session 9

Rule-based NER systems will inevitably miss some entities.

• All lexicons are incomplete, because new names are continually
invented.

• Pattern matching doesn’t work for every entity type, and is at odds
with the creativity put into writing.

Statistical NER techniques instead identify entities using the terms in
and around them. Today, we’ll look at identifying entities using a
Hidden Markov Model.

Context-based NER

A Hidden Markov Model (HMM) is a
ML model for labeling a sequence of
objects based on the assumption that a
given label only depends on a small
number of previous items in the
sequence.

Items are tagged in sequence, and use
decisions made for previous items to
inform the decision for the next item.

The entity labels can’t be directly
observed, so they are “hidden” from us.

HMM Tagging

Sentence With Tags

Sequence Tagging

The Phoenicians came from the Red Sea.
B-ETH B-LOCO O O O I-LOC

2(VK|YK = ±7IE²,

YK�� = ±6IH², VK�� = ±&�03'²)

A HMM describes a process as a series of
states, each with some probability
distribution over the vocabulary.

When we want to assign a tag to some
word wi in a sentence, we only consider:

• The properties of wi

• The properties and tags assigned to wi-1
through wi-k for some small constant k

We assume that for words before wi-k or after
wi have no information about the tag for wi,
mainly because this simplifies computation.

Markov Models

LOCORG ETH

start

not an
entity

end

State diagram for NER tagging

* Any entity type state can transition to any other.
Some arrows omitted for clarity.

HMMs are commonly trained using a dynamic programming technique
called the Forward-Backward algorithm. This algorithm has three steps:

1. Forward step: Move through the sequence in increasing order,
calculating P(ti|w1, …, wi).

2. Backward step: Move backward through the sequence, calculating
P(ti|wi+1, …, wn).

3. Smoothing step: Smooth together the two probabilities to calculate
P(ti|w1, …, wn).

Forward-Backward Algorithm

We need to calculate the potential of observing tag tj given word wj and the prior tag tj-1.
Denote this as:

!

The potential of observing the whole sequence of tags up to tag m is:

!

In the forward step, we compute this one position at a time:

!

Forward Step

ɜ(VL, VL��, L) := 2T(VL|VL��)2T(YL|VL)

ɜ(V�, . . . , VO) =
O�

L=�

ɜ(VL, VL��, L) = 2T(Y�, . . . ,YO, V�, . . . , VO)

�V � T :Ɇ(�, V) � ɜ(�UVCTV�, V, �)

�V � T , L � {� . . .O} :Ɇ(L, V) �
�

V��T
Ɇ(L � �, V�) � ɜ(V�, V, L)

In the backward step, we calculate the potential of the latter portion of
the sequence being preceded by the tag at position j.

The algorithm uses the same potential function ψ from the forward
step:

Backward Step

�V � T :ɇ(O, V) � �

�V � T , L � {� . . .O � �} :ɇ(L, V) �
�

V��T
ɇ(L + �, V�) � ɜ(V�, V, L + �)

In the final step, we combine α and β to produce the probabilities we care about:

The normalizing constant to turn the potentials into probabilities:

!

The potential of observing word wj with tag a:

!

The potential of transitioning from tag a to tag b given word wj:

Smoothing Step

< :=
�

V�T
Ɇ(O, V)

�L � {�, . . . ,O}, V � T : ɑ(L, C) � Ɇ(L, C) � ɇ(L, C)

=
�

V�,...,VO:VL=C

ɜ(V�, . . . , VO)

�L � {�, . . . ,O � �}, C, D � T : ɑ(L, C, D) � Ɇ(L, C) � ɜ(C, D, L + �) � ɇ(L + �, D)

=
�

V�,...,VO:VL=C,VL+�=D

ɜ(V�, . . . , VO)

Hidden Markov Models can be used for many other sequence tagging
tasks: part of speech recognition, spell checking, and much more.

When used for entity recognition, they can help find entities that would
be missed by rule-based systems.

The resulting entities are strong signals of page relevance, especially
when the query text mentions the same entity.

Next, we’ll talk about how to pull together these various types of
features for IR ranking.

Wrapping Up

CS6200: Information Retrieval

Features for Ranking
Document Understanding, session 10

Recall that a Machine Learning algorithm’s job is to choose the most accurate function from a family
of functions, as measured against some training data.

!

!

ML techniques are very good, but aren’t magic. They will only work their best if several things hold:

• If the model you choose is appropriate for the data – how good is the best function in the family?

• If the features you choose are well correlated with the value you’re trying to predict.

• If the features provide information about different aspects of the value you’re trying to predict.

• If you have enough training data to represent all the cases you’re going to see in production.

The Importance of Features

ML Model = Hypothesis Space

2(TGN = �|D, Q; ɍ)

Suppose you have already built a
ranker using the following document
features:

• The BM25 score against the query

• The document’s PageRank

• The time the page was last updated

Which features are likely to
substantially improve your ranker’s
performance?

Informative Features
Your Options:!

1. A unigram language model score

2. The TF-IDF score against the
query

3. The language the page is written
in

4. The time the page was crawled

5. The probability the page
expresses certain topics, from

Commercial web sites use hundreds of features for their rankers. Feature are generated for
both documents and queries, and the document and query features are combined into a
single row for the ranker.

• Text match features measure how well the text of the document and query match each
other. TF-IDF, BM25, etc.

• Topical match features measure how well the topics of the document and query match
each other. pLSA, LDA, etc.

• Web graph features are graph-theoretic properties of a page, such as PageRank, HITS,
number of in-links, etc.

• Document statistics are basic structural information, such as the number of words in
different types of tags, number of slashes in the URL, etc.

Features for Ranking

• Document classifiers are used to provide document categories: spam, language,
news, adult content, page quality, etc.

• Click data gives the probability a user will click on a page if it’s in the result list, or the
probability of skipping it, dwell time, click count, etc.

• External references are supporting evidence from other sites, such as Facebook likes,
Pinterest tags, etc. (Is this page trending right now?)

• Time features provide page freshness, date of first appearance on web, update
frequency, etc.

Identifying important new features that predict relevance can make a large impact on the
quality of a search engine. However, it is difficult to find new features that provide unique
information about page relevance.

Features for Ranking

Query features are also important for the ranking function:

• Query statistics, such as the number of terms, frequency of the
query, and frequency of query terms.

• Query click data, such as click-through rate or how often users
reformulate the query (and to what).

• Result set features are functions calculated over the top
documents from some prior run of the query. This is useful, for
instance, to indicate whether a query is for adult content.

Query Features

Most modern search engines combine evidence from a variety of
features to predict document relevance to a query.

Adding new features can dramatically improve query performance,
but it’s important that the features provide new information. Redundant
features can confuse the ML algorithm and decrease performance.

There are likely many new families of features to be discovered for
improving performance of various families of queries.

Wrapping Up

CS6200: Information Retrieval

Module Wrap Up
Document Understanding, session 11

Web pages contain a wealth of
information about the queries they
may be relevant to, if we know how to
look for it.

There is rich structure to be found in
HTML documents, in natural language
text, and in user behavior.

Document Understanding
Title

Topical
Terms

Links

http://en.wikipedia.org/wiki/Susan_Dumais

When a useful set of features is
identified, documents and queries can
be converted into numeric vectors that
provide this rich information to
learning algorithms.

This allows us to leverage the best ML
techniques for document ranking.

Document Understanding

DocID Body
BM25

Title
BM25 In-links … Rel?

1 1.23 1.2 3 1

2 1.2 1.4 12 1

3 17.3 13.2 2 0

4 10.55 0 207 0

