
JMLR: Workshop and Conference Proceedings 14 (2011) 25–35 Yahoo! Learning to Rank Challenge

Learning to Rank Using an Ensemble of Lambda-Gradient
Models

Christopher J. C. Burges cburges@microsoft.com

Krysta M. Svore ksvore@microsoft.com

Paul N. Bennett pauben@microsoft.com

Andrzej Pastusiak andrzejp@microsoft.com

Qiang Wu qiangwu@microsoft.com

Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA

Editor: Olivier Chapelle, Yi Chang, Tie-Yan Liu

Abstract

We describe the system that won Track 1 of the Yahoo! Learning to Rank Challenge.

Keywords: Learning to Rank, Gradient Boosted Trees, Lambda Gradients, Web Search

1. Introduction and Summary

The Yahoo! Learning to Rank Challenge, Track 1, was a public competition on a Ma-
chine Learning for Information Retrieval task: given a set of queries, and given a set of
retrieved documents for each query, train a system to maximize the Expected Reciprocal
Rank (Chapelle et al., 2009) on a blind test set, where the training data takes the form
of a feature vector x ∈ Rd with label y ∈ Y, Y ≡ {0, 1, 2, 3, 4} (a more positive number
denoting higher relevance) for each query/document pair (the original, textual data was
not made available). The Challenge setup, background information, and results have been
extensively covered elsewhere and we refer to Chapelle and Chang (2011) for details. In
this paper we summarize the work that resulted in the winning system.1 We limit the work
described in this paper to the work done specifically for the Challenge; the work was done
over a four week period prior to the end of the Challenge.

Our approach used a linear combination of twelve ranking models, eight of which were
bagged LambdaMART boosted tree models, two of which were LambdaRank neural nets,
and two of which were MART models using a logistic regression cost. LambdaRank is
a method for learning arbitrary information retrieval measures; it can be applied to any
algorithm that learns through gradient descent (Burges et al., 2006). LambdaRank is a
listwise method, in that the cost depends on the sorted order of the documents. We briefly
summarize the ideas here, where the xi, i = 1, . . . ,mq, are taken to be the set of labeled
feature vectors for a given query q and corresponding documents di, i = 1, . . . ,mq. The
key LambdaRank insight is to define the gradient of the cost with respect to the score that

1. Our team was named Ca3Si2O7, the chemical formula for Rankinite. We donated half of the $8000 prize
money to the NIPS Foundation and half to the International Machine Learning Society (the organizers
of ICML) for student scholarships.

c© 2011 C. Burges, K. Svore, P. Bennett, A. Pastusiak & Q. Wu.

Burges Svore Bennett Pastusiak Wu

the model assigns to a given xi after all of the xi, i = 1, ...,mq, have been sorted by their
scores si; thus the gradients take into account the rank order of the documents, as defined
by the current model. LambdaRank is an empirical algorithm, in that the form that the
gradients take was chosen empirically: the λ’s are those gradients, and the contribution to
a given feature vector xi’s λi from a pair xi,xj , y(xi) 6= y(xj), is just the gradient of the
logistic regression loss (viewed as a function of si−sj) multiplied by the change in Z caused
by swapping the rank positions of the two documents while keeping all other documents
fixed, where Z is the information retrieval measure being learned (Burges et al., 2006;
Donmez et al., 2009). λi is then the sum of contributions for all such pairs. Remarkably,
it has been shown that a LambdaRank model trained on Z, for Z equal to Normalized
Cumulative Discounted Gain (NDCG) (Jarvelin and Kekalainen, 2000), Mean Reciprocal
Rank, or Mean Average Precision (three commonly used IR measures), given sufficient
training data, consistently finds a local optimum of that IR measure (in the space of the
measure viewed as a function of the model parameters) (Donmez et al., 2009).

While LambdaRank was originally instantiated using neural nets, it was found that a
boosted tree multiclass classifier (“McRank”) gave improved performance (Li et al., 2007);
combining these ideas led to LambdaMART, which instantiates the LambdaRank idea using
gradient boosted decision trees (Friedman, 2001; Wu et al., 2009). This work showed that
McRank’s improved performance over LambdaRank (instantiated in a neural net) is due to
the difference in the expressiveness of the underlying models (boosted decision trees versus
neural nets) rather than being due to an inherent limitation of the lambda-gradient idea.2

For a self-contained description of these algorithms we refer the reader to Burges (2010).
Regarding our ensemble approach, four of the LambdaMART rankers (and one of

the nets) were trained by optimizing for the Expected Reciprocal Rank (ERR) measure
(Chapelle et al., 2009), and four (and the other net) were trained by optimizing for NDCG.
For the LambdaMART models, we also generated extended training sets by randomly delet-
ing feature vectors for each query in the training data, and concatenating the resulting data
into a new training set; four of the eight LambdaMART models were trained using such
data (see below for details). We performed parameter sweeps to find the best parameters
for the boosted trees (such as the number of leaves and the learning rate): the parameter
sweeps resulted in variations in accuracy of up to 0.08 in the absolute value of NDCG.
Once the best parameters were found, we performed 10-fold bagging without replacement
for each LambdaMART model, thus using all available training data for that model. Note
that this bagging step was done after all parameters had been fixed. The logistic regression
models optimized for the graded relevance probabilities that ERR assigns (see below), and
their outputs were also used as features in two of the LambdaMART models.

We explored various approaches to linearly combine the 12 resulting rankers, using the
provided training set. For the combination method, we investigated (1) linear LambdaRank,
(2) a method to optimally combine any pair of rankers given any IR metric, and (3) simple
averaging. We found that (3) — simply adding the normalized model scores — worked as
well as the other approaches, and somewhat surprisingly, that including the less accurate
models (which were the logistic regression and neural net models) also helped.

2. In fact we also trained McRank models to include in our ensemble for the Challenge, but we found the
performance to be sufficiently low that they were not included; this was likely a bug, but time did not
permit pursuit.

26

Learning to Rank Using an Ensemble of Lambda-Gradient Models

Section 2 describes how we split the training data into local train, test and validation
sets, and how we augmented the training data using random sampling. Section 3 describes
how the computation of the lambda gradients for ERR can be computed in quadratic time,
and provides a simple theorem as to the consistency of ERR. An experiment showing that
lambda gradients can be used to directly learn ERR, our overall experimental protocol, and
our results, are given in Section 4. While primarily this paper serves as a snapshot of the
work we did towards the Challenge, the work also highlights some open questions about
ensembles and lambda gradients, which we mention in Section 5.

2. Data

The Track 1 collection consisted of 19, 944 train, 2, 994 valid and 6, 983 test queries, with
519 features. The mean number of documents per query was 24. All three sets were made
available to contestants but only the training data had labels: to determine performance
on the validation set, a model had to be submitted to the competition web page, and at
the end of the competition, competitors had to assign which single one of their models
would be tested on the test set. We did not make use of the validation or test feature
vectors for training (e.g., for use in semi-supervised learning). To create local, labeled
train/validation/test data, we shuffled the given training data (by query) and split it into
ten equally sized sets. For the combining experiments below, we used 6 of those sets for
training, 2 to compute the optimal combiner parameters, and 2 for test.

Since 19, 944 queries is a rather small amount of data to train a web search ranker, we
augmented the data to create two new training sets: in the first (Aug70), for each query,
we randomly sampled 70% of the documents, and repeated this five times to create an
augmented training set with 119, 305 queries, and in the second (Aug50), for each query,
we randomly sampled 50% of the documents, and repeated this ten times to create an
augmented training set with 217, 175 queries. (The concatenated augmented sets included
the original data). The sampling was without replacement. Not only does augmenting the
data in this manner provide added regularization, it also provides new information to the
ranker, in the following sense: for example, if a given query has documents A,B,C with
labels 4, 3, 2, respectively, then one way in which the model could overfit is to learn that
A should be ranked higher than C, conditioned on B lying between them. Removing B
and adding the resulting data to the training set removes the possibility of such learned
conditioning. However, the sampling also changes the distribution, and so overly aggressive
sampling can be expected to hurt performance. We first tried the 70% sampling, and
then given the encouraging results, also tried the more aggressive 50% sampling. Time
limitations forbade further experimentation along this axis, but it is intriguing that such
aggressive pruning still gave better individual model performance than just using the given
training data.

3. Information Retrieval Measures

The competition used Expected Reciprocal Rank (ERR) (Chapelle et al., 2009) as the mea-
sure by which entries were evaluated. Experiments exploring how well lambda-gradient
methods can be used to learn ERR are described in Section 4.1. In order to build a set of

27

Burges Svore Bennett Pastusiak Wu

diversely trained models, and because we know that our models perform well on NDCG,
we also trained models using NDCG (Jarvelin and Kekalainen, 2000); see Burges (2010)
for a detailed description of training lambda-gradient models on NDCG. In this section, we
describe how the lambda gradients can be computed efficiently for ERR, and we also give
a consistency proof for ERR.

We assume throughout this section that the documents have been sorted by score. ERR
for a set of n documents for a given query is defined by

ERR ≡
n∑

r=1

1

r
Rr

r−1∏
i=1

(1−Ri) (1)

where, if y(xi) ∈ Y is the relevance label for the document at rank i (where the top ranked
document is assigned rank 1), the

Ri =
2y(xi) − 1

2ym
(2)

model the probability of relevance conditioned on the label (where ym is the maximum
label value, namely 4). The Ri are in [0, 1], in fact, Ri ∈ {0, 0.0625, 0.1875, 0.4375, 0.9375}.
In order to compute the lambda gradients, for a given query and a given pair of (differently
labeled) documents di and dj , we need to compute the change in ERR when that pair of
documents exchanges positions, with all other documents fixed. Let ∆ denote the initial
minus the final ERR values. Naively one might expect that the cost of computing all the
∆’s for a given query would be O(n4), since Equation (1) appears to be quadratic in the
number of documents, and since computing the ∆’s requires computing a different ERR
gain for every pair of documents. However as Chapelle et al. (2009) showed, the ERR can be
computed in O(n) time, and we can use a similar trick here to compute the ∆’s for a given
query in O(n2) time. In order to motivate the computation below, consider the following
example. Letting Ti ≡ 1 − Ri, suppose that the 2nd and 6th documents are exchanged.
From Equation (1) we see that

∆ =
1

2
T1(R2 −R6) +

1

3
T1(T2 − T6)R3 +

1

4
T1(T2 − T6)T3R4 (3)

+
1

5
T1(T2 − T6)T3T4R5 +

1

6
T1T3T5(T2R6 − T6R2)

Examining Eq. (3), note that the terms take three forms, as exemplified by the first term
above, the last, and the rest. Note also that differences corresponding to i < 2 and to i > 6
in Eq. (1) cancel. Thus creating an array A whose ith component is the ERR computed
only to level i, we can write the general form of the above computation (for the case i < j)
as

1. Compute πi ≡
∏i

k=1 Tk for i > 0, and set π0 = 1.

2. Set ∆ = πi−1(Ri −Rj)/ri.

28

Learning to Rank Using an Ensemble of Lambda-Gradient Models

3. Increment ∆ by

(Ti − Tj)
(
Ri+1

ri+1
+
Ti+1Ri+2

ri+2
+ · · ·+ Ti+1 . . . Tj−2Rj−1

rj−1

)
πi−1

= (Ti − Tj)
(
Aj−1 −Ai

Ti

)
.

4. Further increment ∆ by

πi−1

rj
Ti+1Ti+2 . . . Tj−1 (TiRj − TjRi) =

πj−1

rj

(
Rj −

TjRi

Ti

)
.

Note that the denominators never vanish since the Ti never vanish. Since computing
A has linear complexity, and since A and πi can be computed once per query, we see that
structuring the computation in this way results in quadratic complexity.

Note that unlike NDCG, the change in ERR induced by swapping two documents di
and dj , while fixing the rank of all other documents, depends also on the labels and ranks
of the documents with ranks between i and j. This raises the question as to whether
ERR is consistent, in the sense that, given a pair of documents di, dj with i < j and with
y(xi) > y(xj), does swapping the rank positions of di and dj necessarily decrease ERR?
Calling this desired property ‘pairwise consistency’, we have

Theorem 1 ERR is pairwise consistent for any choice of strictly increasing discounts ri.

Proof Following the above analysis, we just need to show that ∆ is nonnegative when
Ri > Rj . Using Ti − Tj = Rj −Ri and collecting terms, we have that

∆ =
πi(Ri −Rj)

Ti

(
1

ri
− Ri+1

ri+1
− Ti+1Ri+2

ri+2
− · · · − Ti+1 . . . Tj−2Rj−1

rj−1
− Ti+1 . . . Tj−1

rj

)
Since ri+1 > ri, this is certainly nonnegative if(

1

ri
− Ri+1

ri
− Ti+1Ri+2

ri
− · · · − Ti+1 . . . Tj−2Rj−1

ri
− Ti+1 . . . Tj−1

ri

)
≥ 0 (4)

and hence if

Ri+1 + Ti+1Ri+2 + · · ·+ Ti+1 · · ·Tj−2Rj−1 + Ti+1 · · ·Tj−1 ≤ 1.

But since Ri + Ti = 1, the left-hand side just collapses to 1.

4. Experiments

4.1. Linear LambdaRank: A Sanity Check

We began by checking that modifying the LambdaRank gradients to model ERR, as had
previously been done for MRR and MAP (Donmez et al., 2009), resulted in a system that

29

Burges Svore Bennett Pastusiak Wu

indeed learned ERR. Figure 1 shows the result of training a linear LambdaRank model on
one tenth of the training data and testing on a validation set of the same size. We see that
while training on ERR produces a small drop in the validation NDCG, training on ERR and
training on NDCG gave essentially identical results, when testing on ERR. We thus verified
that we could train using ERR directly; however the results on this small set were no better
than those found by training on NDCG. Our hope was then that our more sophisticated
models would be able to take advantage of being trained directly on ERR, and that the
diversity added by training on two measures that gave similar test ERR accuracies would
also help in the ensemble.

0 20 40 60 80 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

V
a
lid

 N
D

C
G

 o
r

V
a
lid

 E
R

R

Epoch

Valid NDCG, trained on NDCG

Valid NDCG, trained on ERR

Valid ERR, trained on NDCG

Valid ERR, trained on ERR

Figure 1: Training and testing a linear LambdaRank model using the NDCG and ERR
measures.

4.2. The Models

Here we describe the models we used in our ensemble. Eight of the models were Lamb-
daMART: four of these were trained to optimize NDCG and four, ERR. Within each set
of four, we trained a model on the given training data, one on Aug50, one on Aug70, and
one on the given training data, but using four additional features derived from two logistic
regression models described below. We also trained two, two-layer LambdaRank neural
nets, one optimized for NDCG, and one for ERR. We further trained two MART logistic
regression models to model the conditional probabilities given in Equation (2) directly. The
two MART models were very similar, and differed only in the normalization of their out-
put scores: one had an added per-query score normalization to reduce the variance of the
scores of low-scoring documents (letting Pdmax denote the maximum document score for a

30

Learning to Rank Using an Ensemble of Lambda-Gradient Models

given query, the score for document d for that query is taken to be Pdmax(1 +Pd−Pdmax)).
Finally, two of the LambdaMART models (one optimized for ERR, one for NDCG) were
trained using additional features computed from the maximum and mean MART logistic
regression scores, computed over all the documents, and also computed over the top three
ranked documents. Note that these features do not depend directly on document features.
The intuition behind this was mainly to increase the diversity of the ensemble.

For each LambdaMART and LambdaRank model, we performed extensive parameter
sweeps on a 122-node MPI cluster, running Microsoft HPC Server 2008. The sweeps showed
absolute variations of up to 0.03 in NDCG and 0.01 in ERR for LambdaRank, and up to
0.08 in NDCG and 0.02 in ERR for LambdaMART. For the neural nets (LambdaRank),
the number of hidden nodes was varied from 10 to 30 in steps of 5, and the learning rate
was varied from 10−4 to 10−2 (the optimal values were found to be 25 hidden nodes and
a learning rate of 10−3). The two-layer LambdaRank models were trained for 500 iter-
ations using random restarts (a restart occurs when progress on the validation set slows
sufficiently). For the LambdaMART models, we swept through learning rates taking val-
ues in {0.01, 0.05, 0.1, 0.3, 0.5} and we swept through numbers of leaves from 50 to 400 in
steps of 30. The LambdaMART models were trained for 3000 boosting iterations, where
typically the number of trees kept was within 200 of the maximum (3000). We used 10-fold
cross validation on the provided training data to determine the best parameters for both
LambdaRank and LambdaMART.

4.3. Combining Rankers

As mentioned, we split the data into 10 equal parts, by query, after shuffling. Here we will
refer to the datasets by their components: for example, 01 06 refers to the data constructed
by concatenating the first 6 of the 10 splits together.

We ran two sets of experiments. In the first, we used 01 06 for training, 07 08 to compute
the optimal combiner parameters, and 09 10 for test. For the individual models, in order
to get an apples-to-apples comparison with the ensembles, we trained on 01 06 and tested
on 09 10. This initial set of experiments, which used only 6 of the final set of 12 models we
trained,3 showed us that simply averaging model scores, after first performing an overall
normalization to unit variance, gave as good results as any other combination method. In
light of this, to get more accurate estimates of test accuracy, we used 07 10 for comparing
ensembles. In the second set of experiments we retrained each model on 01 10, using 10-fold
cross validation to determine the number of trees for the boosted tree models. For a given
model, the resulting 10 sets of test scores (on the blind test set) were simply averaged.
These sets of averaged, blind test scores were then combined using the best combination
technique (simple averaging of normalized scores) and the best subset of models to combine,
as found in the first set of experiments. In this way, we effectively trained on all available
training data, despite having used some training data to find the best combination method
and to find other parameters.

The first 6 rows of Table 1 list the ERR and NDCG accuracies on 09 10 for the set of
6 individual models we used to find the best combination technique. In Table 1, “optimal
combiner” refers to the method for finding the optimal linear combination of a pair of

3. The others weren’t ready yet!

31

Burges Svore Bennett Pastusiak Wu

Table 1: ERR and NDCG accuracies for various combination methods. Accuracies are
reported on 09 10.

Model ERR NDCG

1. LambdaMART optimized for ERR 0.455 0.774

2. LambdaMART optimized for ERR trained on Aug70 0.456 0.781

3. LambdaMART optimized for NDCG 0.455 0.778

4. LambdaMART optimized for NDCG trained on Aug70 0.457 0.784

5. LambdaRank optimized for ERR 0.447 0.749

6. LambdaRank optimized for NDCG 0.447 0.757

Combine all 6 models, normalized scores, with weight 1 0.459 0.783

Combine Tree 1, with optimal combiner 0.458 0.784

Combine Tree 2, with optimal combiner 0.458 0.785

Combine all 6 models with Linear LambdaRank (NDCG) 0.457 0.785

Combine all 6 models with Linear LambdaRank (ERR) 0.457 0.785

Combine all 6 models with 2-layer LambdaRank (NDCG) 0.458 0.785

Combine all 6 models with 2-layer LambdaRank (ERR) 0.458 0.785

Combine models 2 and 4 with weight 1 0.457 0.785

Combine models 1, 2, 3 and 4 with weight 1 0.458 0.784

rankers (for any IR measure) described in (Wu et al., 2009; Burges, 2010). The optimal
combiner is most easily applied to a pair of rankers at a time, so Trees 1 and 2 in Table 1
refer to a binary combination sequence: Tree 1 is the combination of models (((13)(24))(56))
(where the integers refer to the model indexes given in the first 6 rows of the table, and
where the parentheses denote the order of combination). Thus Tree 1 combines pairs of
algorithms whose only difference is the measure they are optimized for (ERR or NDCG).
Tree 2 is (((45)(16))(23)), and combines the least algorithmically similar models first.

We concluded from Table 1 that the more sophisticated combination techniques provided
no clear advantage over simple averaging, and so in honor of Occam, we chose the latter.
This freed us up to use all of 07 10 as a test set to identify the best subset of models to
form the ensemble. In order to do this, we first computed the single model performance on
07 10.4 The results are shown in Table 2.

Table 3 shows the ensembles we tested using weight 1 combinations (after score normal-
ization). We wrote a tool to combine any given set of scores in this way, and to output final
NDCG and ERR accuracies. The results are reported on 07 10. From this table, we con-
cluded that the best combination was simply an average of normalized model scores, over
all 12 models, and this is the model we submitted as our final model. Specifically, all of the
final models were trained on the whole training set, where the MART and LambdaRank
models were trained using the fixed parameters found during the sweeps, and using 1/10 of
the data for validation; on the other hand each LambdaMART model was averaged over 10
trained models, where each of the 10 were trained using a randomly chosen validation set of

4. By now, all 12 models were ready.

32

Learning to Rank Using an Ensemble of Lambda-Gradient Models

Table 2: The 12 models used in the final ensemble, with corresponding ERR and NDCG
accuracies. All models were trained on 01 06 (see text), and accuracies are reported
on 07 10.

Model Description ERR NDCG

M1 LambdaMART optimized for ERR 0.461 0.774

M2 LambdaMART optimized for ERR trained on Aug50 0.464 0.786

M3 LambdaMART optimized for ERR trained on Aug70 0.462 0.780

M4 LambdaMART trained for ERR with MART scores as features 0.460 0.775

M5 LambdaMART optimized for NDCG 0.462 0.779

M6 LambdaMART optimized for NDCG trained on Aug50 0.464 0.787

M7 LambdaMART optimized for NDCG trained on Aug70 0.463 0.783

M8 LambdaMART trained for NDCG with MART scores as features 0.461 0.781

M9 LambdaRank optimized for ERR 0.453 0.750

M10 LambdaRank optimized for NDCG 0.453 0.757

M11 MART 0.455 0.772

M12 MART with output scores normalized to unit variance per query 0.455 0.772

Table 3: ERR and NDCG accuracies for ensembles of models trained on 01 06 and combined
with simple averaging. Results are reported on 07 10.

Ensemble ERR NDCG

All: M1–M12 0.4657 0.7878

All minus MARTs: M1–M10 0.4657 0.7875

LambdaMART only: M1–M8 0.4652 0.7874

All minus LambdaRanks: M1–M8, M11, M12 0.4653 0.7879

Augmented only: M2, M3, M6, M7 0.4641 0.7864

Non-augmented: M1, M4, M5, M8–M12 0.4648 0.7850

Just ERR: M1–M3, M4, M9 0.4657 0.7860

Just NDCG: M5–M8, M10 0.4652 0.7869

1/10 of the training data; and the scores of each of the resulting 12 models were scaled to
unit variance.5 Table 4 contains the final results on the held-out validation and test data.

5. Future Work

We end by mentioning three intriguing questions. First, ensembles are clearly a powerful
way to achieve state-of-the-art accuracies. Why is it that we do not seem able to train a
single model to achieve the same accuracies, directly? Note that a large ensemble can itself
be modeled by training a much smaller model using arbitrarily large amounts of unlabeled

5. In fact, unit variance and zero mean, although the translation to zero mean will not affect the ranking
results.

33

Burges Svore Bennett Pastusiak Wu

Table 4: ERR and NDCG accuracies on the final validation and test data.
Rank Team Test ERR Test NDCG Valid ERR Valid NDCG

1 Ca3Si2O7 0.468605 0.8041 0.4611 0.7995

2 catonakeyboardinspace 0.467857 0.8060 0.4609 0.8011

3 MLG 0.466954 0.8026 0.4600 0.7960

4 Joker 0.466776 0.8053 0.4607 0.8011

5 AG 0.466157 0.8018 0.4606 0.8010

data to give almost the same accuracy (Bucila et al., 2006), so it is not the case that such
single models simply cannot be found. Relatedly, how does the diversity of the trained
models contribute to the overall increase in accuracy? Simply training a variety of models
and then combining them is a powerful technique, but such approaches are in need of more
principled foundations to guide the search for the best ensemble. Second, in previous work,
we showed that IR measures such as NDCG, MAP, and MRR can be optimized directly
using lambda-gradient models, but that test accuracy on a given measure is not always
highest when that model was trained on that measure (Donmez et al., 2009). For some
pairs of IR measures, the train/test measures appear to match only if a sufficiently large
training set is used, and we have found a similar effect here (the ERR test accuracies were
similar, whether training on NDCG or on ERR). Why this occurs is an open question:
it could be because the measure simply extracts more information from the training data
(for example, pair-based lambda gradients such as those used for NDCG, versus absolute
rank-based lambda gradients, will provide many more instances to learn from); or it could
be a regularization effect. Finally, we note that although our system achieved the highest
test ERR score, it did not achieve the highest test NDCG. To the best of our knowledge,
we were the only team that built models that directly learned ERR, and this result is an
indication that such training was effective.

Acknowledgments

We thank our other team members, Ofer Dekel and John Platt: Ofer for providing the
highly optimized version of the LambdaMART code that we used, and John for a discussion
leading to the data augmentation idea. We would also like to thank the organizers of the
Yahoo! Learning to Rank Challenge for their work in running the competition.

References

C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proc. Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006.

C.J.C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview. Technical
Report MSR-TR-2010-82, Microsoft Research, 2010.

C.J.C. Burges, R. Ragno, and Q.V. Le. Learning to rank with non-smooth cost functions.
In Advances in Neural Information Processing Systems 18, 2006.

34

Learning to Rank Using an Ensemble of Lambda-Gradient Models

O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. JMLR Workshop
and Conference Proceedings, 14:1–24, 2011.

O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded
relevance. In International Conference on Information and Knowledge Management
(CIKM), 2009.

P. Donmez, K. Svore, and C.J.C. Burges. On the local optimality of lambdarank. In Special
Interest Group on Information Retrieval (SIGIR), 2009.

J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, 25(5):1189–1232, 2001.

K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant docu-
ments. In ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 41–48, 2000.

P. Li, C.J.C. Burges, and Q. Wu. Learning to rank using classification and gradient boosting.
In Advances in Neural Information Processing Systems 19, 2007.

Q. Wu, C.J.C. Burges, K. Svore, and J. Gao. Adapting Boosting for Information Retrieval
Measures. Information Retrieval, 2009.

35

	Introduction and Summary
	Data
	Information Retrieval Measures
	Experiments
	Linear LambdaRank: A Sanity Check
	The Models
	Combining Rankers

	Future Work

