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ABSTRACT

Retrieval system effectiveness can be measured in two quite different
ways: by monitoring the behavior of users and gathering data about
the ease and accuracy with which they accomplish certain specified
information-seeking tasks; or by using numeric effectiveness metrics
to score system runs in reference to a set of relevance judgments. In
the second approach, the effectiveness metric is chosen in the belief
that user task performance, if it were to be measured by the first
approach, should be linked to the score provided by the metric.

This work explores that link, by analyzing the assumptions and
implications of a number of effectiveness metrics, and exploring
how these relate to observable user behaviors. Data recorded as
part of a user study included user self-assessment of search task
difficulty; gaze position; and click activity. Our results show that
user behavior is influenced by a blend of many factors, including
the extent to which relevant documents are encountered, the stage
of the search process, and task difficulty. These insights can be used
to guide development of batch effectiveness metrics.

Categories and Subject Descriptors

H.3.4 [Information Storage and Retrieval]: Systems and soft-
ware—performance evaluation.

Keywords

Retrieval experiment; evaluation; system measurement.

1. OVERVIEW
There has been a tremendous amount of work undertaken in

evaluating retrieval system effectiveness. Although there are many
alternatives – direct observation of users, log files, or diary studies
for example – by far the most common approach is to use one or
more batch-evaluation metrics.

The traditional batch-evaluation metrics of precision and recall
have been extended by a raft of alternatives, including average
precision (AP); discounted cumulative gain (DCG) and normal-
ized discounted cumulative gain (NDCG) [13]; rank-biased preci-
sion (RBP) [18]; reciprocal rank (RR); expected reciprocal rank
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(ERR) [7]; BPref [3]; time-biased gain [21]; plus many more.
Carterette [5] gives a framework in which many metrics can be
seen as being related; and Moffat [16] categorizes metrics according
to their numeric properties.

Underlying all metrics is the assumption that the retrieval system
returns a ranked list of documents, and that each of the documents
retrieved can be scored for relevance, a real value 0 ≤ ri ≤ 1, with
ri = 1 indicating that the i th document in the ranking is highly (or
even perfectly) relevant, ri = 0 indicating that the i th document is
completely irrelevant, and gradations in between these extremes.

Each effectiveness metric can then be regarded as having a corre-
sponding user model, describing how users interact with the ranked
list. For example, Prec@k models each user as inspecting exactly k

documents, and by computing (1/k)∑
k
i=1 ri, generates a score that

represents the average rate at which a user accrues relevance.
In this paper we explore the connection between models, metrics,

and user behaviors. We begin by establishing a framework in which
each metric can be identified with three explicit parts of a user
model: weights on each document rank; conditional probabilities of
a user continuing to read past each rank; and probabilities of a user
stopping at a given rank. Given this formalism, it is natural to then
ask: what is a realistic model? Which metrics instantiate this?

Observations from a user study with 34 participants and three
types of search task provide concrete data, and we demonstrate that
there are a number of factors which contribute to a user’s reading
behavior which are not considered in present models. Moreover, it
is both plausible and possible to include them, and doing so should
result in metrics that are more accurate than those in current use.

2. METRICS AND MODELS
Effectiveness evaluations in IR commonly use batch evaluation

metrics. For any one query, issued over a set of documents, a rele-
vance score ri is assigned to each document. Considering the ranked
list of documents returned by a search system, and the relevance of
each, any number of alternative metrics can then be calculated. For
example, precision amongst the first k documents (Prec@k) can be
computed with

Prec@k(r̄) =
∞

∑
i=1

W(i) · ri, W(i) =

{

1/k when 1 ≤ i < k

0 otherwise,
(1)

as the inner product of a weight function W() and the relevance
vector r̄. We do not consider the question of how ri is determined,
but note that it is a human process and hence may be the subject of
imprecision, and also that it might be context dependent, varying
according to what documents have been observed by the user earlier
in the ranking. That is, relevance r̄ is due to document and situation,
and is not in our power to change. Note that there is no requirement
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that relevance be binary, and ri can be thought of as a fractional
value to support graded relevance.

Equation 1 can be generalized to an arbitrary metric M:

M(r̄) =
∞

∑
i=1

WM(i) · ri (2)

where WM() is a probability distribution, with ∑
∞
i=1 WM(i) = 1.

Metrics have also been suggested in which the sum is not 1, but
provided that ∑

∞
i=1 WM(i) is bounded, these can be normalized

into an equivalent set of probabilities. When ∑
∞
i=1 WM(i) does not

converge, normalization is not possible, and truncation at some
limiting depth k is required. The issues that arise from truncation
are discussed below.

There are two interpretations that can be placed on WM() when
it is a probability distribution. In the first, WM(i) is the likelihood
that document i is the one being inspected at any given moment by
the person examining the ranking; that is, their document inspec-
tions constitute a sequence of random selections from WM(). The
alternative interpretation of WM() is that users examine documents
sequentially from the top of the ranked answer list, starting with
the first-ranked document. Once they have reached depth i in the
ranking, they proceed to depth i+1 with conditional probability

CM(i) =
WM(i+1)

WM(i)
. (3)

Hence, for the metric Prec@k,

CPrec(i) =

{

1 when 1 ≤ i < k

0 otherwise .

which is to say the user always reads from rank 1 down to k, and
then stops.

The relationship between WM() and CM() means that they can
be computed from each other. Equation 3 shows how CM() can be
derived from WM(); the reverse is accomplished by noting that

WM(i) = WM(1) ·
i−1

∏
j=1

CM( j) , and hence that

WM(1) = 1/

(

∞

∑
i=1

i−1

∏
j=1

CM( j)

)

.

There is a third equivalent way of specifying an effectiveness
metric. Define LM(i) to be the probability that the i th document in
the ranking is the last one observed by the user, that is,

LM(i) =
WM(i)−WM(i+1)

WM(1)
.

This function is also a probability distribution. For example, LPrec(i)
is simply 1 when i = k, and 0 otherwise.

To complete the circular relationship between WM(i), CM(i), and
LM(i), note that

CM(i) =

(

∞

∑
j=i+1

LM( j)

)

/

(

∞

∑
j=i

LM( j)

)

.

The expected number of documents inspected is then given by:

∞

∑
i=1

i ·LM(i) =
∞

∑
i=1

i ·
WM(i)−WM(i+1)

WM(1)
=

1

WM(1)
.

Weighted precision metrics can be characterized by any of WM(i),
CM(i), or LM(i): that is, the definition of any one of those three
functions completely specifies the metric. Since the three functions

describe user behavior, specifying a metric this way also specifies a
user model. We illustrate these ideas next.

2.1 Static User Models
We first consider a range of static user models, that is, user models

in which the conditional continuation probabilities are a function of
rank position alone.

Precision Precision at depth k, or Prec@k, was outlined above.
The corresponding user model is that the user examines the first k

elements in the ranking and then stops, with each of the k items
equally-weighted. This metric is top-weighted in that it assigns zero
weight to all documents beyond rank k, but it does not discriminate
between ranks within the top k.

Discounted Cumulative Gain Järvelin and Kekäläinen [13] ob-
serve that top-weightedness is desirable, and propose a metric they
call discounted cumulative gain, or DCG@k. They specify DCG
in terms of a non-convergent infinite weighting vector. To obtain
a probability distribution it is necessary to truncate at some depth,
and use a scaled discounted cumulative gain metric, defined as:

CSCDG(i) =

{

log2(i+1)/ log2(i+2) when 1 ≤ i < k

0 otherwise .

There may be situations in which truncation at depth k is not accept-
able. But if the unrestricted function

CDCG(i) = log2(i+1)/ log2(i+2)≈
i loge i−1

i loge i

is regarded as being the conditional continuation probability, as is
implicit in the original proposal of Järvelin and Kekäläinen, then
WDCG(i)≈ 0 for all values i, and the user is assumed to inspect an
unbounded number of items.

Rank-Biased Precision To avoid the discontinuity in behavior at
depth k, and to allow for infinite distributions while still giving a
gradated response within the top k, Moffat and Zobel [18] suggest
an effectiveness metric they call rank-biased precision (RBP):

CRBP(i) = p ,

where p is a “persistence” parameter that describes the propensity
of the user to step from one document to the next. For example,
when p = 0.7, if the user has examined the i th document in the rank-
ing, there is a 30% probability that they will abandon their search
and not proceed to document i+ 1. The weights WRBP(i) form
a geometric sequence, WRBP(i) = (1− p)pi−1, and the expected
number of objects examined is thus 1/WRBP(1) = 1/(1− p). It
is also straightforward to show that for RBP, LRBP(i) = WRBP(i),
meaning that for this metric there is a further interpretation possible
– the score assigned to a ranking is numerically equal to the expected
relevance of the last document inspected [5].

The proposal by Moffat and Zobel explicitly connects an effec-
tiveness metric based on a convergent infinite distribution with a
user model that does not limit the depth to which documents may be
accessed. But, while it gives better top-weightedness behavior than
does precision, RBP is “stateless”, in that the user is envisaged as
having exactly the same behavior at depth 100 in the ranking as at
depth 1, and the same behavior after observing a relevant document
as after observing an irrelevant one.

Inverse Squares Moffat et al. [17] propose the use of a different
convergent sequence. Their inverse squares metric INSQ is parame-
terized by a value T , the target number of relevant documents the
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Figure 1: Weights W(i), conditional continuation probabilities C(i), and last probabilities L(i), for weighted-precision metrics INSQ with
T = 10; SDCG@k with k = 97, and RBP with p = 0.9512. The latter two parameters are chosen so that WINSQ(1) = WRBP(1)≈ WSDCG(1),
giving the same expected number of documents accessed for all three metrics, approximately 20.5. Note the differing vertical scales.

user wishes to identify, and is defined by

CINSQ(i) =
(i+2T −1)2

(i+2T )2
; which then leads to

WINSQ(i) =
1

S2T−1
·

1

(i+2T −1)2
, (4)

with Sm = (π2/6)− (∑m
j=1 1/ j2). Moffat et al. [17] note that the ex-

pected number of documents processed for INSQ is approximately
2T +0.5, and that T serves the same role as the parameter p asso-
ciated with RBP. The RRG metric identified by Carterette [5] also
uses an inverse squares weight distribution, but does not have an
equivalent of the parameter T .

Figure 1 compares WM(), CM(), and LM() for SDCG, RBP, and
INSQ. The parameters (respectively: k, the SDCG truncation depth;
p, the RBP persistence; and T , the INSQ target) are chosen so
that all have the same weight WM(1), and hence all have the same
expected value for the number of items inspected by the user.

2.2 Adaptive User Models
Metrics have also been defined in which the user’s path through

the ranking is adaptive, and affected by the relevance of the docu-
ments that they see at each inspection. (Note that some authors refer
to static models as being “positional”, and to the adaptive models
described in this section as being “cascade”.)

Reciprocal Rank This metric is defined as:

CRR(i) =

{

1 if ri < 1

0 if ri = 1 .
(5)

That is, RR computes the average precision across the documents
down to, and including, the first fully relevant one. In the case of
binary relevance judgments, if that first relevant document appears
at depth d, then RR = 1/d. The corresponding user model is also
straightforward: users sequentially examine documents until a fully
relevant one is identified, and then end their search.

Average Precision In the case of binary relevance judgments
the metric average precision is the average of the R = ∑

N
i=1 ri

precision scores attained at the locations in the ranking at which
relevant documents appear. Average precision can also be ex-
pressed as a weighted precision metric by attributing to each rele-
vant item the total contribution it makes. For example, if a rank-

i 1 2 3 4 5 6

ri 0 1 0 0 1 1
WAP(i) 0.289 0.289 0.122 0.122 0.122 0.056
CAP(i) 1.000 0.423 1.000 1.000 0.455 0.000
LAP(i) 0.000 0.577 0.000 0.000 0.231 0.192

Table 1: Average precision as a weighted precision metric. The
weights WAP(i) depend on the relevance vector r̄ as described in
the text; then CAP(i) and LAP(i) are derived from WAP(i).

ing has relevant documents at depths 2, 5, and 6 (only), then
there are R = 3 relevant documents in total, and the AP score is
(1/2+2/5+3/6)/3 = 0.467. But the components of that score can
be striped across the relevant items that contributed, with ranks 1
and 2 assigned WAP(1) = WAP(2) = (1/2+1/5+1/6)/3 = 0.289,
and so on. Table 1 completes this example, and adds conditional
continuation probabilities CAP() and last probabilities LAP().

Hence, in our terminology AP can be specified as:

CAP(i) =

{

∑
∞
j=i+1(ri/i)

∑
∞
j=i(ri/i)

if ∑
∞
j=i+1(ri/i)> 0

0 otherwise .
(6)

The user model that corresponds to AP, described by Robertson [19],
suggests that the user selects one of the relevant documents at ran-
dom, and then examines every document down to and including that
one in the result listing. In the form shown in Equation 6, AP models
the user as always knowing how many relevant documents remain in
the as-yet-unseen part of the ranking beyond depth i, and also what
locations they are in. That is, the user model corresponding to AP
is plausible only if the user can be assumed to base their decisions
on documents that they have not yet seen, rather than on documents
that they have.

Equations 5 and 6 indicate that the user continues down the
ranking until at least one relevant document is found, while allowing
no possibility that a user might exit from their search prior to finding
even a single relevant document. As an extreme, neither metric is
defined for rankings that do not contain any relevant documents.
Despite being adaptive in terms of responding to the relevance of
the result listing, neither RR nor AP have the flexibility to cope
both with situations in which a single answer document is required
(navigational queries) and situations that require many documents
to be identified (informational tasks).
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Initial expectation
Answer occurrence observed after query issued

No answers Some answers Many answers

Few answers (navigational)
T ≈ 1

Quickly dissatisfied; early
reformulation

Possibly satisfied without needing
reformulation

Satisfied quickly; no reformulation

Many answers (informational)
T ≫ 1

Dissatisfied; but will have looked
down ranking before reformulating

Partially satisfied; will reformulate
after looking down ranking

May be satisfied after first query; if
not, will reformulate

Table 2: Hypothesized user search behavior, influenced by two factors: the anticipated number of answers required (T ), and the rate at which
relevant documents are identified while searching. (Adapted from Moffat et al. [17].)

3. WHAT DO WE THINK USERS DO?
There are several metrics/models described above, either explic-

itly, or via definition of one or more of W(i), C(i), and L(i); and
many more in the literature. It is then reasonable to ask how to
choose one over the others. There are several options: we can rely
on rhetoric; we can compare outcomes (do they agree with each
other? which is more stable? which is more sensitive?), or we can
ask about the fidelity of the model.

In the rest of the paper we do the last of these, and ask: how
well do the models corresponding to various IR metrics match real
behavior? In particular, is there a “right” formulation for W(i), C(i),
and L(i)? We tackle this question in two ways: first, by listing a
set of possible user behaviors and asking if there is a model that
encapsulates them all; and then, in the next section, by studying
users carrying out search tasks.

Possible User Behaviors There is a range of reasonable hypotheses
about user behavior, which should be captured in any user model
(and hence metric). The pattern of behavior suggested by these hy-
potheses is summarized in Table 2, adapted from Moffat et al. [17].

1. Users undertake searches for different reasons. Some searches

start with the goal of identifying a single answer, and others

with the goal of finding multiple answers. This suggests a
model must allow the setting of a different number of target
documents, a flexibility not offered by RR and AP, but that
is allowed for via the various parameters that govern Prec@k,
SDCG@k, RBP, and INSQ.

2. Users may wish to examine documents to arbitrary depth in

the ranking, albeit with decreasing probability. This suggests
that C(i) should never go to zero. The models for Prec@k

and SDCG@k do not comply with this goal.

3. All other factors being equal, users may be more likely to con-

tinue their search the more effort (or time) they have invested

into it. If this hypothesis is correct then, all else being equal,
C(i) should tend to go up as i increases. Both Prec@k and
RBP fail this expectation.

4. Users may alter their behavior based on the part of the rank-

ing that has been inspected. This suggests that none of the
static models of Section 2.1 are adequate.

5. Users may exit from their query without having (fully, or

even partially) satisfied their information need. As already
observed, the models behind RR and AP do not support this.

In summary, all of the common weighted-precision metrics can be
criticized in some way or another when they are weighed up against
hypothesized user behavior.

4. DO USERS DO WHAT WE THINK?
The five suggested behaviors listed above appear plausible, but

are just hypotheses. In this section we describe a user study that
examined user behavior (including gaze data) on a number of search
tasks, seeking to gather evidence for or against them.

4.1 Experimental Design
Subjects were presented with a set of six information need state-

ments (see Table 3), plus one warm-up task (not shown), and asked
to use a search engine to find and mark documents that would help
them answer the questions. All interactions were undertaken using
an instrumented interface that both limited user actions in certain
ways, and allowed detailed logging that included click actions and
query reformulations. Ethics committee approval for this project
was granted at RMIT University.

Queries were executed via the Yahoo! API, but answer pages
were presented to the subjects without any branded identification.
Documents could be viewed via a pop-up window that obscured
and de-activated the main search listing until it was closed again.
To close the document pop-up, subjects were required to indicate
whether viewing that document was “useful” or “not useful”. Doc-
uments that for some reason were redisplayed collected a second
subject-generated relevance judgment. We do not have relevance
labels for documents which users did not view; we aimed to disrupt
natural behaviors as little as possible, and a participant who is asked
to label every document may well process a result list differently.

On closing a document, the result listing was redisplayed, with a
brief color-coded highlighting of the link that had just been viewed
(green for “useful”, red for “not useful”). Users were free to access
further result pages for each query, and to issue fresh queries for the
task, but were not able to open pages in browser tabs, or to open new
windows. In addition to the instrumented browser logging, gaze-
tracking hardware was used throughout each trial, so that implicit
user interactions could also be captured.

The experimental sessions proceeded as follows. First, the par-
ticipant was asked to complete a brief demographic survey. Next
they were shown descriptions of some information seeking tasks,
similar to those used later in the operational part of the session, and
asked to estimate the number of useful documents they thought they
would need to find in order to address the information need. The
answers to these questions provided a basis for estimating T .

Once a participant had completed the survey, they embarked on
the operational study, and after working through the warmup query,
were shown the first of six information needs. Participants were
expected to complete each task before moving on to the next one,
and were required to make their own decision as to when a task was
“done”, with no time limit applied. Their instructions were:

You will spend approximately one hour doing a sequence of seven

web search tasks. For each task, you’ll be given a question and you

should use our search engine to help answer it. . . . There is no time

limit on each of the tasks, and no minimum time limit overall either.
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Information specification Starter query

1 (remember) You recently watched a show on the Discovery Channel, about fish that can live so deep in the
ocean that they’re in darkness most or all of the time. This made you more curious about the deepest point in
the ocean. What is the name of the deepest point in the ocean?

deepest ocean point

2 (remember) You recently attended an outdoor music festival and heard a band called Wolf Parade. You really
enjoyed the band and want to purchase their latest album. What is the name of their latest (full-length) album?

wolf parade

3 (understand) Your nephew is considering trying out for an Australian Rules football team. His parents are
supportive of the idea, but you think the sport is dangerous and are worried about the potential health risks.
Specifically, what are some long-term health risks faced by football players?

australian rules football health risks

4 (understand) You recently became acquainted with one of the farmers at the local farmers’ market. One day,
over lunch, they were on a rant about how people are ruining the soil. They were clearly upset, so you’re
interested in finding out more. What are some human activities that degrade soil fertility?

damage soil fertility

5 (analyze) Your sister is turning 25 next month and wants to do something exciting for her birthday. She is
considering some type of extreme sport. What are some different types of extreme sports in which amateurs
can participate? What are the risks involved with each sport?

extreme sport

6 (analyze) You recently heard someone claim that identity theft in Australia is on the rise. This has made you
concerned about protecting your own identity. How easy or difficult is it for a stranger to open a credit card
under your name? What essential information about you is needed and what are some effective ways in which
you can protect your identity in the future?

identity theft and credit cards

Table 3: Search tasks used in user experiments, together with task complexity category (shown in parentheses) and associated starter query.

So spend what feels to be an appropriate amount of time on each

task, until you have collected a set of answer pages that in your

opinion allow that information need to be appropriately met, and

then move on to the next task.

Search tasks are of differing levels of complexity, and it is rea-
sonable to expect that user behavior differs too. The six topics used
in the study were modeled on the classes and topics proposed by
Wu et al. [25]; although users were not able to choose topics freely,
this allowed us to control task complexity. In particular, participants
were presented with two topics in each of the remember, understand,
and analyze categories, representing tasks of increasing levels of
cognitive complexity. The first page of results shown to each user
for each topic was generated by a uniform “starter query”, also
shown in Table 3.

Task order was a controlled variable for each participant, pre-
sented in a Graeco-Latin permuted order. A second controlled
experimental variable was the quality of the search results; for half
of the searches, the list of answers returned from the commercial
service was interleaved with related-but-incorrect snippets [15]. In
this paper we only consider data obtained for searches in the first,
unadulterated, half.

Gaze records from the tracker were first reduced to fixations –
series of records lasting at least 75ms and within a 5-pixel radius –
to remove saccades and glances too short to indicate reading. Se-
quences of fixations on the same snippet, with no intervening clicks,
were then further amalgamated. These records were combined with
logs from our search software and logs from the browser to produce
a complete record of each user’s interactions.

4.2 Demographics
A total of 37 participants were recruited, consisting of research

students and staff from the Australian National University. Due
to eye-tracking calibration and recording quality issues, the data
of three individuals could not be included for analysis. Of the
remaining n = 34 participants, 8 were female and 26 were male,
with an average age of 26 years. All were fluent in English, although
50% indicated that it was not their first language. The participants
all held or were working towards degrees in the areas of computing,
engineering, information science or mathematics. There was a
high level of familiarity with searching across the participants: all

indicated that they carry out a search using a web search engine
several times a day, with a median 11 years of experience with online
searching. No participants indicated that they were color-blind.

4.3 Measurements
We now present some of the collected data. Section 5 analyzes

what this data implies in terms of the five conjectures listed earlier.

Estimating T Before carrying out any searches, participants were
shown three sample information need statements – one of each
of the three task types remember, understand, and analyze, but
tasks which were not used in the remainder of the experiment, to
minimize anchoring effects – and asked to respond to the statement:
“I’d expect to need to find nn useful web pages to answer this”.
The distributions of responses for T are shown in Figure 2a. Given
the increasing complexity of the task types, we expected that the
estimated number of needed documents would increase from top
to bottom. However, the responses did not follow this trend, and
the only pairwise difference that was significant was between the
understand and analyze categories. The deviation from the expected
outcome may be a consequence of the particular three example
queries that were shown, or of the fixed ordering in which they
were presented (understand, analyze, then remember). Followup
experimentation is required in which a broader palette of scenarios
is provided, and presented in a varied ordering.

Details of the documents that participants saved as being “useful”
were also collected. Figure 2b shows the distribution of documents
saved per user, by task type. While the anticipated trend that more
documents would be needed for tasks of increasing complexity is
present, the actual numbers are small. Even for the two analyze

tasks, the number of documents saved to “allow that information
need to be appropriately met” is relatively low.

User Gaze Behavior A key assumption in our discussion has been
the broadly accepted claim that users scan search result pages from
top to bottom, viewing snippets 1,2,3,4, and so on. Figure 3a plots
the mean first arrival time, measured by the number of previous
views of other ranks, at each of the top 10 rank positions, following
the methodology of Joachims et al. [14], and shows that on average
the first viewing of the snippet at rank i is indeed correlated with
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Figure 3: Aggregated gaze behaviors, across users and tasks.

i. This is consistent with previous work [14], and has often been
interpreted as evidence that users scan links from top to bottom.

However, that outcome needs to be treated carefully. The gaze
position of any individual user is much more volatile than Figure 3a
would suggest, and the fixation point both sometimes moves back-
ward and sometimes advances by more than one: a viewing sequence
might well be 1,2,4,3,1,2, for example. To quantify this tendency,
the sequence of fixation points for each user was processed into a set
of “jumps”: +1,+2,−1,−2,+1 for the same example. Figure 3b
shows the resulting distribution. Jumps of +1 (one step down the
ranked list) dominate, but a significant fraction of the fixation shifts
are also by −1 and +2 and larger jumps also occur.

We also see effects due to screen layout. Figure 3c shows the
distribution of last-viewed ranks (that is, the ranks viewed just before
a search ended). There are distinct peaks at ranks 7 (the bottom of
the screen) and 10 (the bottom of the first page). Taken together,
there is evidence for a wide variety of reading behaviors. Reading
top-to-bottom is common, but not universal, and there are definite
discontinuities. We have investigated this further in other work [23].

Continue Probability Our primary purpose in the experimentation
was to explore factors that affected C(i), the user’s probability of
continuing their inspection of documents after viewing the document
at position i in the ranking.

To determine an experimental value for C(i), a “did continue”
indicator variable DC was associated with each snippet fixation in
the gaze log, taking the value zero if this was the last snippet viewed
for this result page, and the value one if it wasn’t. For example, for
the sequence of snippet views 1,2,5,1,2,4,2 the inferred set of DC
observations, categorized into groups according to rank position,
would be DC(1) = 〈1,1〉, DC(2) = 〈1,1,0〉, DC(3) = 〈〉, DC(4) =
〈1〉, and DC(5) = 〈1〉. Laplace smoothing was then applied to allow
empirical values to be estimated; for the same example data, to
compute Cest(1) = 3/4 = 0.75, Cest(2) = 3/5 = 0.60, Cest(4) =
2/3 = 0.67, Cest(5) = 2/3 = 0.67.
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Figure 4: Observed C(i), averaged across queries and users.

Figure 4 plots estimated C(i), averaged over all users and all
queries. When presented this way, C(i) appears almost constant,
with a value of approximately 0.75. However, this seemingly-
consistent gross behavior is an amalgam of many contributing fac-
tors. The next section examines the composition of C(i) in detail.

5. DO USER MODELS MODEL USERS?
Section 2 noted that weighted precision metrics, both static and

adaptive, can be specified by any of the interchangeable functions
W(i), C(i), or L(i). The closer C(i) matches observed user behavior,
the more confident we can be in the corresponding metric.

For the users and tasks measured, Figure 4 shows C(i) to be
approximately constant when aggregated across ranks. If that is
really the case, then the simple model behind RBP is applicable.
If not, what other factors explain the variation? For example, if
C(i) varies only with rank, the static model behind a metric like
SDCG@k or INSQ may be useful for evaluation. On the other hand,
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Factor Effect

(intercept) 11.70
User 0.11–10.95
Proportion of T collected 0.34
Proportion of docs viewed that are relevant 0.50
Gaze sequence 0.97
Rank i 1.06
Query count, in task 1.10

Table 4: Factors in a fitted model of DC. Users become more persis-
tent (have higher C(i)) as they issue more queries and look further
down each result page; and become less persistent as they accumu-
late relevant documents.

if C(i) varies with the relevance of each document, we might be
better off with an adaptive model such as that of RR or AP.

5.1 Explaining C(i)
We used logistic regression to model DC, the fixation-by-fixation

continuation indicator variable, as a response to a number of poten-
tial explanatory variables including indicators of user, task, task type,
and search progress. Model selection was performed by considering
specifications between the full model (including all explanatory
variables) and the minimal model including only the intercept. The
final model was selected to minimize the Akaike information crite-
rion (AIC) [1], which combines the likelihood of the model with a
penalty for each term which is included. Evaluation was carried out
using R’s stats::step.glm method. The full list of variables eval-
uated was: user, task, task type, gaze sequence, gaze rank i, judged
relevance of the current document ri, number of relevant documents
found, relevant documents viewed as a proportion of documents
viewed, proportion of T collected, amount of T remaining, and
query number within the task. We used participants’ own estimates
of T , according to the task type (see Section 4.3 and Figure 2a).

Table 4 summarizes the factors in the built model. The column
labeled “Effect” is the coefficient assigned to each of the listed
factors in terms of the odds of continuing: for example, a user
currently at rank i+1 is 1.06 times more likely to continue to the
next document than a user currently at rank i. Effects greater than
one represent an increased chance of continuing, that is they increase
C(i); effects less than one decrease C(i) as the corresponding factor
increases. The outcomes in the table lead to several observations.

First, there is a large effect due to user – some users are simply
more likely to keep reading than are others. The variability due to
user is large, with a base value for C(1) varying from 0.57 to 0.99.

Second, when per-user variance is allowed for, there are two
strong effects arising from the relevance of the documents already
seen. The odds of a user continuing decrease sharply as they ac-
cumulate relevant documents towards their target T . By the time
a user has seen as many relevant documents as they thought they
would need, the odds of their continuing have dropped by two thirds.
Carterette et al. [6] note that user patience – the p parameter in
RBP – varies with task type; the results here are similar, but show
dependence not on task type in isolation, but rather, on the user’s
notion of how much information they need.

The left-hand graph of Figure 5 illustrates this effect. It plots
C(i) as the proportion of T gathered is varied, and all other factors
are held constant. The lines are estimates from the model for three
hypothetical users chosen to match the median, first-quartile, and
third-quartile (among the experimental subjects) of the base C(1)
values. The shaded areas mark a 95% confidence interval for C(i).

Model Features ∆AIC

RBP-like Intercept only 42
SDCG-like Intercept plus i 51
RR-like Intercept plus ri 37

Best learned As per Table 4 0

Table 5: Quality estimates for models of DC from three represen-
tative families, plus the model developed in Table 4. The values
listed for ∆AIC are the difference in AIC values relative to the set of
factors listed in Table 4; lower values represent better models.

Note that the logistic regression model estimates the change in odds;
the reason that the factors have such different effects on the C(i) of
particular users is therefore due to the different starting probabilities.
A similar effect, but less pronounced, arises in connection with the
proportion of documents viewed which have been judged useful
(recall that in our protocol, every document which was viewed was
also judged). Users reading “information-heavy” rankings have a
reduced C(i), as was anticipated in Table 2.

Third, there are two effects due to query behavior. As users
look at more results in each query, they are slightly less inclined to
continue (factor “gaze sequence”, with effect 0.97). Counteracting
this, the users were more inclined to continue the more queries they
issued against a particular task (effect size 1.10).

Finally, there is indeed a component of C(i) attributable to i. The
effect is slightly above 1.0, meaning that all other things being equal,
users are a little more likely to keep reading from a deeper result
than from a shallower one – perhaps deeper results are not as good,
and users are likely to look back to a better result before finishing.
The effect due to rank is illustrated in the plot on the right side of
Figure 5, for the same three hypothetical users.

We did not observe an effect due to task: that is, the task itself
does not seem to affect C(i), except indirectly via the participants’
estimates of T . Models which included task type and task instance,
as well as the combination, did not improve on the model in Table 4.
In fact using those factors alone did not improve on the simplest
model which holds C(i) constant.

The effects of query count, and those due to relevance, accumulate
over a search session. Given a better understanding of users, and
more extensive data, we might expect that other effects of this kind
could exist – spanning result pages, queries, and longer durations.
Session-level or longer-term effects are not included in the user
models behind any of the commonly-used metrics.

5.2 Metrics and Models, Revisited
The model summarized in Table 4 is interesting, but also more

complex than the models in Section 2. It is important to ask whether
it is needed, or if the simpler models suffice. To resolve this ques-
tion, models were also constructed for each of three simple classes,
representing three families of effectiveness metrics.

Table 5 compares the fit of these models, based on the Akaike
information criterion (AIC). The values listed as ∆AIC are the differ-
ences between the AIC value for each model and the AIC value for
the best learned model (Table 4): higher values indicate a less parsi-
monious model, amongst the set of models presented. Differences
above about 10 can be interpreted as indicating a model having
“essentially no empirical support” [4], so we can have a great deal of
confidence that the fitted model improves on the alternatives.

The “RBP-like” model computed in this way just assigns C(i) =
0.93, and it is the simplest model. The static “SDCG-like” model
allows C(i) to vary as a function of i, but with a different effect
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Figure 5: Illustrative effects of relevance and rank on C(i) for three hypothetical users. Except for proportion of target relevance T (on the left)
and depth i in the ranking (on the right), all other factors are nominally constant. The shaded area is the 95% confidence interval for C(i).

allowed for each i so that C(i) can take any shape. This differs
from SDCG itself, but is more flexible: in particular, it allows for
discontinuities at the fold and the end of the page. This, however,
produces a relatively poor fit, worse that the RBP-like approach.
Finally, the adaptive “RR-like” model allows C(i) to vary with ri,
and this produces the lowest AIC (that is, the best fit) of the three
families. However, none of the three are as powerful as the learned
model. (It was not possible to produce an “AP-like” model, as Equa-
tion 6 requires relevance judgments of all documents in the result
set including those which are never viewed. Post-hoc judgments
were not performed, so the required data was not available.)

Since per-user effects are so large, we also fitted variants of
the RBP-like, SDCG-like, and RR-like models which included a
feature for user. This was not sufficient to improve the three models
(∆AIC = 51–52).

The AIC-based analysis confirms that better fidelity could be
attained by using not just adaptive models, but models which ex-
pressly allow for differing relevance targets T , and which adapt
their behavior as T is approached. Indeed, adding “proportion of
T ” as a factor to the RBP-like model explains DC better than the
rank-varying SDCG-like or the relevance-based RR-like models
(∆AIC = 28).

5.3 What We Think Users Do, Revisited
We can also ask whether the model of Table 4, which was built

from observations of real users, aligns with the five hypotheses of
Section 3, paraphrased as:

1. Users search for different reasons, with different targets. In
the learned model, C(i) relies in part on T , which is the user’s
target number of documents.

2. Users may wish to examine documents to arbitrary depth. In
the learned model, C(i) approaches but never reaches zero –
there is always a chance a user will read on.

3. Users may be more likely to continue the more they have

invested. The evidence for this is mixed. C(i) increases as
more queries are issued and as a user reads deeper; however
it decreases slightly as more results are read.

4. Users may alter their behavior based on what they read. This
is certainly consistent with the learned model, where seeing
relevant documents reduces C(i) via two factors, proportion
of T collected, and fraction of documents seen which are
relevant.

i=1,

(i)M

T =T0

Examine

document i

Reformulate

query

i=1

T =Tii=i+1
i−1i

0

−r i

End this
query

End search
session

T =T

initial query

Formulate

C

Figure 6: Proposed user model for search. For a given metric M, the
quantity CM(i) is a function of Ti and i.

5. Users may exit from their query at any time. Again, C(i)
approaches but never reaches unity – there is always a chance
a user will bail out.

6. A BEHAVIOR-DRIVEN METRIC
To complete the development, we describe a metric which is in-

spired by the hypotheses and observations above. We do not suggest
that this is the last word – it merely represents one more position in
spectrum between simplicity and fidelity. It does, however, embody
all five of the user behaviors that were hypothesized in Section 3,
and in that sense can be regarded as providing proof-of-concept.

As noted in Section 2, the user model associated with INSQ
(Equation 4) meets the first three listed conjectures. In particular,
the parameter T in Equation 4 captures conjecture 1, and makes
INSQ intent-sensitive, since T can be thought of as being an estimate
of the number of relevant documents the user seeks to acquire. For a
navigational query, T = 1 or T = 2 perhaps; and for an informational
query, T = 5 or T = 10 might be more appropriate.

Figures 6 and 7 (the latter derived from Smucker and Clarke [21])
propose an extended model for INSQ that makes the metric adap-
tive (conjecture 4) and session-based (conjecture 5). When a user
examines an answer at rank i in the results list, they first read the
snippet. Based on the snippet, a decision is made: to click through
and read the underlying document, or to not click. In the latter case,
the user is finished with the document. Importantly, from the user’s
point of view, this means that the document is non-relevant (ri = 0).
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Figure 7: The “Examine document i” step in Figure 6.

If the user clicked, they then read the full document, leading to
two possible outcomes: it is useful, in which case ri = 1; or it is
not, in which case ri = 0. There are two key differences between
this proposal and the similar state diagram presented by Moffat and
Zobel [18]. The first is, as already discussed, the alteration of the
conditional continuation probability at depth i from being a fixed
value p (used in RBP) to a variable value CM(i); the second is that
we introduce the possibility of the user reformulating a revised or
substitute query as part of the same search session.

Figure 6 proposes that T be modified as the search proceeds. The
user enters the ranked list with T0 = T , their initial intention; but as
documents are viewed, their information need is partially or fully
satisfied, and their intention evolves. We propose that this evolution
be modeled by computing

Ti = max{0,T −Rel(i)} ,

where Rel(i) = ∑
i
j=1 r j; that is, Ti estimates the “current unmet

demand for relevance” after inspecting i documents in the ranking.
In a general metric it is probably not feasible to have a parameter

per user, but we do want to incorporate the most important of the
user-independent factors from Table 4: the proportion of T collected.
Call this Tprop = Rel(i)/T : now as Tprop increases, C(i) should
decrease. Equivalently, as 1−Tprop decreases so should C(i).

To add this notion to INSQ, and thereby create an adaptive version,
we use T +T (1−Tprop) rather than 2T to compute the conditional
continuation probability. Since 1−Tprop = Ti/T , we have:

C′
INSQ(T,Ti, i) =

(i+T +Ti −1)2

(i+T +Ti)2
. (7)

The effect is that initially, Ti = T and the model is as in Equa-
tion 4. While Ti remains high, so does the conditional continuation
probability; then, as Ti decreases and the user’s information need
is increasingly satisfied, so the likelihood of continuation also de-
creases, and the expected length of the remaining search decreases.
If no relevant documents are accumulated, Equation 7 remains the
same as Equation 4.

The probabilistic nature of searching using this model means that
the user might exit their search before Ti reaches 0. If this happens,
they can be expected to reformulate their query and start inspecting
the new ranked list, or switch to a different search service, or just
quit. In the case of the search being continued, we suggest that their
initial T0 for the follow-on query is inherited from the Ti value that
was attained at the time the previous query was abandoned. The
diagram in Figure 6 captures this aspect of the proposed model.

Clearly this is only one of any number of metrics which might
be developed based on the model in Table 4 and pending further
investigation we offer it as a proof-of-concept. Nevertheless a repre-
sentative of this metric, modelling DC with i and Ti/T , achieves a
∆AIC of 28: this is substantially more accurate than others in Table 5.

7. RELATED WORK
There is a considerable literature in regard to effectiveness metrics,

and in the limited space available, we can at best present a brief

overview. The current definition of AP emerged in the 1990s as an
evaluation measure associated with the deep rankings (often to depth
k = 1,000) in the TREC project. Järvelin and Kekäläinen [13] then
introduced the DCG and NDCG metrics (the latter not considered
here), arguing that explicit top-weightedness was preferable to the
way it was achieved in AP, and formalizing the notions of graded
(that is, non-binary) relevance judgments, and of “gain” as a benefit
received by the user. Moffat and Zobel [18] followed up with
their RBP proposal and corresponding user model; an important
recognition in this work is that it is preferable for the metric to assess
the rate at which gain is accrued, rather than the total magnitude of
gain that is accrued. Zhang et al. [27] considered a range of static
weighted-precision metrics including SDCG and RBP, and show
that RBP with p = 0.73 is a good match to the normalized document
viewing characteristics inferred from the click densities arising from
commercial search operations.

A flurry of activity has taken place over the last four to five years.
Craswell et al. [9] proposed a cascade model of click behavior
(which we refer to as “adaptive” here), which posits that users read
search results from top to bottom, and at each rank make a decision
of whether to click on that document, or to skip it. Once a single
document is clicked, the user exits from the search. Unlike previous
models of click behavior, the cascade model takes the relevance of
answer items that are higher in the results list into account. Craswell
et al. demonstrated a closer fit to click data from a commercial search
engine than other models of user behavior, such as a position model
(where click behavior depends only on the rank of a document,
called “static” here), or an examination model (where clicks are a
function of rank as well as document-specific factors). Chapelle and
Zhang [8] extended the cascade model using a dynamic Bayesian
network, allowing for the possibility that a user is not satisfied after
a single click and returns to the search results list. In related work,
Chapelle et al. [7] further argued that the history of what the user
experiences as they process the answer list affects the way they
address the remainder of the list. They synthesized a new metric
ERR by combining the geometric distribution used in RBP with the
approach embedded in RR, adapting to ri and also, via the choice
of p, allowing persistence to be tailored to the search requirement.
Yilmaz et al. [26] also explored metrics in which the probability
of continuing the inspection of documents is conditional on the
relevance level of the last document inspected.

Carterette [5] categorized a wide range of effectiveness metrics,
grouping them into four classes; in doing so, the relationships be-
tween weights, halting probabilities, and last viewed probabilities
was raised, an understanding that we have also employed in this
work. Carterette then explored the implications of the classification
using a range of click and TREC data, concluding that despite the
fact that it is a non-convergent sum, DCG has a range of merits.

Recently Smucker and Clarke [20, 21] have measured the time
taken by users to inspect documents, and argued that a more pre-
cise unit of “investment” against which utility is assessed should
be search time, rather than documents examined. In a user study of
search behavior, Smucker and Clarke demonstrate that short doc-
uments require less inspection time than do long ones, and that
repeated documents can be evaluated very quickly. Based on these,
and other factors, they proposed time-biased gain as an effectiveness
metric, and argued that it better reflects user search behavior.

In other interaction studies, Joachims et al. [14] examined the
way in which user gaze fixations can be associated with result list-
ings; Al-Maskari et al. [2] (see also Huffman and Hochster [12])
questioned the usefulness of deep evaluation metrics, and found that
shallow metrics such as Prec@10 provide better correlation with the
experience reported by users; Turpin and Scholer [24] raised doubts
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about the usefulness of AP to predict user task-completion ability;
and Thomas et al. [22] examined the numeric stability of static met-
rics when applied to perturbed or degraded rankings; they also note
that page boundaries can be handled by altering the continuation
probabilities at appropriate intervals.

Other authors have considered user models for metrics in more
abstract settings: as already noted, Robertson [19] described a user
model associated with AP, with Dupret and Piwowarski [11] pro-
viding elaboration; Dupret [10] has also examined alternative user
models for the DCG metric.

8. CONCLUDING REMARKS
Metrics such as Prec, AP, and RR instantiate user models, implic-

itly or explicitly, and these models can be described by any one of
the interchangable functions W(), C(), or L(). This leads us to ask:
what do these functions look like for real users? Is one model (or
family of models) more or less accurate than others, and can that
tell us anything about the associated metrics?

We conducted a user study with the goal of identifying the factors
that contribute to C(i), a user’s propensity to continue searching
after viewing a document at rank i. Factors we thought would be
of possible influence included the rank position i; the relevance ri

of the document in that position; the amount of relevance collected
until that point in the viewing sequence; and the fraction of the
target relevance that had been collected. Our study of 34 users,
each completing six search tasks, provided evidence that all of these
factors are indeed contributors to the decision made by the user after
viewing each snippet, namely whether to continue or stop.

Unsurprisingly, our investigation has also generated fresh ques-
tions to be considered. First, Figure 6 contains provision for query
reformulation and/or query reissue. But our sample of user activity
contained too few such events for us to try and derive meaningful
insights as to what factors drive these decisions, and we can only
conjecture that the unanswered information need, Ti = T −Rel(i) is
positively correlated with the conditional probability of a reformu-
lated query being issued. For example, the conditional probability of
reformulation, given that the user is not continuing down the ranking,
might be modeled as being some kind of Ti/(Ti + k) -like function,
where k is a constant. A larger user study would be required for that
conjecture to be explored.

Second, we have defined ri in terms of the user’s response to
the document – if it was marked as being “useful” to answer the
information need, then we regard the corresponding ri value as being
1. But two users viewing the same ranking make different decisions
about what to view, and even if they view the same documents, make
different decision about whether to save it. Hence, ri itself must be
thought of as being non-deterministic, introducing a further degree
of freedom into any user model. The “starter query” results may
yield insights into this issue, and allow estimates to be made of the
degree to which users differ.
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