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ABSTRACT
We study the problem of answering ambiguous web queries
in a setting where there exists a taxonomy of information,
and that both queries and documents may belong to more
than one category according to this taxonomy. We present
a systematic approach to diversifying results that aims to
minimize the risk of dissatisfaction of the average user. We
propose an algorithm that well approximates this objective
in general, and is provably optimal for a natural special case.
Furthermore, we generalize several classical IR metrics, in-
cluding NDCG, MRR, and MAP, to explicitly account for
the value of diversification. We demonstrate empirically that
our algorithm scores higher in these generalized metrics com-
pared to results produced by commercial search engines.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models

General Terms
Algorithm, Performance

Keywords
Result diversification, relevance, marginal utility

1. INTRODUCTION
Web search has become the predominant method for peo-

ple to fulfill their information needs, whereby users typically
specify their information needs by providing a few keywords.
These keywords, however, are often ambiguous and have
more than one interpretation [2, 14]. Consider, for exam-
ple, the keyword Flash. This may refer to the Adobe Flash
player, the adventure hero Flash Gordon, or the village Flash
with the highest elevation in Great Britain. Without further
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information to disambiguate the user intent, one has to fo-
cus on how best to produce a set of diversified results that
cover these different interpretations.

The importance of result diversification has been recog-
nized since early work on information retrieval [4, 8]. The
basic premise is that the relevance of a set of documents de-
pends not only on the individual relevance of its members,
but also on how they relate to one another [5]. Ideally, the
document set should properly account for the interests of the
overall user population [7]. Most of the current work on re-
sult diversification make at best only a tacit use of the topics
of the query or the documents, and diversification happens
by way of similarity functions or conditional relevance dis-
tributions defined over documents [5, 6, 18], or through user
feedback [3, 13]. We focus on how to diversify search results
making explicit use of knowledge about the topics the query
or the documents may refer to. A recent user study suggests
that efforts of individual users are usually directed towards
finding more information on specific topics of interest, rather
than an undirected quest for any new information [17].

Specifically, we assume that there exists a taxonomy of
information, and model user intents at the topical level of
the taxonomy. Both queries and documents may belong to
more than one category of this taxonomy. We assume that
usage statistics have been collected on the distribution of
user intents over the categories. Our method considers both
the relevance of the documents, through standard ranking
algorithms employed in most search engines, and the diver-
sity of the search results, through categorization according
to the taxonomy. We describe an objective that explicitly
tradeoffs relevance and diversity, and can be interpreted as
minimizing the risk of dissatisfaction for the average user.
We study both theoretical and empirical properties of this
optimization problem.

We show that the general problem is NP-hard, but the ob-
jective function admits a submodularity structure [12] that
can be exploited for the implementation of a good approx-
imation algorithm. Additionally, the algorithm is optimal
in the natural special case where each document belongs to
exactly one category. We also evaluate our algorithm em-
pirically and compare its results to those produced by com-
mercial search engines. As classical information retrieval
(IR) metrics such as normalized discounted cumulative gain
(NDCG), mean average precision (MAP), and mean recip-
rocal rank (MRR) do not take into account the value of
diversification, we propose a generalization of these metrics
to evaluate the search results. These new metrics may be of



independent interest. We run three sets of experiments high-
lighting the use of categorical information for both queries
and documents. These experiments differ in how the in-
tent distributions and document relevance are collected. In
all cases, our result diversification algorithm outperforms all
three commercial search engines.

2. RELATED WORK
One of the early influential work on diversification is that

of Maximal Marginal Relevance (MMR) presented by Car-
bonell and Goldstein in [5]. In their work, a tradeoff between
novelty (a measure of diversity) and the relevance of search
results is made explicit through the use of two similarity
functions, one measuring the similarity among documents,
and the other the similarity between document and query.
A parameter controls the degree of tradeoff. As there is
no categorization of either the document or the query, di-
versification is conducted through the choice of similarity
functions.

Zhai et al [19] point out that it is in general insufficient
to simply return a set of relevant results. The correlations
among the results are also important. This work is later for-
malized in [20], where Zhai and Lafferty propose a risk min-
imization framework for information retrieval that allows a
user to define an arbitrary loss function over the set of re-
turned documents. This function determines the “unhappi-
ness”of the user for a given set of results. In order to put the
theory to practice, however, requires one to specify the loss
function. In Chapter 7 of [18], Zhai discusses the problem
of dependent topic retrieval, and proposes two loss functions
that have lead to a selection of diverse results. These loss
functions depend on certain language models rather than
categorical information about the documents.

Bookstein [3] and Chen and Karger [6] both consider infor-
mation retrieval in the context of ambiguous queries. The
basic idea in these works is that documents should be se-
lected sequentially according to the probability of the doc-
ument being relevant conditioned on the documents that
come before. Bookstein’s method, however, is limited by the
fact that it requires explicit user feedback for relevance after
every document is selected. Chen and Karger work around
this limitation, and propose an objective function that aims
to find at least one relevant document for all users. In both
cases, the topic of the query is considered only tacitly.

Radlinski, Kleinberg, and Joachims [13] propose a learn-
ing algorithm to compute an ordering of search results from a
diverse set of orderings. By iterating through all documents
in each of the positions while holding fixed the documents in
the other positions, they attempt to learn a“best”ranking of
documents using user clicks. Their approach naturally pro-
duces a diverse set of results, as user feedback through clicks
will diminish the value of similar documents. However, the
topics of the query is only considered implicitly.

Radlinski and Dumais [14] observe that the top k results
of a query might not be diverse enough to contain represen-
tative documents corresponding to various interpretations
of the query, thus limiting the usefulness of personalized
client-side reranking of results. They study the question of
generating related queries in order to yield a more diverse
set of documents. Their work is complimentary to ours and
can be used to enhance the set of input documents to our
algorithm.

Compared to work described above, we take a different ap-

proach that makes use of a taxonomy for classifying queries
and documents, and creates a diverse set of results in accor-
dance to this taxonomy. Such taxonomy are readily avail-
able through projects such as the Open Directory Project
(ODP). We now review some work that also make use of
taxonomies.

Ziegler et al [21] study diversification in a recommenda-
tion setting. They propose an approach that returns lists
of recommendations that better cater to users’ full range
of interests by selecting lists that have low “inter-list sim-
ilarity.” They demonstrate experimentally that real users
prefer more diversified results. Their classification of items
are taxonomy-based. However, they do not consider the rel-
ative importance of the different categories, nor how good
a particular recommendation is. We take into account both
in our model.

Vee et al [15] study diversification in the context of struc-
tured database with applications to online shopping. In their
work, items are represented as a set of features, and the
objective is to select a set of items that are as diverse as
possible according to a lexicographical ordering of features.
They show that it is impossible in general to simply apply
post-processing to retrieved results, and give two algorithms
that directly take into account diversification. As the lexi-
cographical preferences are known in advance and directly
used in the problem formulation, it constitutes a form of
explicit diversification. However, the notion of relevance is
suppressed in their work, as the objective is to select items
that are distinct from one another. This may be fine for
structured domains, but less applicable to web search where
documents differ greatly in their ability to satisfy user needs.

Clarke et al [7] study diversification in the context of an-
swering questions. They focus on developing a framework of
evaluation that takes into account both novelty and diver-
sity. In their work, questions and answers are treated as sets
of “information nuggets”, and relevance is a function of the
nuggets contained in the questions and the answers. The
notion of nuggets can be mapped to the notion of categories
in our paper. The main difference between their work and
ours is that we take into account the relative importance of
different nuggets (as distribution of categories), and the fact
that different documents containing the same nugget may
satisfy the user to different extent (as the relevance score of
a document for a given category).

Finally, we point out that there has been a dearth of work
on IR metrics that take into account both diversity and rel-
evance. We believe this is an important area that deserves
more research attention, and propose our own generaliza-
tions of classical IR metrics in Section 4. Review of related
work will be presented then.

3. RESULT DIVERSIFICATION PROBLEM
We begin by explaining our assumptions and formalize an

optimization objective for minimizing average user dissatis-
faction. We then analyze the complexity of this problem,
and propose a simple greedy algorithm that well approxi-
mates the objective in general and is provably optimal in
the special case of single-category documents. For exposi-
tion, proofs have been deferred to the Appendix.

3.1 Preliminaries
Assume there exists a taxonomy of information, and that

user intents are modeled at the topical level of this taxon-



omy. Both queries and documents are categorized according
to this taxonomy. Denote the set of categories to which a
query q belongs as C(q), and that for a document d as C(d).
Note that a query or a document may belong to multiple
categories. For given query q and given document d, their
categories need not overlap, i.e., C(d)∩C(q) may be empty.

Further assume that there is a known distribution that
specifies the probability of a given query belonging to given
categories, P (c|q), and that our knowledge is complete, i.e.,∑

c∈C(q) P (c|q) = 1. This distribution can be estimated in
a number of ways in practice. In our implementation, we
employ the query classification algorithm described in [1].

Let V (d|q, c) denote the quality value of a document d for
query q when the intended category is c, meant to capture
the relevance of the document. Without loss of generality,
let its value be in the range of [0, 1]. We give a probabilistic
interpretation to the quality values: they approximate the
likelihood of the document satisfying the user intent given
the query. This value can be estimated using a variety of
techniques. In our implementation, V (d|q, c) is determined
by a scoring function based on the content of the document
and the query, weighted by the likelihood that the document
belongs to a particular category.

We make a certain independence assumption: given a
query and the category of the intent, the conditional prob-
abilities of the two documents satisfying the user are inde-
pendent. That is, suppose two documents d1 and d2 are the
results for a query q belonging to category c, the probability
that the user will find none of the documents useful equals
(1 − V (d1|q, c))(1 − V (d2|q, c)). Note that the assumption
does not apply when the two documents belong to different
categories.

3.2 Problem Formulation
Let us first hone our intuition about why a simple scheme

that proportionately allocates the number of results to show
for each category according to the percentage of users inter-
ested in that category may perform poorly. Consider the ex-
ample of Flash, and suppose the intent distribution assigns
a probability of 0.6 that the query is related to Technol-
ogy. The proportional scheme would suggest that we show
six documents out of ten about the “Adobe Flash player”.
However, having pointed the user to the official Adobe site as
the first result, do we really need to show another five differ-
ent sites? The missing link in this simple scheme is that the
attractiveness of adding another document decreases when
we have already shown a high quality document from the
same category.

We now state the problem of result diversification. Sup-
pose users only consider the top k returned results of a search
engine. Our objective is to maximize the probability that
the average user finds at least one useful result within the
top k results.

Diversify(k): Given query q, a set of documents D,
a probability distribution of categories for the query
P (c|q), the quality values of the documents V (d|q, c),
and an integer k. Find a set of documents S ⊆ D with
|S| = k that maximizes

P (S|q) =
∑

c

P (c|q)(1−
∏
d∈S

(1− V (d|q, c))) (1)

Let us now interpret the objective in Equation 1 and see
how it formalizes our intuition. Recall that V (d|q, c) can be
interpreted as the probability that a document d satisfies a
user that issues query q with the intended category c. The
value (1 − V (d|q, c)) is then the probability that d fails to
satisfy. For a given category c, therefore, the probability
that the set of documents will all fail to satisfy equals its
product, by the aforementioned independence assumption.
One minus that product equals the probability that some
document will satisfy category c. Finally, summing up over
all categories, weighted by P (c|q), gives the probability that
the set of documents S satisfies the“average”user who issues
query q.

Note that this objective addresses the problem we men-
tioned in the beginning of the section. Specifically, if we
have a very good document for “Flash” (query q) in the
technology section (category c), like “Adobe Flash player”
(document d), then V (d|q, c) will be very high. The gains
from other technology documents in reducing the probabil-
ity that all documents fail to satisfy the user is very small,
so a set of documents that does well under our objective will
not expend more effort in the technology section.

Note also that our objective is not about including as
many categories as possible in our result set; it is possible
that even if there are less than k categories, not all categories
will be covered. This is because our formulation explicitly
considers how well a document satisfies a given category
through V (d|q, c). Hence, if a category c that is a dominant
interpretation of the query q is not satisfied adequately, more
documents from category c will be selected, possibly at the
expense of not showing certain categories altogether.

As stated, the problem Diversify(k) does not take into
account the ordering of the results, since the objective func-
tion is defined over (unordered) set of documents. This is
due to the assumption that users will consider all k results.
In practice, the precise value of k is of course not known in
advance, i.e., different users may stop at different number
of results. One may instead want to formulate an objective
that takes into account the distribution of users who will
stop at different values of k. Unfortunately, such distribu-
tion is not usually available. Nonetheless, to account for
the importance of ordering, in our evaluation, our metrics
are weighted to assign more value to documents higher in
the ordering. Our algorithm is also designed to generate an
ordering of results rather than just a set of results.

3.3 Complexity
Unfortunately, but not too surprisingly, the desired objec-

tive is NP-hard to optimize.

Lemma 1. Diversify(k) is NP-hard.

In fact, when documents belong to multiple categories,
there may not exist a single ordering of documents such
that the objective function of Diversify(k) is maximized
for all k. This is because the set of documents optimal for
Diversify(k-1) need not be a subset of documents optimal
for Diversify(k). Consider a two-category, three-document
instance of Diversify. Suppose P (c1|q) = P (c2|q) = 0.5.
Further, suppose the V (d|q, c) values for the different cate-
gories are given according to Table 1. The optimal ordering
for Diversify(1) is d1, d2, d3, whereas it is d2, d3, d1 for Di-
versify(2).



Table 1: Non-optimality of a single ordering

Document V (d|q, c1) V (d|q, c2)

d1 0.8 0.8
d2 1.0 0.0
d3 0.0 1.0

3.4 Submodularity
Fortunately, not all is lost. The set function P (S|q) is in

fact rich of structure, and admits a simple greedy strategy
that will solve the problem quite well. The precise structure
we are going to exploit is submodularity [12].

Definition 1 (Submodularity). Given a finite ground
set N , a set function f : 2N 7→ R is submodular if and only
if for all sets S, T ⊆ N such that S ⊆ T , and d ∈ N \ T ,
f(S + d)− f(S) ≥ f(T + d)− f(T ).

Intuitively, a submodular function satisfies the economic
principle of diminishing marginal returns, i.e., the marginal
benefit of adding a document to a larger collection is less
than that of adding it to a smaller collection.

Lemma 2. P (S|q) is a submodular function.

3.5 A Greedy Algorithm for Diversify(k)

We propose a natural greedy algorithm for computing a
solution to Diversify(k) that will not only select a set of
results but also order them as well. Let R(q) be the top
k documents selected by some classical ranking algorithm
for the target query. Our algorithm will reorder R(q) to
maximize the objective P (S|q).

Let U(c|q, S) denote the conditional probability that the
query q belongs to category c, given that all documents in
set S fail to satisfy the user. Initially, before any document
is selected, U(c|q, ∅) = P (c|q). The algorithm selects output
documents one at a time. At every step, it chooses the
document that has the highest marginal utility, g(d|q, c, S),
computed as the product of the conditional distribution of
categories, U(c|q, S), and the quality value of the document,
V (d|q, c). This marginal utility can be interpreted as the
the probability that the selected document satisfies the user
given that all documents that come before it fail to do so. At
the end of the loop, the conditional distribution is updated
to reflect the inclusion of the new document to the result set
using Bayes rule.

3.6 Analysis of IA-Select

We now analyze the performance of IA-Select. We first
show that it is in fact optimal in the case when each docu-
ment can satisfy one category.

Theorem 1. IA-Select is optimal when |C(d)| = 1 for
all d ∈ R(q).

As the document selection process is independent of k, and
that k only serves to determine when the algorithm stops,
we have the following corollary:

Corollary 1. When |C(d)| = 1 for all d ∈ R(q), IA-
Select solves Diversify(k) optimally for all k > 0.

Algorithm 1 IA-Select

Input k, q, C(q), R(q), C(d), P (c|q), V (d|q, c)
Output set of documents S
1: S = ∅
2: ∀c, U(c|q, S) = P (c|q)
3: while |S| < k do
4: for d ∈ R(q) do
5: g(d|q, c, S)←

∑
c∈C(d) U(c|q, S)V (d|q, c)

6: end for
7: d∗ ← argmax g(d|q, c, S) [ties broken arbitrarily]
8: S ← S ∪ {d∗}
9: ∀c ∈ C(d∗), U(c|q, S) = (1−V (d∗|q, c))U(c|q, S\{d∗})

10: R(q)← R(q) \ {d∗}
11: end while
12: return S

In general, when documents may belong to multiple cat-
egories, IA-Select is no longer guaranteed to be optimal.
This is hardly surprising as the problem is NP-hard. Re-
consider the two-category, three-document instance of Di-
versify given in Section 3.3. The optimal solution to Di-
versify(2) is d2, d3, d1, whereas IA-Select will return the
order d1, d2, d3.

However, even in the worst case, the error of IA-Select
is bounded. This follows from the result by Nemhauser,
Wolsey, and Fisher [12]:

Theorem 2. For a submodular set function f , let S∗ be
the optimal set of k elements that maximizes f . Let S′ be
the k-element set constructed by greedily selecting element
one at a time that gives the largest marginal increase to f .
Then f(S′) ≥ (1− 1/e)f(S∗).

Since our objective, P (S|q), is submodular, and our algo-
rithm IA-Select is greedy in the same sense as stated in
the theorem, we have:

Corollary 2. IA-Select is a (1 − 1/e)-approximation
algorithm for Diversify(k).

Recall that V (d|q, c) can be interpreted as the true prob-
ability that document d can satisfy category c for query q.
Note that the above claims do not depend on how close
V (d|q, c) approximates the desired probability. This is im-
portant as one must estimate V (d|q, c) in practice. The sub-
modularity of the objective function, and the optimality and
approximation guarantee of IA-Select remain true even for
arbitrary V (d|q, c).

3.7 Illustrative Description of the Algorithm
We describe the algorithm using an example. Consider a

query q with two categories c1 and c2 with P (c1|q) = 0.7 and
P (c2|q) = 0.3. Assume the result setR(q) = {d1, d2, . . . , d10},
with quality values given in Table 2. We run the algorithm
to compute the top 5 results. We trace the run below.

Initially, U(c1|q, ∅) = P (c1|q) = 0.7 and U(c2|q, ∅) =
P (c2|q) = 0.3. We order all the documents in R(q) accord-
ing to their marginal utility. We find d1 with g(d1|q, c1, ∅) =
0.35 from category c1 is the document with the highest
marginal utility and is therefore added to S. After adding d1

the conditional probability U(c1|q, {d1}) is updated to 0.35.
The next document to add would be any of {d8, d9, d10}
from c2 since all of them have the next highest marginal



Table 2: Input to illustration of algorithm

Document V (·|q, c1) V (·|q, c2)

d1 0.50 0.00
d2 0.20 0.00
d3 0.15 0.00
d4, d5, d6, d7 0.05 0.00
d8, d9, d10 0.00 0.33

utility of 0.1. Say, we pick d8, since ties are broken ar-
bitrarily. After adding d8 to S, the conditional probability
U(c2|q, {d1, d8}) is updated to 0.20. Next, we fill the remain-
ing three slots on the page. We compute the marginal util-
ity of all the remaining documents in R(q) following which
we select d2 (from category c1) because it has the high-
est marginal utility of 0.07 and we include this document
into S and update U(c1|q, {d1, d8, d2}) to 0.28. Proceeding
this way, we include d9 followed by d10. Thus, we produce
S = {d1, d8, d2, d9, d10} with clearly more documents from
category c2 even though there are more documents from cat-
egory c1 in R(q).

4. PERFORMANCE METRICS
We first briefly review some classical IR metrics, namely

NDCG, MRR, and MAP [11]. These metrics are widely used
for measuring search quality. It has been observed, however,
that they do not properly take into account the value of di-
versification [5, 6]. Several metrics have been proposed for
evaluating the diversity of search results, including the %no
metric [16], the k-call metric [6], and α-NDCG [7]. However,
these metrics do not take into account how well a document
satisfies a topic, and they do not consider the relative impor-
tance of different topics. We therefore propose generaliza-
tions to classical IR metrics that address these shortcomings.

4.1 Classical Measures: NDCG, MRR, MAP
Given a ranked result set of documents Q and an ideal

ordering of the same set of documents R, the discounted
cumulative gain (DCG) at a particular rank threshold k is
defined as

DCG(Q, k) =

k∑
j=1

2r(j) − 1

log(1 + j)
,

where r(j) is the judgment (0=Bad, 1=Fair, 2=Good, 3=Ex-

cellent) at rank j in set Q. The ideally ordered set R con-
tains all documents rated for the given query sorted descend-
ing by the judgment value. Now the normalized discounted
cumulative gain (NDCG) at a particular rank threshold k is
defined as

NDCG(Q, k) =
DCG(Q, k)

DCG(R, k)
.

NDCG discounts the contribution of a document to the score
as its rank increases. Higher NDCG values correspond to
better correlation with human judgments. NDCG value at
rank threshold k when the set Q is clear from the context is
often written as NDCG@k.

The reciprocal rank (RR) is the inverse of the position of
the first relevant document in the ordering. In the presence
of a rank-threshold T , this value is 0 if there is no relevant

document in positions below this threshold. The mean re-
ciprocal rank (MRR) of a query set is the average reciprocal
rank of all queries in the query set.

The average precision of a ranked result set is defined as∑k
j=1 P (j) ∗Relevance(j)∑k

j=1Relevance(j)
,

where j is the position of the document, Relevance(j) de-
notes the relevance of the document in position j, and P (j) =∑j

i=1Relevance(i)/j. Typically, a binary value forRelevance(j)
is used by setting it to 1 if the document in position j has
a human judgment of Fair or better and 0 otherwise. The
mean average precision (MAP) of a query set is the mean of
the average precisions of all queries in the query set.

4.2 Intent Aware Measures
Classical IR metrics focus solely on the relevance of doc-

uments. Consider a query that belongs to two categories c1
and c2. Suppose P (q|c2)� P (q|c1), and we have two docu-
ments, d1 rated Excellent for c1 (but unrelated to c2), and
d2 rated Good for c2 (but unrelated to c1). All three metrics
above will assign a higher score to the ordering (d1, d2), yet
the “average” user will find the ordering (d2, d1) more useful.
Our generalization factors in the user intents.

4.2.1 NDCG-IA
In the classical NDCG computation, we compute the ratio

of the DCG value of a given ordering of results for a query
with the DCG value of the ideal ordering of the same results.
However, when a query may be of multiple intents, the ideal
is bound to be different depending on the intents the results
are evaluated against. Given a distribution on the categories
for a query P (c|q) and an category label on each document,
we can compute the expected NDCG for a given ordering
of results. For each intent of the query, we treat any doc-
ument that does not match the intent as Bad and compute
its intent-dependent NDCG(Q, k|c). This is then aggregated
by averaging into NDCG-IA(Q, k). Formally,

NDCG-IA(Q, k) =
∑

c

P (c|q)NDCG(Q, k|c).

Note that NDCG-IA captures many of the same properties
that make NDCG useful for evaluating IR systems [10]. It
takes into account the degree of relevance of the documents
through r(j), and the importance of ordering through dis-
counting. When documents are all of single intent, to max-
imize NDCG-IA, these documents should be ordered in de-
creasing level of relevance relative to each intent. The main
difference is that NDCG-IA takes into account the distribu-
tion of intents, and forces a tradeoff between adding doc-
uments with higher relevance scores and those that cover
additional intents. It can be interpreted as what the “aver-
age” user will think of the NDCG of the given ordering of
the results. A drawback of NDCG-IA is that it may not lie
in [0, 1]. Rather, it is upper-bounded by some constant less
than 1 unless a single ordering is perfect for all intents. We
do not know of a way to determine this bound other than
exhaustive search.

We illustrate the computation of NDCG-IA@5 by rework-
ing the example from Section 3.7. The Results Ordering col-
umn in Table 3 shows the ordering produced by IA-Select.
We have additionally shown the judgment value for each



Table 3: Illustration of NDCG-IA@5 calculation
a1 a2

Pos Results Ordering Results Ideal Results Ideal
1 (d1,4) (d1,4) (d1,4) (d1,0) (d8,3)
2 (d8,3) (d8,0) (d2,4) (d8,3) (d9,2)
3 (d2,4) (d2,4) (d3,3) (d2,0) (d10,2)
4 (d9,2) (d9,0) (d4,2) (d9,2) (-,0)
5 (d10,2) (d10,0) (d5,2) (d10,2) (-,0)
6 (d3,3)
7 (d4,2)
8 (d5,2)
9 (d6,0)
10 (d7,0)

DCG@5 N/A 22.50 30.42 6.87 10.39
NDCG@5 N/A 0.7396 0.6612

NDCG-IA@5 N/A 0.7161

document in this column. Columns a1 and a2 show the
results and ideal orderings up to position 5 along with judg-
ment values. Note that the results ordering does not change,
but the judgment value for some of the documents changes
depending on the category of the query and the document.
In the Results column under a1, d8, d9, and d10 receive a 0
judgment value since they belong to c2. Similarly, in the Re-
sults column under a2, d1 and d2 receive 0 judgment scores.
At the bottom of the table, we show the resulting DCG
scores for each intent, followed by a row for the NDCG val-
ues. Finally, we show the NDCG-IA score below the com-
bined a1 and a2 column set. Recall from Section 3.7 that
P (c1|q) = 0.7 and P (c2|q) = 0.3. So the final calculation is:

NDCG-IA(Q, 5) = (0.7× 0.7396) + (0.3× 0.6612) = 0.7161

4.2.2 MRR-IA and MAP-IA
Using the same idea of averaging over user intent, we de-

fine intent aware MRR to be

MRR-IA(Q, k) =
∑

c

P (c|q)MRR(Q, k|c).

Similarly, intent aware MAP is defined to be

MAP-IA(Q, k) =
∑

c

P (c|q)MAP(Q, k|c).

5. EMPIRICAL EVALUATION
We evaluate our approach for result diversification against

three commercial search engines. To preserve anonymity, we
refer to these as Engines 1, 2, and 3.

We conduct three sets of experiments, differing in how the
distributions of intents and how the relevance of the docu-
ments are obtained. In the first set of experiments, we obtain
the distributions of intents for both queries and documents
via standard classifiers, and the relevance of documents from
a proprietary repository of human judgements that we have
been granted access to. This allows us to conduct a large-
scale study of how IA-Select performs compared to the
other engines, but the results must be taken with a grain
of salt as the input to IA-Select and the evaluation of the
metrics uses the same intent distributions.

In the second set of experiments, we obtain the distribu-
tions of intents for queries and the document relevance using
the Amazon Mechanical Turk platform (www.mturk.com).

This experiment is intended as a sanity check against the
results obtained in the first one, especially with respect to
bias introduced due to the sharing of intent distributions be-
tween IA-Select and the metrics. More specifically, while
IA-Select still uses the intent distribution from the classi-
fier aforementioned, the metrics are now evaluated with re-
spect to the distributions of intents and the relevance scores
obtained from the human subjects.

In the third set of experiments, we use a hybrid of data
sources for evaluation—the distribution of intents for queries
are from the Mechanical Turk platform, whereas document
relevance is from the repository used in the first experi-
ment. This allows us to focus on how the performance of
IA-Select depends on having the exact knowledge of the
query intent distribution.

In all of the experiments, intents are classified according to
the ODP taxonomy (www.dmoz.org). Documents are scored
for relevance on a 4-point scale as described in Section 4.
The results used in the evaluation of the commercial search
engines are based on the actual documents returned for the
queries issued. The results generated by IA-Select is based
on the following input: intent distribution obtained from a
query classifier; set of documents given by the top 50 re-
sults from one of the search engines; intent-specific quality
value given by the relevance score obtained from the same
search engine, multiplied by the probability that the docu-
ment belongs to the corresponding category determined by a
document classifier. The ordering generated by IA-Select
can be interpreted as an attempt to re-order the results from
that search engine to take into account diversification under
our problem formulation. One can also view the results as a
comparison between a version of IA-Select that is ignorant
of intents and one that takes into account intents.

For evaluation, we employ the three intent-aware metrics
explained in Section 4. An alternative is to conduct side-
by-side studies that try to capture user satisfaction more
directly. Our choice is dictated by the fact that side-by-side
comparisons are usually highly noisy and hence require large
sample sizes, and as a result limits the scope of our study.
On the other hand, the metrics we use can leverage human
judgments already present in the repository, and gives us
the flexibility to use different distribution of intents in our
evaluation.

In these studies, we have chosen to use proprietary datasets
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Figure 1: Distribution of categories (All experi-
ments).
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Figure 2: Distribution of human judgments (Exper-
iments 1 and 3).

as we could not find public-domain ones that have sufficient
data on query and document classification for training and
evaluation. We believe it will be worthwhile to develop such
datasets. Some of the TREC tracks (e.g. Novelty, Robust
Retrieval) might provide good starting points.

5.1 Experiment 1: Proprietary Dataset

5.1.1 Setup
In this experiment, we obtain access to a dataset with

10, 000 random queries with the associated top 50 docu-
ments returned from the three commercial search engines.
For many of these documents, especially the ones in the top
10 result of some search engine, they are assigned human
judgments as to their relevance to the query. As mentioned,
the queries and the documents are classified according to the
ODP taxonomy. Queries are classified using the algorithm
described in [1], whereas documents are classified using a
Rocchio classifier [11].

From this dataset, we sample about 900 queries condi-
tioned on (a) the query has been classified to at least two
categories, and (b) a significant fraction of associated docu-
ments have human judgments. The resulting distribution of
the number of categories per query is shown in Figure 1. Of
the documents from this sample, 85% of the documents have
human judgments. The distribution of judgments across all
documents is shown in Figure 2.

In evaluating the different approaches, results may contain
unjudged documents. This is very rare for results from the
commercial search engines (< 10%), but present a problem
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for IA-Select. To account for these documents, we sam-
pled their labels from the distribution presented in Figure 2,
the rationale being that these documents were not random
documents of unknown quality but the top results of one
of the search engines. Due to this sampling procedure, our
experiments are not deterministic. In our evaluation, we
sample labels five times and compute the mean results. All
reported results have non-overlapping 95% confidence inter-
vals, the exceptions being NDCG-IA@3 and NDCG-IA@5
results for Engines 2 and 3.

5.1.2 NDCG-IA Results
The results for NDCG-IA are shown in Figure 3. Results

produced by IA-Select have been labeled Diverse. Note
that the NDCG values are conventionally quoted by multi-
plying fractional values by 100 and achieving even one point
gain is considered difficult. We caution that the y-axis on
this and subsequent figures do not start at zero; we have
chosen the scale so as to provide sufficient resolution to dis-
tinguish among the performances of the four approaches.

The overall trend is clear. At all rank thresholds we evalu-
ated, the orderings produced by IA-Select are significantly
better than all three engines. Furthermore, as higher thresh-
olds are considered, the outperformance of IA-Select in-
creases. This widening of the outperformance margin as
rank increases can be explained by the fact that IA-Select
makes use of the extra search results to cover a wider range
of categories of the query.

5.1.3 MAP-IA and MRR-IA Results
The results for MAP-IA and MRR-IA are shown in Fig-

ures 4 and 5 respectively. IA-Select outperforms all three
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engines significantly under both metrics.
We observe that the precision scores for MAP-IA decrease

as the rank threshold increases for all engines including IA-
Select. This is due to additional relevant documents being
presented out of order in later positions. Note that if no
additional relevant documents were found past position 3,
MAP-IA@5 and MAP-IA@10 would be equal to MAP-IA@3.
This observation also holds for the classical MAP metric.

5.2 Experiment 2: Mechanical Turk Judgments
One cause of concern with Experiment 1 is that we have

used the same distribution of intents P (c|q) both as input
to IA-Select and for evaluation. Does the outperformance
of IA-Select rely entirely on this sharing of intents? To
address this concern, we conduct a second experiment in
which the distribution of intent used in computing NDCG-
IA value is different from the input to IA-Select. We use
the Amazon Mechanical Turk platform for obtaining human
judgments in this study.

5.2.1 Setup
We sample 200 queries from the dataset used in Experi-

ment 1 such that each query had at least three categories
associated with it. We submit these queries along with the
three most likely categories as estimated by the classifier to
the Turks, and the top five results produced by IA-Select
and one of the search engines in some random order. The
Turks are asked to first choose a category (out of the three)
they most closely associate with the given query. They then
judge the corresponding results with respect to the chosen
category using the same 4-point scale. They could label a
result as N/A when they could not conclude the relevance of
the document to the query. In such cases, we assigned bad

label to the document. They could also decide not to judge
a query if the query was out of their realm of expertise. For
each query, we obtain evaluations from seven Turks.1

Due to the use of the classifier in generating the candi-
date categories for the query in the tasks, one may worry
that the distribution of intents obtained in this study are
skewed towards the categories chosen by the classifier. To
mitigate this concern, one can ask the subjects to choose a
category from the ODP taxonomy, but we believe this will
place too large a cognitive burden and may even generate

1Some of the study parameters (e.g. number of Turks, num-
ber of categories per query, number of results per query,
number of search engines) were constrained by the various
factors such as the limitations imposed by the Mechanical
Turk platform, our desire to keep the instructions to the
Turks simple and concise, and the budget for the study.

Table 4: NDCG-IA values (Experiment 2)
NDCG-IA Search Engine Diverse

@1 .8629 .8798
@2 .8501 .8720
@3 .8577 .8676
@4 .8614 .8663
@5 .8603 .8690

Figure 6: Distribution of human judgments (Exper-
iment 2).

meaningless results. Note that given some queries belong to
four or more categories, this bias does not necessarily work
in our favor. Nonetheless, we flag this as a potential concern
in interpreting the results that followed.

5.2.2 Results
We found that different Turks selected different categories

for more than 70% of the queries. We used this data to
estimate P (c|q) values when computing NDCG-IA metric.
Note that the P (c|q) used by IA-Select to diversify results
was the same as used in Experiment 1 (obtained using the
algorithm described in [1]).

Table 4 summarizes the results. The ordering produced by
IA-Select (column titled Diverse) yields a better NDCG-
IA score than the ordering produced by the search engine at
all rank thresholds. The gap at threshold 1 suggests that the
search engine did not place the document from the dominant
query category at position 1. The widening of the gap at
threshold 2 is quite interesting. We believe this is because
search engines often show two documents from the same
host in the first two positions, albeit they indent the second
document. This does exactly the opposite of diversification.
For queries with multiple intents, Turks often did not like
such second documents.

We also observe that the NDCG scores in Table 4 are
much higher compared to those in Figure 3. To understand
this, we chart the distribution of judgments from this ex-
periment in Figure 6. We can see that judgment scores are
significantly higher for the documents considered in this ex-
periment compared to the original distribution in Figure 2.

5.3 Experiment 3: Hybrid Evaluation
Having obtained P (c|q) values from the user study re-

ported in Experiment 2, we examined the impact of using
them for the purposes of computing the performance met-
rics. Note that the P (c|q) used by IA-Select to diversify
results continued to be the same as used in Experiment 1.
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We thus now have a P (c|q) for computing the performance
of IA-Select which is different from the one it uses for
diversifying results.

Figure 7 shows the results. We include the results only
for the NDCG-IA metric; the trends are similar for the
other two metrics. We use only those queries for which we
could obtain P (c|q) values from the user study. We observe
that IA-Select again outperforms the three search engines,
showing the importance of diversifying search results from
the point of view of users.

It is tempting to compare Figure 7 with Figure 3. How-
ever, several cautions are in order. First, Figure 7 includes
computation for queries that are a subset of those used for
computing Figure 3. They are the ones that had at least
three intents. Furthermore, we retained only top three in-
tents for each query when we obtained user judgments.

Subject to above caveats, we can analyze why the NDCG-
IA values are relatively lower in Figure 7. We are penalizing
the scores of those queries that might have had more than
three intents. Additionally, the NDCG-IA values for IA-
Select are expected to be lower due to mismatch between
the estimates for P (c|q) obtained from two different sources.
IA-Select still emerges as the winner.

6. CONCLUSIONS
We studied the question of how best to diversify results in

the presence of ambiguous queries. This is a problem that
most search engines face as users often underspecify their
true information needs. We took into consideration both
the relevance of the documents and the diversity of search
results and presented an objective that directly optimizes
for the two. We provided a greedy algorithm for the objec-
tive with good approximation guarantees. To evaluate the
effectiveness of our approach, we proposed generalizations of
well-studied metrics to take into account of the intentions of
the users. Over a large set of experiments, we demonstrated
that our approach consistently outperforms results produced
by commercial search engines over all of the metrics.

The objective in Diversify can be viewed as a conser-
vative metric that aims to maximize the probability that
the average user will find some useful information among
the search results. There are other reasonable objectives as
well. For example, when users are looking for opinions on a
product, a set of results is useful only when there are mul-
tiple results regarding the product. The objective function
will need to be changed accordingly to take this into ac-

count. Another natural objective would be to minimize the
expected rank at which the average user will find useful in-
formation. This is an important objective as the document
ordering is known to have a huge impact on users’ percep-
tion of how useful the results are. We plan to explore these
alternatives in the future.

The true test of the performance of search engines is their
ability to satisfy their users. Conventional metrics fail to
accurately reflect the performance of different algorithms as
they tend to ignore the presence of ambiguity in queries.
We have taken a first step in addressing this shortcoming by
introducing intent-aware metrics. We believe further work is
necessary in designing new metrics that are more reflective
of user satisfaction in their interaction with a search engine.
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APPENDIX
A. PROOFS FOR SECTION 3

Lemma 1. Diversify(k) is NP-hard.

Proof. This follows from a reduction from Max Cov-
erage, a NP -hard problem related to Set Cover [9]. In
the Max Coverage problem, one is given a universe of el-
ements U , a collection C of subsets of U , and an integer k.
The objective is to find a set of subsets S ⊆ C, |S| ≤ k, to
maximize the number of covered elements.

Given an instance of the Max Coverage problem, we
map U to the set of categories C. The collection of subsets
C is mapped to the set of documents D, where if C ∈ C
contains elements {u1, u2, . . . , uk}, the corresponding doc-
ument d ∈ D can satisfy categories {c1, c2, . . . , ck}, i.e.,
V (d|q, ci) = 1 for c1 through ck. One can easily verify that
the optimal solution to Diversify(k) is optimal for Max
Coverage. In fact, Diversify(k) is a soft generalization
of Max Coverage, in the sense that the documents can
partially satisfy a category.

Lemma 2. P (S|q) is a submodular function.

Proof. Intuitively, the function is submodular because
a larger set of documents would have already satisfied more
users, and therefore the incremental gain for an additional
document is smaller. Let us now capture the intuition math-
ematically. Let S, T be two arbitrary sets of documents re-
lated by S ⊆ T . Let e be a document not in T . Denote
S ∪ {e} by S′ and similarly T ∪ {e} by T ′.

P (S′|q)− P (S|q)

=
∑

c

P (c|q)
(

(1−
∏

d∈S′

(1− V (d|q, c)))− (1−
∏
d∈S

(1− V (d|q, c)))
)

=
∑

c

P (c|q)
(∏

d∈S

(1− V (d|q, c))−
∏

d∈S′

(1− V (d|q, c))
)

=
∑

c

P (c|q)
(∏

d∈S

(1− V (d|q, c))
)
V (e|q, c)

Similarly, we can establish that

P (T ′|q)−P (T |q) =
∑

c

P (c|q)
( ∏

d∈T

(1−V (d|q, c))
)
V (e|q, c).

However, note that for all c,∏
d∈T

(1− V (d|q, c)) ≤
∏
d∈C

(1− V (d|q, c)).

Therefore, we conclude that

P (S′|q)− P (S|q) ≥ P (T ′|q)− P (T |q)

as desired, i.e., the function P (S|q) is submodular.

Theorem 1. IA-Select is optimal when |C(d)| = 1 for
all d ∈ R(q).

Proof. First, note that if each document can only be of
only one category, i.e., |C(d)| = 1, g(d|q, c, S) is solely deter-
mined by U(C(d)|q, S)V (d|q, C(d)). Therefore, for a given
category c, the ordering of the documents R(q) with respect
to g(d|q, c, S) is the same for all S. For a set of documents S,
by replacing the documents in each category with the ones
with the highest V (d|q, c), P (S|q) can only improve. Let us
call this local improvement. Note that the results returned
by IA-Select cannot be locally improved, since it selects
only the documents with the highest V (d|q, c) in each cate-
gory. Suppose contrary to our claim, there exists a solution
T that is strictly better the result S returned by that IA-
Select. We can first carry out locally improvements of T as
specified. If S and T has the same number of documents in
a category, then these documents must be identical. There-
fore, for T to be better, it must include different number of
documents for some categories.

Given that |S| = |T |, if T has more results than S in
category c1, then there must be some other category c2 for
which S has more results. Consider the worst document, d1,
that T returned for category c1, and the best document, d2,
that S returned for category c2 that T does not include. Let
S′ = S \ {d2} and T ′ = T \ {d1}.

Since the algorithm is greedy, the marginal benefit of
adding d2 to S′ must be as high as that of adding d1, or
d1 would have been chosen instead of d2. By submodular-
ity, compared to S′, the marginal benefit of adding d2 can
only be higher for T ′, since T ′ has only a subset of docu-
ments in category c2, and the marginal benefit for adding
d1 can only be lower, since T ′ has a superset of documents
in category c1. Therefore,

P (T ′ ∪ {d2}|q)− P (T ′|q) ≥ P (S′ ∪ {d2}|q)− P (S′|q)
≥ P (S′ ∪ {d1}|q)− P (S′|q)
≥ P (T ′ ∪ {d1}|q)− P (T ′|q)

Hence, P (T ′ ∪ {d2}|q) ≥ P (T ′ ∪ {d1}|q) = P (T |q). Note
that (T ′ ∪ {d2}) is more similar to set S than T was, i.e.,
|S ∩ T | < |S ∩ (T ′ ∪ {d2})|. By repeating this argument,
we eventually obtain a chain of inequalities that lead to S,
which yields P (S|q) ≥ P (T |q), contradicting the supposition
that T is better.


