Intro to graphs

Minimum Spanning Trees



Graphs

® nodes/vertices and edges between vertices
— set V for vertices, set E for edges

— we write graph G = (VE)

@® example : cities on a map (nodes) and roads (edges)
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Adjacency matrix

® g; =l if there is an edge from vertex i to vertex |

@ if graph is undirected, edges go both ways, and the
ad). matrix is symmetric

1 2 3 4 5
oo 110 1T 0 0 1
"o 211 0 1 1 1
310 1 0 1 O
9 o 40 1 1 0 1
501 1.0 1 0
® if the graph is directed, the adj. matrix is not
necessarily symmetric 1 2 3 4 5 6
170 1 01 0 O
2,0 0 0010
c o o 30 0 0 0 1 1
4/0 1 0 0 0 O
5)0 0 01 0 O
o e —> 60 0 0 0 0 1




Adjacency lists
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® linked list marks all edges starting off a given vertex
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paths and cycles

@ path: a sequence of vertices (vi,v2,vs,...Vk) such that
all (vi,viz1) are edges in the graph
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@® edges can form a cycle = a path that ends in the
same vertex it starfed

® paths and cycles are defined for both directed and
undirected graphs
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Traverse/search graphs : BFS

® BFS = breadth-first search.

@® Start in a given vertex s, find all reachable vertices
from s

— proceed in waves

— computes d[v] = number of edges from s to v. If v not reachable
from s, we have d[v] = co.
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BFS

@® use a queue to store processed vertices

— for each vertex in the queue, follow adj matrix to get vertices of
the next wave

» BFS(V,E,s)
» for each vertex v#s, set d[v]=®

> init queue Q; enqueue (Q,s) //puts s in the queue
P while Q not empty

» u = dequeue (S) // takes the first elem available from the queue
P for each vertex v € Adj[u]

1f (d[v]==e«) then
» d[v]=d[u]+1

» Enqueue (Q, V)
end 1f

» end for

» end while

@® Running time O(V+E), since each edge and vertex is
considered once.



Traverse/search graphs : DFS

@® DFS = depth-first search

— once a vertex is discovered, proceed fo its adj vertices, or
“children”(depth) rather than to its “brothers” (breadth

»  DFS-wrapper (V, E)

» foreach vertex ueV {color[u] = white} end for //color all nodes white
r foreach vertex ueVv

> 1f (color[u]==white) then DFS-Visit (u)

end for

r  DEFS-Visit (u) //recursive function

» color[u] = gray; //gray means “exploring from this node”

>  timet+; discover time[u] = time;//discover time

T for each v € Adj[u]

» 1if (color([v]==white) then DFS-Visit (v) //explore from u

end for

» color Jul = black; finish timelul=time; //finish time

























































DFS edge classification

@ "tree’ edge : from vertices gray to white
— a tree edge advances the graph exploration/traversal

® "back” edge : from vertices gray to gray
— a back edge points to a cycle within the current exploration nodes

@ “forward” edge : from vertices a(gray) to b(black), if
a discovered first

— discovery_time[a] < discovery_time[b]

— points to a different part of the tree, already explored from a
® 'cross’ edge : from vertices a(gray) fo b(black), if b

discovered first

— discovery_timel[a] > discovery__time[b]

— points to a different part of the tree, explored before discovering a



Checkpoint

@® on the animated example, label each edge as
“tree”,"back”, "cross’, or "forward"

® do the same on the following example (DFS discovery
and finish times marked for each node)

1 ]16
2 7 8 | 11 12 | 15
-—
3 { 6( 9 |10 13 ] 14




Checkpoint

® almost same example, with a small modification: one
edge was reverse




DFS observations

® Running time O(V+E), same as BFS

® vertex v is gray between times discover[v] and finish[v]

® gray time intervals (discover(v], finish[v]) are inclusive of
each other

— (d[v], f[v]) can include (d[u], f[u]) : d[v] < d[u] < f[u] <F[V]

dlv] d‘u] flul flvl time

- (d[v], flv]) can separate from (d[u], flu]) : d[v] < f[v] < d[u] <f[u]

i[v] fIv] d[i] flul  time

— (d[v], f[v]) cannot intersect (d[u], flu]) : d(v) < d(u) < f[v] <f[u]
i[v] d‘u] flv] flul  time

® graph G=(VE) is acyclic (does not have cycles) if DFS does
not find any "back™ edge



Undirected graphs cycles

® graph G=(V|E) is acyclic (does not have cycles) if DFS
oes not find any "back” edge

@ since G is undirected, no cycles implies |El<|VI-1

@ running DFS, if we find more than |V|-1 edges, there
must be a cycle

@® Undirected graphs: find-cycles algorithm takes O(V)



Directed graphs cycles

® graph G=(VE) is acyclic (does not have cycles) if DFS
oes not find any "back™ edge

@ for directed graphs, even without cycles they can
have more edges, [E| > |[V|-1

® algorithm fo determine cycles: run DFS, look for back
edges - O(V+E) time

® DAG = directed acyclic graph



Topological sort

@® DAG admits topological sort: all vertices “sorted” on a line, such that all edges point from
left to right-no cycles - 2 graphs below are the same-

® to do this: algorithm: run DFS, time O(V+E). Output vertices in reverse order given by
finishing time

11/16 @ndershorts 17/18

(ndershors shoes Ghir) Tbel)

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4




Check Point

@® how can we use DFS to defermine if there is a path
fromutov?

@ prove that by sorting vertices in the reverse order
of finishing times, we obtained a topological sort

— assuming no cycles

— in other words, all edges point in the same direction



Strongly connected components

® SCC = a set of vertices ScV, such that for any two (u,v)eS, graph G contains
a path u-v and a path v-u

@ trivial for undirected graphs

= all connected vertices are in fact strongly connected
@ tricky for directed graphs

® graph below has the DFS discover/finish times and marked 4 strongly
connected components; "tree” edges highlighted

® between two SCC, A and B, there cannot exists paths both ways (A>u-veB
and Bav'.u'eA)

= paths both ways would make A and B a single SCC




Strongly connected components

® run Ist DFS on G to get finishing times f[u]

® run 2nd DFS on G-reversed (all edges reversed -see
picture), each DFS-visit in reverse order of f[u]

— finishing times marked in red for the DFS-visit root vertices

® output each tree (vertices reached) obtained by 2nd

DFS as an SCC
b C d
@b~ @@l




Strongly connected components

® why 2nd DFS produces precisely the SCC -s?

@® SCC-graph of G: collapse all SCC info one SCC-vertex, keep edges
between the SCC-vertices

@® - SCC graph is a DAG;

— contradiction argument: a cycle on the SCC-graph would immediately collapse the
cycles SCC-s into one SCC

@ reversed edges (shown in red); reversed-SCC-graph also a DAG

@ second DFS runs on reversed-edges (red); once it starts at a high-
finish-time (like 16) it can only go through vertices in the same
SCC (like abe)




Minimum Spanning Trees
Lesson 2



Spanning Trees

@ context : undirected graphs

® a set of edges A that “span” or "touch” all vertices,
and forms no cycles

— necessary this set of edges A has size = |V|-1

@® spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

O
0:‘:3@
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Spanning Trees

@ context : undirected graphs

® a set of edges A that “span” or "touch” all vertices,
and forms no cycles

— necessary this set of edges A has size = |V|-1

@® spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

A spanning tree
Another spanning tree




Minimum Spanning Tree (MST)

@ context : undirected graph, edges have weights

— edge (u,v)eE has weight w(u,v)

@® MST is a spanning tree of minimum total weight (of
its edges)

— must span all vertices
— exactly |V|-1 edges

— sum of edges weight be minimum among spanning frees




Growing Minimum Spanning Trees

® 'safe edge”’ (u,v) for a given set of edges A: there is a MST
that uses A and (u,v)

— that MST may not be unique

® GENERIC-MST (G)

® A = set of tree edges, i1nitially empty
? while A does not form a spanning tree

— find edge (u,v) that i1s safe for A
— add (u,v) to A

® end while

@® how to find a safe edge to a given set of edges A?
— Prim algorithm
— Kruskal algorithm



Cuts in the graph

@ "cut” is a partition of vertices in two sets : V=S u V.S

® an edge (u,v) crosses the cut (SV-S) if u and v are on
different partitions (one in S the other in V-S)

® cut (S, V-S) respects set of edges A if A has no cross edge

® "min weight cross edge” is a cross edge for the cut;, having
minimum weight across all cross edges

@® Cuf Theorem : if A is a set of edges part of some MST, and
(SV-S)a cut respecting A, then a min-weight cross edge is
“safe” for A (can be added to A towards an MST)

A=({ab, ic, cf, hg, fg}
cut : S={a,b,d,e} V-S={h,i,c.gf} respects A
safe crossing edge : cd, weight(cd)=7




Prim algorithm

@® grows a single tree A, S = set of vertices in the tree

— as opposed to a forest of smaller disconnected trees

® add a safe edge at a time

— connecting one more node to the current tree
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Prim algorithm

® add another(next) safe edge

— connecting one more node to the current tree
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Prim algorithm

® add another(next) safe edge

— connecting one more node to the current tree

@ define cut (SV-S), which respects A. Using the cut

theorem, the min-weight edge across the cut is the
next edge added to A

— edge hg in the picture is added to A, vertex h added to the tree




Prim MST algorithm

@ Prim simple 1
2

— but implementation a bit tricky 3

4

® Running Time depends on 5
implementation of Extract- ¢
Min from the Queue .

— best theoretical implementation 2
uses Fibonacci Heaps 10

11

MST-PRIM(G, w, r)

also the most complicated

only makes a practical difference
for very large graphs

foreachu € G.V
u.key = oo
u.m = NIL
r.key = 0
0 =GV
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Qandw(u,v) <v.key
V.TT = U
v.key = w(u,v)



Kruskal MST algorithm

® Grows a forest of trees Forrest = (VA)

— eventually all connected info a MST

— initially each vertex is a tree with no edges, and A is empty
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Kruskal MST algorithm

® Grows a forest of trees Forrest = (VA)

— eventually all connected info a MST

— initially each vertex is a tree with no edges, and A is empty

® each edge added connects two trees (or components)

— find the minimum weight edge (u,v) across two components, say
connecting trees T1sv and T2>u (edges between nodes of the same

trees are no good because they form cycles) (blue in the picture)
— define cut (SV-S); S = vertices of Tl (in red). This cut respects set A

— edge (u,v) is the minimum cross edge, thus a safe edge to add to A. Tl
and T2 are conne‘c’red now into one tree




Kruskal algorithm

MST-KRUSKAL(G, w)

1 A=20

2 for each vertex v € G.V

3 MAKE-SET (V)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) € G.E, taken in nondecreasing order by weight
6

7

8

9

if FIND-SET(#) # FIND-SET(v)
A=AU{(u,v)}
UNION(u, v)
return A

@ Kruskal is simple

@ implementation and running time depend on FIND-
SET and UNION operations on the disjoint-set forest.

— chapter 21 in the book, optional material for this course

@® running time O(E logV)



MST algorithm comparison

® if you know graph density (edges to vertices)

Prim Prim w/ Prim w/
Kruskal with array binomial Fibonacci in practice
implement. heap heap
h Kruskal, or
SParse 8taplll - 5 (viogV) oV O(VlogV) | O(ViogV) |Prim+binom
E=0O(V) heap
den_se graph o oV oWV oV Prim with
E= array
e ey Prim with
E=O(ViogV) O(Vlog OV O(Vlog O(VlogV) | Fib heap, if

graph is large




