
CS6200: Information Retrieval
Slides by: Jesse Anderton

Crawling - part II

CS6200: Information Retrieval
Slides by: Jesse Anderton

Coverage
Good coverage is obtained by carefully selecting seed URLs and
using a good page selection policy to decide what to crawl next.

Breadth-first search is adequate when you have simple needs, but
many techniques outperform it. It particularly helps to have an existing
index from a previous crawl.

The Internet is too large and changes
too rapidly for any crawler to be able
to crawl and index it all. Instead, a
crawler should focus on strategic
crawling to balance coverage and
freshness.

A crawler should prioritize crawling
high-quality content to better answer
user queries. The Internet contains a
lot of spam, redundant information,
and pages which aren’t likely to be
relevant to users’ information needs.

Coverage Goals

Basic Crawler Algorithm

A selection policy is an algorithm used to select the next page to crawl. Standard
approaches include:

• Breadth-first search: This distributes requests across domains relatively well and
tends to download high-PageRank pages early.

• Backlink count: Prioritize pages with more in-links from already-crawled pages.

• Larger sites first: Prioritize pages on domains with many pages in the frontier.

• Partial PageRank: Approximate PageRank scores are calculated based on
already-crawled pages.

There are also approaches which estimate page quality based on a prior crawl.

Selection Policies

Baeza-Yates et al compare these approaches
to find out which fraction of high quality pages
in a collection is crawled by each strategy at
various points in a crawl.

Breadth-first search does relatively poorly.
Larger sites first is among the best
approaches, along with “historical”
approaches which take PageRank scores from
a prior crawl into account.

OPIC, a fast approximation to PageRank which
can be calculated on the fly, is another good
choice. The “omniscient” baseline always
fetches the highest PR page in the frontier.

Comparing Approaches

Ricardo Baeza-Yates, Carlos Castillo, Mauricio Marin, and Andrea Rodriguez. 2005. Crawling
a country: better strategies than breadth-first for web page ordering.

It’s important to choose the right sites
to initialize your frontier. A simple
baseline approach is to start with the
sites in an Internet directory, such as
http://www.dmoz.org.

In general, good hubs tend to lead to
many high-quality web pages. These
hubs can be identified with a careful
analysis of a prior crawl.

Obtaining Seed URLs

http://www.dmoz.org

http://www.dmoz.org

Despite these techniques, a substantial fraction of web pages remains uncrawled and
unindexed by search engines. These pages are known as “the deep web.”

These pages are missed for many reasons.

• Dynamically-generated pages, such as pages that make heavy use of AJAX, rely on
web browser behavior and are missed by a straightforward crawl.

• Many pages reside on private web sites and are protected by passwords.

• Some pages are intentionally hidden, using robots.txt or more sophisticated approaches
such as “darknet” software.

Special crawling and indexing techniques are used to attempt to index this content, such
as rendering pages in a browser during the crawl.

The Deep Web

CS6200: Information Retrieval
Slides by: Jesse Anderton

Freshness
The web is constantly changing, and re-crawling the latest changes
quickly can be challenging.

It turns out that aggressively re-crawling as soon as a page changes is
sometimes the wrong approach: it’s better to use a cost function
associated with the expected age of the content, and tolerate a small
delay between re-crawls.

The web is constantly changing as content is added, deleted, and
modified. In order for a crawler to reflect the web as users will
encounter it, it needs to recrawl content soon after it changes.

This need for freshness is key to providing a good search engine
experience. For instance, when breaking news develops, users will
rely on your search engine to stay updated.

It’s also important to refresh less time-sensitive documents so the
results list doesn’t contain spurious links to deleted or modified data.

Page Freshness

A crawler can determine whether a
page has changed by making an
HTTP HEAD request.

The response provides the HTTP
status code and headers, but not the
document body. The headers include
information about when the content
was last updated.

However, it’s not feasible to constantly
send HEAD requests, so this isn’t an
adequate strategy for freshness.

HTTP HEAD Requests
Request

Response

It turns out that optimizing to minimize
freshness is a poor strategy: it can
lead the crawler to ignore important
sites.

Instead, it’s better to re-crawl pages
when the age of the last crawled
version exceeds some limit. The age
of a page is the elapsed time since
the first update after the most recent
crawl.

Freshness vs. Age

Freshness is binary, age is continuous.

The expected age of a page t days after it was crawled depends on its
update probability:

!

On average, page updates follow a Poisson distribution – the time until
the next update is governed by an exponential distribution. This makes
the expected age:

Expected Page Age

CIG(ɐ, V) =

� V

�
2(TEKI GLERKIH EX XMQI Z)(V � Z)FZ

CIG(ɐ, V) =

� V

�
ɐG�ɐZ(V � Z)FZ

The cost of not re-crawling a page grows exponentially in the time
since the last crawl. For instance, with page update frequency λ = 1/7
days:

Cost of Not Re-crawling

Days Elapsed

Ex
pe

ct
ed

 A
ge

The opposing needs of Freshness and Coverage need to be balanced
in the scoring function used to select the next page to crawl.

Finding an optimal balance is still an open question. Fairly recent
studies have shown that even large name-brand search engines only
do a modest job at finding the most recent content.

However, a reasonable approach is to include a term in the page
priority function for the expected age of the page content. For
important domains, you can track the site-wide update frequency λ.

Freshness vs. Coverage

CS6200: Information Retrieval
Slides by: Jesse Anderton

Pitfalls of Crawling
A breadth-first search implementation of crawling is not sufficient for
coverage, freshness, spam avoidance, or other needs of a real
crawler.

Scaling the crawler up takes careful engineering, and often detailed
systems knowledge of the hardware architecture you’re developing for.

A commercial crawler should support thousands of HTTP requests per second. If the
crawler is distributed, that applies for each node. Achieving this requires careful
engineering of each component.

• DNS resolution can quickly become a bottleneck, particularly because sites often
have URLs with many subdomains at a single IP address.

• The frontier can grow extremely rapidly – hundreds of thousands of URLs per second
are not uncommon. Managing the filtering and prioritization of URLs is a challenge.

• Spam and malicious web sites must be addressed, lest they overwhelm the frontier
and waste your crawling resources. For instance, some sites respond to crawlers by
intentionally adding seconds of latency to each HTTP response. Other sites respond
with data crafted to confuse, crash, or mislead a crawler.

Crawling at Scale

Lee et al’s DRUM algorithm gives a sense of
the requirements of large scale de-duplication.

It manages a collection of tuples of keys
(hashed URLs), values (arbitrary data, such as
quality scores), and aux data (URLs). It
supports the following operations:

• check – Does a key exist? If so, fetch its
value.

• update – Merge new tuples into the
repository.

• check+update – Check and update in a
single pass.

Duplicate URL Detection at Scale

Data flow for DRUM: A tiered system of!
buffers in RAM and on disk is used to!

support large-scale operations.

DRUM is used a storage for the IRLBot
crawler. A new URL passes through the
following steps.

1. The URLSeen DRUM checks whether the
URL has already been fetched.

2. If not, two budget checks filter out spam
links (discussed next).

3. Next, we check whether the URL passes
its robots.txt. If necessary, we fetch
robots.txt from the server.

4. Finally, the URL is passed to the queue to
be crawled by the next available thread.

IRLBot Operation
IRLBot Architecture

1. Uniqueness check

2. Spam check

3. robots.txt check4. Sent to crawlers

The web is full of link farms and other forms of link spam, generally posted by
people trying to manipulate page quality measures such as PageRank.

These links waste a crawler’s resources, and detecting and avoiding them is
important for correct page quality calculations.

One way to mitigate this, implemented in IRLBot, is based on the observation
that spam servers tend to have very large numbers of pages linking to each
other.

They assign a budget to each domain based on the number of in-links from
other domains. The crawler de-prioritizes links from domains which have
exceeded their budget, so link-filled spam domains are largely ignored.

Link Spam

A spider trap is a collection of web
pages which, intentionally or not,
provide an infinite space of URLs to
crawl.

Some site administrators place spider
traps on their sites in order to trap or
crash spambots, or defend against
malicious bandwidth-consuming
scripts.

A common example of a benign spider
trap is a calendar which links
continually to the next year.

Spider Traps

A benign spider trap on!
 http://www.timeanddate.com

http://www.timeanddate.com

The first defense against spider traps
is to have a good politeness policy,
and always follow it.

• By avoiding frequent requests to the
same domain, you reduce the
possible damage a trap can do.

• Most sites with spider traps provide
instructions for avoiding them in
robots.txt.

Avoiding Spider Traps
[...]
User-agent: *
Disallow: /createshort.html
Disallow: /scripts/savecustom.php
Disallow: /scripts/wquery.php
Disallow: /scripts/tzq.php
Disallow: /scripts/savepersonal.php
Disallow: /information/mk/
Disallow: /information/feedback-save.php
Disallow: /information/feedback.html?
Disallow: /gfx/stock/
Disallow: /bm/
Disallow: /eclipse/in/*?iso
Disallow: /custom/save.php
Disallow: /calendar//index.html
Disallow: /calendar//monthly.html
Disallow: /calendar//custom.html
Disallow: /counters//newyeara.html
Disallow: /counters//worldfirst.html
[...]

From http://www.timeanddate.com/robots.txt

CS6200: Information Retrieval
Slides by: Jesse Anderton

Storing Crawled Content
We need to normalize and store the contents of web documents so they
can be indexed, so snippets can be generated, and so on.

Online documents have many formats and encoding schemes. There are
hundreds of character encoding systems we haven’t mentioned here.

A good document storage system should support efficient random
access for lookups, updates, and content retrieval. Often, a distributed
storage system like Big Table is used.

Downloaded page content generally
needs to be converted into a stream of
tokens before it can be indexed.

Content arrives in hundreds of
incompatible formats: Word documents,
PowerPoint, RTF, OTF, PDF, etc.
Conversion tools are generally used to
transform them into HTML or XML.

Depending on your needs, the crawler
may store the raw document content
and/or normalized content output from a
converter.

Content Conversion
PDF RTFHTML

HTML HTML

Document Repository

Crawled content will be represented
with many different character
encodings, which can easily confuse
text processors.

A character encoding is a map from
bits in a file to glyphs on a screen. In
English, the basic encoding is ASCII.

ASCII uses 8 bits: 7 bits to represent
128 letters, numbers, punctuation, and
control characters and an extra bit for
padding.

Character Encodings

Image courtesy Wikipedia

The various Unicode encodings were
invented to support a broader range of
characters. Unicode is a single mapping
from numbers to glyphs, with various
encoding schemes of different sizes.

• UTF-8 uses one byte for ASCII
characters, and more bytes for
extended characters. It’s often
preferred for file storage.

• UTF-32 uses four bytes for every
character, and is more convenient for
use in memory.

Unicode

ASCII UTF-8 UTF-32

A 0x41 0x41 0x00000041

& 0x26 0x26 0x00000026

π N/A 0xCF 0x80 0x000003C0

! N/A 0xF0 0x9F
0x91 0x8D 0x0001F44D

UTF-8 uses a variable-length encoding
scheme.

If the most significant (leftmost) bit of a
given byte is set, the character takes
another byte.

The first 128 numbers are the same as
ASCII, so any ASCII document could be
said to (retroactively) use UTF-8.

UTF-8 is designed to minimize disk space
for documents in many languages, but
UTF-32 is faster to decode and easier to
use in memory.

UTF-8

UTF-8 Encoding Scheme

What do we need from our document repository?

• Fast random access – need to store and obtain documents by their URLs (or a hash of
the URL)

• Fast document updates – need to associate and update metadata with documents,
and replace (or append to) records when documents are re-crawled

• Compressed storage – greatly reduces storage needs, and minimizes disk reads for
access

• Large file storage – multiple documents are stored in a single large file to reduce
filesystem overhead

Most companies use custom storage systems, or distributed systems like Big Table.

Document Repositories

Placing millions or billions of web
pages in individual files results in
substantial filesystem overhead for
opening, writing, and finding files.

It’s important to store many files into
larger files, generally with an indexing
scheme to give fast random access.

A simple index might store a B-tree
mapping document URL hash values
to the byte offset to the document
contents in the file.

Large File Storage
TREC Web Format

CS6200: Information Retrieval
Slides by: Jesse Anderton

Vertical Search
Vertical Search depends on crawling a collection on the topic of
interest.

General search engines also use topical crawlers to improve their
coverage for key topics.

The main trick to topical crawling is finding topical pages which are
only reachable by exploring off-topic pages through careful risk-taking.

Vertical Search engines focus on a
particular domain of information.

The primary difference between
vertical and general search engines is
the set of documents they crawl.
Vertical Search engines typically use
what are known as topical crawlers.

Vertical Search

CiteSeer, Vertical Search for Research

Topical Crawlers focus on documents
related to a particular topic of interest.

These crawlers are useful for improving
the collection quality of general search
engines, too. Many search engines use
a variety of topical crawlers to
supplement their primary crawler.

A basic approach uses a topical set of
seed URLs and text classifiers to
decide whether links appear to be on
topic.

Topical Crawlers

Basic Topical Crawler

Text classification is a Machine
Learning task that we’ll see later in the
course.

The idea is to use properties of the
URL, anchor text, and document to
predict whether the URL links to a
page on the topic of interest.

For example, we could use a unigram
language model trained on anchor
text for topical links.

Text Classifiers
Classification with Language Models!

1. Collect anchor text for links to topical
and non-topical pages.

2. Train a unigram language model by
producing smoothed probability
estimates of topicality for each term.

3. Classify new links using the odds ratio
from training data for some threshold λ:

!
�

Y�VGZV

2T(Y|VQRKE = �)
2T(Y|VQRKE = �)

?
> ɐ

More sophisticated topical crawlers
use machine learning techniques to
balance the tradeoff between
exploring new territory and exploiting
links which are probably high-quality.

• Exploit-only strategies may miss
high quality pages which aren’t
tightly linked to the seed set.

• Explore-only strategies will ignore
high-quality pages we can easily
find.

Explore vs. Exploit Tradeoff
Seed Good

Bad

Good

Good

Bad

Bad

Good

Bad

Sometimes bad links must be explored to find good links

There are many ways to balance exploration and exploitation, and this topic is
actively researched for many applications. Here are some simple ways for this task.

• Adjust the classification threshold to manage your risk threshold.

• Flip a biased coin to decide whether to visit a page which doesn’t seem
promising.

• If using a document quality score such as PageRank, explore for a while without
updating quality scores. Links on crawled pages won’t be taken into account, so
scores will be somewhat inaccurate and you will explore more.

There are more sophisticated approaches if maximizing performance is important.

Careful Exploration

CS6200: Information Retrieval
Slides by: Jesse Anderton

Crawling Structured Data
In addition to the obvious content for human readers, the web contains
a great deal of structured content for use in automated systems.

• Document feeds are an important way to manage freshness at some
of the most frequently-updated web sites.

• Much of the structured data owned by various web entities is
published in a structured format. This can provide signals for
relevance, and can also aid in reconstructing structured databases.

In addition to unstructured document contents, a great deal of
structured data exists on the web. We’ll focus here on two types:

• Document feeds, which sites use to announce their new content

• Content metadata, used by web authors to publish structured
properties of objects on their site

Structured Web Data

Sites which post articles, such as blogs or
news sites, typically offer a listing of their
new content in the form of a document
feed.

Several common feed formats exist. One of
the most popular is RSS, which stands for
(take your pick):

• Rich Site Summary

• Really Simple Syndication

• RDF Site Summary

• …?

Document Feeds

http://www.cnn.com/services/rss/

RSS is an XML format for document
listings.

RSS files are obtained just like web
pages, with HTTP GET requests.

The ttl field provides an amount of
time (in minutes) that the contents
should be cached.

RSS feeds are very useful for
efficiently managing freshness of news
and blog content.

RSS Format

RSS Example

Many web pages are generated from
structured data in databases, which
can be useful for search engines and
other crawled document collections.

Several schemas exist for web authors
to publish their structured data for
these tools.

The WHATWG web specification
working group has produced several
standard formats for this data, such as
microdata embedded in HTML.

Structured Data

Source: http://en.wikipedia.org/wiki/Microdata_(HTML)

http://en.wikipedia.org/wiki/Microdata_(HTML)

The main web ontology is published at
schema.org. These schemas are used
to annotate web pages for automated
information extraction tools.

As the published information is not
necessarily authoritative, the data
needs to be carefully validated for
quality and spam removal.

Web Ontologies
Popular schema.org entities

http://schema.org
http://schema.org

CS6200: Information Retrieval
Slides by: Jesse Anderton

Crawling - Wrap Up

A good crawler will balance several factors:

• Coverage: Pages should be selected to maximize the number of distinct
high-quality pages.

• Freshness: Pages which have been updated should be re-crawled soon.

• Performance: Each machine should crawl thousands of pages per
second.

• Politeness: Requests to the same domain are infrequent, and site
owners’ requested crawler policies are respected.

Goals of Crawling

High-performance data structures, such as IRLbot’s DRUM, must be
used to efficiently de-duplicate URLs, manage robots.txt caches, etc.

Malicious web content should be carefully avoided, and low-quality
content (malformed HTML, unreliable web sites, etc.) should be
identified and dealt with as appropriate.

Web site owners generally want their information to be crawled, so
they provide assistance in terms of sitemaps, RSS, embedded
metadata, etc.

Major Challenges

Spam Technologies
• Cloaking!
– Serve fake content to search engine robot!
– DNS cloaking: Switch IP address. Impersonate !

• Doorway pages!
– Pages optimized for a single keyword that re-direct to the real target page!

• Keyword Spam!
– Misleading meta-keywords, excessive repetition of a term, fake “anchor text”!
– Hidden text with colors, CSS tricks, etc.!

• Link spamming!
– Mutual admiration societies, hidden links, awards!
– Domain flooding: numerous domains that point or re-direct to a target page!

• Robots!
– Fake click stream!
– Fake query stream!
– Millions of submissions via Add-Url

Is this a Search
Engine spider?

Y

N

SPAM

Real
Doc

Cloaking

Meta-Keywords =
“… London hotels, hotel, holiday inn,
hilton, discount, booking, reservation,
sex, mp3,
britney spears, viagra, …”

