Distributed Indexing

Indexing, session 8

Northeastern UniVGI‘Sity CS6200: Information Retrieval
College of Computer and Information Science Slides by: Jesse Anderton

Distributing Indexing

The scale of web indexing makes it infeasible to maintain an index on

a single computer. Instead, we distribute the task across a cluster (or
more).

The traditional way to provision a data center Is to buy several large
mainframes running a massive database, such as Oracle. In contrast,
distributed indexes generally run on large numbers of cheap
computers that are expected to faill and be replaced frequently.

A primary tool for running software across these clusters is
MapReduce, and similar frameworks.

You could use a
there are enough nu

OpPOSse you have a very
d transactions.
'd number and a transaction amount. You
wish to know the total c

space.

If the
amou

P
O

S;

il
O

llarly, MapReduce programs depenc

N a single comput

oer sorting to g

By Analogy

—ach line has a credit

1dS

'OuUp sub-tasks togetr

er.

arge file of credit

narged to each card.

N table iIn memory, but it
mbers you will run out of

lle was sorted, you could just count
Nts In a single pass.

on
er

Credit Card Log

4404-5414-0324-3881

4532-7096-2202-7659

4787-8099-69/8-7089

4485-0342-4391-4731

4916-2026-7936-6663

$78.62
$26.92
$451.05
$5.23

$34.50

MlapReduce

MapReduce Is a distributed programming Map
framework focused on data placement Input
and distribution.

5
5
3

Reduce
| Output

Mappers take a list of input records and
transform them, generally into a list of the
same length.

&

‘O’g

Y

W

12
"»
o

Reducers take a list of input records and
transform them, generally into a single
value.

NNy

9

)

A chain of mappers and reducers is
constructed to transform a large dataset
into a (usually simpler) output value.

MlapReduce

Basic Process:

1. The raw input Is sent to the mappers, which
transform it into a sequence of <key, value>
pairs.

2. Shuftlers take the mapper output and sent it to
the reducers. A given reducer typically gets all
the pairs with the same key.

3. Reducers process batches of all pairs with the
same key.

The Mapper and Reducer jobs must be
idempotent, meaning that they deterministically
produce the same output from the same input. This
provides fault tolerance, should a machine ftall.

Map

Input

5
5
3

&

v
i

,O’g

Y

/]

(X
z‘»

NNy

WO

.

Reduce

14

Output

Example: Credit Cards

procedure MAPCREDITCARDS(input)
while not input.done() do
record < input.next()
card < record.card
amount «— record.amount
Emit(card, amount)
end while
end procedure

procedure REDUCECREDITCARDS(key, values)
total < 0O
card «— key
while not values.done() do
amount «— values.next()
total « total + amount
end while
Emit(card, total)
end procedure

This ma

pper and reducer will count

the number of distinct credit card
numbers in the Input.

The mapper emits (outputs) pairs

whose keys are credit card numbers.

The red

UCer processes a batch of

pairs wi
number,
card.

N the same credit card
and emits the total for the

Example: Indexing

procedure MAPDOCUMENTSTOPOSTINGS(input)

while not input.done() do This mapper and reducer index a
document < input.next() .
number < document.number collection of documents.

position < 0
tokens < Parse(document)
for each word w in tokens do

The mapper emits pairs whose keys

Emit(w, number:position) are terms and whose values are
position = position + 1 dOC ld . pOS 1t iOn pairS
end for . |
end while
end procedure The reducer encodes all postings for

procedure REDUCEPOSTINGSTOLISTS(key, values) the same term.

word < key

W}rli.tleWOrtd.(Wor%) How can WriteWord() and

while not mput.done o :
EncodePosting(values.next()) EnCOdePOSt lng () De written to have

end while idempotence?

end procedure

Map Reduce Summary

MapReduce Is a powerful framework which has been extended In
many Interesting ways to support sophisticated distributed algorithms.

Here, we've seen a simple approach to indexing based on
MapReduce. Consider how we might process queries with
MapReduce.

Next, we'll take a ook at a distributed storage system to complement
our distributed processing.

Big lable

Storage systems such as BigTable are natural fits for distributed
algorithm execution.

Google invented BigTable to handle its index, document cache, and
most of its other massive storage needs.

This has produced a whole generation of distributed storage systems,
called NoSQL systems. Some examples include MongoDB,
Couchbase, etc.

Northeastern Univcrsity CS6200: Information Retrieval
College of Computer and Information Science Slides by: Jesse Anderton

Distributed Storage

BigTable was developed by Google to manage their storage needs.

't IS a distributed storage system designed to scale across hundreds
of thousands of machines, and to gracefully continue service as
machines fail and are replaced.

Storage systems such as BigTable are natural fits for processes
distributed with MapReduce.

"A Bigtable Is a sparse, distributed, persistent multidimensional sorted
map.” —Chang et al, 2006.

Big lable Rows

The data in BigTable is logically organized into rows. For instance, the
inverted list for a term can be stored in a single row.

A single cell Is identified by its row key, column, and timestamp. Efficient
methods exist for fetching or updating particular groups of cells. Only
populated cells consume filesystem space: the storage Is inherently
sparse.

anchor:other.com title

text l anchor:null.com l
v '

WWW, example.com -l document text example click here example site

Big lable [ablets

BigTable rows reside within logical

tables, which have pre-defined columns

and group records of a particular type.

The rows are subdivided into ~200MB
tablets, which are the fundamental

underlyi

ng filesystem blocks. Tablets

and trar

saction logs are replicated to

several machines in case of faillure.

famac

transact

hine fails, another server can

immediately read the tablet data and

ion log with virtually no

downtime.

_—
N

logical table

—

|

tablets

BigTable Operations

All operations on a Biglable are row-based operations.

Most SQL operations are impossible here: no joins or other structured
queries.

BigTable rows can have massive numbers of columns, and individual
cells can contain large amounts of data. For instance, it's no problem
to store a translation of a document into many languages, each in its
own column of the same row.

Query Processing

Both doc-at-a-time and term-at-a-time have their advantages.

o Doc-at-a-time always knows the best k documents, so uses less
memory.

e Jerm-at-a-time only reads one inverted list at a time, so is more disk
efficient and more easily parallelized (e.g., use one cluster node per
query term).

Northeastern UniVCI‘Sity CS6200: Information Retrieval
CO”ege Of CompUter and |nf0rmati0n SCience Slides by Jesse Anderton

Query Processing

There are two main approaches to scoring documents for a query on
an inverted index.

 Document-at-a-time processes all the terms’ posting lists in parallel,
calculating the score for each document as it's encountered.

 Term-at-a-time processes posting lists one at a time, updating the
scores for the documents for each new query term.

There are optimization strategies for either approach that significantly
reduce query processing time.

Doc-at-a-ime Processing

We scan through the postings for all
terms simultaneously, calculating the
score for each document.

We remember scores for the top k
documents found so far.

Recall that the document score has the

form:
> f(w) - g(w)

weq

for document features fiw) and query
features gw).

salt

water
tropical

SCOre

All terms processed in parallel

|

41 |

Doc-at-a-lime Algorithm

Get the top kK documents for query Q from index I,

with doc features f and query features ¢ This a\gorithm imp\ements doc-at-a-
proz:eju‘giic())cL'MENTATATIMERETRIEVAL(Q. I, f,q, k) J[”,T, e retrieva‘.
R« PriorityQue}le(k)
O e TverteListlon. T It uses a list L of inverted lists for the
wmdtor query terms, and processes each
for all documents € € fdo document in sequence until all have
o i g CaretDost et} = d then been scored.
sa — sa+ gi(Q)fi (1) > Update the document score
zndfpmu d) The documents are placed Iinto the
il) oriority queue R so the top k can be
end for returned.

return the top k results from R
end procedure

lerm-at-a-1ime Processing

For term-at-a-time processing, we
read one inverted list at a time.

We maintain partial scores for the
documents we've seen so far, and
update them for each term.

his may

Involve remerr
document

scores, beca

bering more

Jse we don't

necessarily know which documents
will be in the top k (but sometimes we

can guess).

All docs processed in parallel

salt 1:1 H 4:1 ‘

partial scores 1:1 H 4:1 ‘

old partial scores E
water 1:1 H 2:1 H 4:1 \

new partial scores 1122 ” 2:1 H 4:2 |

\ \ 3:1

o sores (1] [25] [22] (2]

old partial scores

EaE

lQ
[\
)

trop ical |

\.)

lTerm-at-a-Time Algorithm

Get the top kK documents for query Q from index I,
with doc features f and query features ¢

This algorithm implements term-at-a-

procedure TERMATATIMERETRIEVAL(Q, I, f, g k) ’[”fr e retrieva‘

A < HashTable()

L < Array()

R < PriorityQueue(k)

for all terms w; in) do |t
l; < InvertedList(w;, I)

uses an accumulator A of partial

Ladd(l;) document scores, and updates a
for all lists 1, € L do document’s score when the doc is
while {; is not finished do encountered in an inverted list.

d < l;.getCurrentDocument()
Ag < Aa+ 9:(Q) f (L)

l;.moveToNextDocument()
end while Once all scores are calculated, we
?:rdaﬁ?ixccumulat.ors A; in A do p dCe the dOcumentS Into d prlOrIty
;1 <—“1?(1 /) > Accumulator contains the document score q jeye R SO the ’[Op k can be re’[urned
Laad| Sg,d
end for

return the top k results from R
end procedure

Optimized Query Processing

There are many more ways to speed up query processing. Rapid

query responses are essential for the user experience of search
engines, so this Is a heavily studied area.

In general, methods can be categorized as safe methods, which
always return the top kK documents, or unsafe methods which just

return k “pretty good” documents.

Next, we'll look at ways we can arrange indexes to speed up results
for common or easy queries.

Northeastern UniVCFSity CS6200: Information Retrieval

College of Computer and Information Science Slides by: Jesse Anderton

Optimization Strategy

There are two main approaches to query optimization:

1. Read less data from the inverted lists
e.g., use skip lists to jump past “unpromising” documents

2. Calculate scores for fewer documents
e.g., use conjunctive processing. require documents to have all

guery terms

1:
2
K, 3.
4

16:

25:
26:
27:
28:
29:
30:

onjunctive Doc-at-a-Time

procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)
L «— Array()
R «+ PriorityQueue(k)
for all terms w; in Q do
l; < InvertedList(w;, I)
L.add([;)

end for

d— —1

while all lists in L are not finished do Th
Sq «— 0
for all inverted lists /; in L do Oon

if [;.getCurrentDocument() > d then

y CONS

d < l;.getCurrent Document() COnta| N a‘

end if
end for
for all inverted lists [; in L do

IS doc-at-a-time implementation

ders documents which
guery terms.

l;.skipForwardToDocument(d) N Ote th at We assuime th at d OC | d S dlfe

if [;.getCurrentDocument() = d then

Sq — Sq + 9i(Q) fi(l;) > Update the document score cnNCco

l; . movePastDocument(d)

else IﬂVGI’

d— —1

break
end if
end for
if d > —1 then R.add(s4,d)
end if
end while
return the top £ results from R
end procedure

JUntered In sorted order In the
ed lists.

Conjunctive Term-at-a-Time

1: procedure TERMATATIMERETRIEVAL(Q, I, f. g, k)
2 A «— Map()

3 L — Array()

4 R < PriorityQueue(k)

5: for all terms w; in Q do

6 l; < InvertedList(w;, I)

7 L.add([;)

8
9

end for
: for all lists [; € L do
10: (l() — —1
11: while /; is not finished do
12: if i = 0 then
13: d « l;.getCurrentDocument()
14: 4"'1(1 - "1(1 + gl(Q)f([I)
15: ;. moveToNextDocument()
16: else
17: d « l;.getCurrentDocument()
18: d" «— A.getNextAccumulator(d)
19: A.removeAccumulatorsBetween(dg, d”)
20: if d = d’ then
21: Ag — Aa+ 9i(Q) f(1;)
22: [;. moveToNextDocument()
23: else
24: l;.skipForwardToDocument(d’)
25: end if
26: do — d'
27: end if
28: end while
20: end for
30: for all accumulators A; in A do
31: Sq — Ay > Accumulator contains the document score
32: R.add(sq4.d)
33: end for
34: return the top k results from R

35: end procedure

This Is the term-at-a-time version of
conjunctive processing.

Here, we delete accumulators for
documents which are missing query
terms.

Threshold Methods

It we only plan to show the user the top kK documents, that implies that
all documents we return have scores at least as good as the kih-best
document.

Let r be the minimum score of any document we return. We can use an
estimate of rto stop processing low-scoring documents early.

e For doc-at-a-time, our estimate ¢'is the score of the k"-best doc seen
SO far

» For term-at-a-time, 'is the k'"-largest score in any accumulator

Example: Threshold Filtering

Return the top two documents. All scores are between O and 1. We score documents
by taking the dot product of document and query scores.

Query term vector: [0.7, 0.1, 0.2]
Doc 1: [0.3, 0.4, 0.5] Score: 0.3x0.7 + 0.4x0.1 + 0.5x0.2 = 0.35
Doc 2: [0.5, 0.1, 0.1] Score: 0.5x0.7 + 0.1x0.1 + 0.1x0.2 = 0.38

Doc 3: [0.01, 1, 1] Score: 0.01x0.7 + 1x0.1 + 1x0.2 = 0.307

-or doc 3, even though the last two terms have perfect scores the document was
rejected. We can tell from the first term that it will never score highly enough to be
retrieved. We don't even have to look at the second or third terms.

MaxScore Method

The MaxScore Method is an algorithm for efficiently retrieving the top k documents by
comparing the top score a document could have to the estimate 7’

At Index time, we compute the largest score u,, any document achieved for each term

w. We use these scores at query time to estimate the maximum score any document
could have, based on the information so far.

-or Instance, suppose > u,., IN the below lists for the query “eucalyptus tree.” We can

skip all the grey documents, because no score for tree is enough to be included
without also matching eucalyptus.

wepes [TT] 0O 0O [N

Unsafe Optimizations

There are also many unsafe optimizations we could use. These may not return
the top k documents, but they will generally return k "good enough”™ documents.

* Query processing can be abandoned early, e.g., after some elapsed time or
minimum document score Is reached.

 High-frequency terms can be ignored in term-at-a-time queries, and
documents at the end of the lists can be ignored in doc-at-a-time.

When we plan to process partial postings, it's a good idea to sort them by

some sort of quality score (e.qg., PageRank) so we will probably return high-
guality documents.

Tiered Indexes

The organization of indexes in a large-scale search engine is important for
rapid query processing.

Inverted lists can be sorted In various ways to iImprove inexact top k retrieval

performance, and tiered indexes are often used to handle “easy” queries
quickly while still offering good performance for rarer, more difficult queries.

Good multi-level caching strategies are also essential for achieving good
oerformance, particularly for web and peer-to-peer search.

Northeastern UniVCFSity CS6200: Information Retrieval
College of Computer and Information Science Slides by: Jesse Anderton

Champion Lists are inverted lists -

whic

Champion Lists

Champion Lists

or terms

N contain only the highest-sco

docu

ments for that term.

tigle

At Indexing time, we compute a document’s
matching score for a term. If it's one of the top
r documents, we add it to the champion list.

At query time, we first matc

the C

enou

N documents In

hampion list for any query term, and only
proceed to other documents if that didn't find

gh results.

We can pick larger r for terms with higher df.

Why

would this help?

_____ w .2 6 0
_______ w .11 o 6
tf 3 3 D
cheap —» d1 —> d2? champions
used m—» ol — d3 champions
cars % di ¥ d3 champions
- b a2 others

Sorting by Quality

As a generalization of champion lists, we can
sort the postings for a term by some Postings sorted by quality
document quality score g;. Suppose the

quality score is part of our matching function:

di d2 d3

g | 05 025 075

score(D, Q) = Aqp + (1 — A Zf

we(Q

cheap —» d1 — d?

Recall that we want to sort the postings by a used —» d3 — Jd1
common value so we can easily merge them.
We previously sorted by docid.

cars r—>» a3 —> a1 —

Sorting by global document quality still
allows efficient merging, though sorting by a
term-based matching score would not.

Impact Ordering

It we use term-at-a-time processing, we
can sort the lists in different orders.

Impact Ordering sorts lists by some
notion of term relevance. As a simple
example, tf,4 can be used.

Here, we often stop processing
documents early in each list. We may
process query terms in order of
decreasing df, and stop processing each

Ist when document scores stop
changing much. We may also skip low-df

terms.

Postings sorted by if

_____ t .2 6 9
_______ w 4 1 0 6
t 3 3 5

cheap > d2 > ok

used —» a3 — ai

cars > a1 —> d3 —> a2

Tiered Indexes

Tiered Indexes take these ideas further.

We use multiple indexes.
Ikely to have the highest

ocuments
scores are In

the first iIndex, and subseqguent indexes

have progressively worse documents.

We process queries in or
time, stopping when we f
documents. Only a few g
all Indexes.

e |[ndex at a
iInd enough
Jeries will need

Carly tiers are often optimized for speed.
-or Instance, the top tier might be held

IN RAM, while lower tiers are on disk.

d1 d2 d3
_____ t 2 38 0
_______ e [17 0. 6
tf 3 13 10
cheap > d1
-l!j;isrlg used > d1
cars > d2 > d3
cheap —» d2?
-:}i?rlg used —» d3
cars —» d1

Query Caching

Caching also plays an essential role in improving query performance for large search
engines. Many forms of caching are used.

e Results for common queries are cached. A substantial fraction of queries are run by
many users (e.qg., “facebook”).

 Merged inverted lists for common sets of query terms are cached. This is particularly
useful for common phrases (e.g., “new york city”).

* Caching is particularly important in Peer-to-peer search, where a query may download
cached results from other peers.

Caching is often implemented in a multi-level way, e.g., the query cache is checked first,
then a cache of merged lists is checked, and finally a cache of individual inverted lists.

Indexing: Wrap Up

Northeastern University CS6200: Information Retrieval
C0”ege Of CompUter and Information SCience Slides by Jesse Anderton

processing.

lnverted Indexes

Inverted indexes are data structures
meant to enable rapid query

We store many types of information in

INndexes: modern scorin

combl
and Q

The indexi
carefully er

ne ev

uality

idence from

features.

9

il

fu

d

ﬁ

Nctions

y topical

Ng process needs to be
gineered to create ana

update inverted lists efficiently, taking
data volume into account. In particular,
good Index compression Is key.

Document Topical Features
Fred's Tropical Fish Shop is 9.7 fish
the best place to find 4.2 tropical
tropical fish at low, low 22.1tropical fish
prices. Whether you're 82 seaweed

looking for a little fish or a

4.2 surfboards

big fish, we've got what you _
Quality Features

need. We even have fake

seaweed for your fishtank 14 Incoming links
(and little surtboards too). 3 days since last update

v

Query
tropical fish ~ ==ap-| Scoring Function

v

Document Score
24.5

Query Processing

Document Topical Features
Fred's Tropical Fish Shop is 9.7 fish
| | the best place to find 4.2 tropical
Queﬂes may be prOcessed IN dOC_at_ tropical fish at low, low 22.1tropical fish
_t. _t _t _t d . th prices. Whether you're 82 seaweed

a-time or term-at-a-time order; either Jooking for a e i or s e
apprqaoh has its ad.vantages and ‘:;ge C‘fsh’v“;";gztlff you Quality Features
Optlmlzathﬂ Strategles seaweed for your fishtank 14 incoming links

(and little surfboards too). 3 days since last update
Indexes are often sorted, tiered, and *

cached in order to support rapid

results for common or easy queries
and good results for uncommon or
difficult queries. *

Query
tropical fish ~ ==ajp-| Scoring Function

Document Score
24.5

