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Distributed Indexing
Indexing, session 8



The scale of web indexing makes it infeasible to maintain an index on 
a single computer. Instead, we distribute the task across a cluster (or 
more). 

The traditional way to provision a data center is to buy several large 
mainframes running a massive database, such as Oracle. In contrast, 
distributed indexes generally run on large numbers of cheap 
computers that are expected to fail and be replaced frequently. 

A primary tool for running software across these clusters is 
MapReduce, and similar frameworks.

Distributing Indexing



Suppose you have a very large file of credit 
card transactions. Each line has a credit 
card number and a transaction amount. You 
wish to know the total charged to each card. 

You could use a hash table in memory, but if 
there are enough numbers you will run out of 
space. 

If the file was sorted, you could just count 
amounts in a single pass. 

Similarly, MapReduce programs depend on 
proper sorting to group sub-tasks together 
on a single computer.

By Analogy

4404-5414-0324-3881  $78.62 

4532-7096-2202-7659  $26.92 

4787-8099-6978-7089  $451.05 

4485-0342-4391-4731  $5.23 

4916-2026-7936-6663  $34.50

Credit Card Log



MapReduce is a distributed programming 
framework focused on data placement 
and distribution. 

Mappers take a list of input records and 
transform them, generally into a list of the 
same length. 

Reducers take a list of input records and 
transform them, generally into a single 
value. 

A chain of mappers and reducers is 
constructed to transform a large dataset 
into a (usually simpler) output value.

MapReduce



Basic Process:!

1. The raw input is sent to the mappers, which 
transform it into a sequence of <key, value> 
pairs. 

2. Shufflers take the mapper output and sent it to 
the reducers. A given reducer typically gets all 
the pairs with the same key. 

3. Reducers process batches of all pairs with the 
same key. 

The Mapper and Reducer jobs must be 
idempotent, meaning that they deterministically 
produce the same output from the same input. This 
provides fault tolerance, should a machine fail.

MapReduce



This mapper and reducer will count 
the number of distinct credit card 
numbers in the input. 

The mapper emits (outputs) pairs 
whose keys are credit card numbers. 

The reducer processes a batch of 
pairs with the same credit card 
number, and emits the total for the 
card.

Example: Credit Cards



This mapper and reducer index a 
collection of documents. 

The mapper emits pairs whose keys 
are terms and whose values are 
docid:position pairs. 

The reducer encodes all postings for 
the same term. 

How can WriteWord() and 
EncodePosting() be written to have 
idempotence?

Example: Indexing



MapReduce is a powerful framework which has been extended in 
many interesting ways to support sophisticated distributed algorithms. 

Here, we’ve seen a simple approach to indexing based on 
MapReduce. Consider how we might process queries with 
MapReduce. 

Next, we’ll take a look at a distributed storage system to complement 
our distributed processing.

Map Reduce Summary
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Big Table
Storage systems such as BigTable are natural fits for distributed 
algorithm execution. 

Google invented BigTable to handle its index, document cache, and 
most of its other massive storage needs. 

This has produced a whole generation of distributed storage systems, 
called NoSQL systems. Some examples include MongoDB, 
Couchbase, etc.



BigTable was developed by Google to manage their storage needs. 

It is a distributed storage system designed to scale across hundreds 
of thousands of machines, and to gracefully continue service as 
machines fail and are replaced. 

Storage systems such as BigTable are natural fits for processes 
distributed with MapReduce. 

“A Bigtable is a sparse, distributed, persistent multidimensional sorted 
map.” –Chang et al, 2006.

Distributed Storage



The data in BigTable is logically organized into rows. For instance, the 
inverted list for a term can be stored in a single row. 

A single cell is identified by its row key, column, and timestamp. Efficient 
methods exist for fetching or updating particular groups of cells. Only 
populated cells consume filesystem space: the storage is inherently 
sparse.

BigTable Rows



BigTable rows reside within logical 
tables, which have pre-defined columns 
and group records of a particular type. 

The rows are subdivided into ~200MB 
tablets, which are the fundamental 
underlying filesystem blocks. Tablets 
and transaction logs are replicated to 
several machines in case of failure. 

If a machine fails, another server can 
immediately read the tablet data and 
transaction log with virtually no 
downtime.

BigTable Tablets



All operations on a BigTable are row-based operations. 

Most SQL operations are impossible here: no joins or other structured 
queries. 

BigTable rows can have massive numbers of columns, and individual 
cells can contain large amounts of data. For instance, it’s no problem 
to store a translation of a document into many languages, each in its 
own column of the same row.

BigTable Operations



CS6200: Information Retrieval
Slides by: Jesse Anderton

Query Processing
Both doc-at-a-time and term-at-a-time have their advantages. 

• Doc-at-a-time always knows the best k documents, so uses less 
memory. 

• Term-at-a-time only reads one inverted list at a time, so is more disk 
efficient and more easily parallelized (e.g., use one cluster node per 
query term). 



There are two main approaches to scoring documents for a query on 
an inverted index. 

• Document-at-a-time processes all the terms’ posting lists in parallel, 
calculating the score for each document as it’s encountered. 

• Term-at-a-time processes posting lists one at a time, updating the 
scores for the documents for each new query term. 

There are optimization strategies for either approach that significantly 
reduce query processing time.

Query Processing



We scan through the postings for all 
terms simultaneously, calculating the 
score for each document. 

We remember scores for the top k 
documents found so far. 

Recall that the document score has the 
form: 

!

for document features f(w) and query 
features g(w).

Doc-at-a-Time Processing

All terms processed in parallel

�

Y�S

H(Y) · I(Y)



This algorithm implements doc-at-a-
time retrieval. 

It uses a list L of inverted lists for the 
query terms, and processes each 
document in sequence until all have 
been scored. 

The documents are placed into the 
priority queue R so the top k can be 
returned.

Doc-at-a-Time Algorithm
Get the top k documents for query Q from index I,!

with doc features f and query features g



For term-at-a-time processing, we 
read one inverted list at a time. 

We maintain partial scores for the 
documents we’ve seen so far, and 
update them for each term. 

This may involve remembering more 
document scores, because we don’t 
necessarily know which documents 
will be in the top k (but sometimes we 
can guess).

Term-at-a-Time Processing
All docs processed in parallel



This algorithm implements term-at-a-
time retrieval. 

It uses an accumulator A of partial 
document scores, and updates a 
document’s score when the doc is 
encountered in an inverted list. 

Once all scores are calculated, we 
place the documents into a priority 
queue R so the top k can be returned.

Term-at-a-Time Algorithm
Get the top k documents for query Q from index I,!

with doc features f and query features g



CS6200: Information Retrieval
Slides by: Jesse Anderton

Optimized Query Processing
There are many more ways to speed up query processing. Rapid 
query responses are essential for the user experience of search 
engines, so this is a heavily studied area. 

In general, methods can be categorized as safe methods, which 
always return the top k documents, or unsafe methods which just 
return k “pretty good” documents. 

Next, we’ll look at ways we can arrange indexes to speed up results 
for common or easy queries.



There are two main approaches to query optimization: 

1. Read less data from the inverted lists  
e.g., use skip lists to jump past “unpromising” documents 

2. Calculate scores for fewer documents  
e.g., use conjunctive processing: require documents to have all 
query terms

Optimization Strategy



This doc-at-a-time implementation 
only considers documents which 
contain all query terms. 

Note that we assume that docids are 
encountered in sorted order in the 
inverted lists.

Conjunctive Doc-at-a-Time



This is the term-at-a-time version of 
conjunctive processing. 

Here, we delete accumulators for 
documents which are missing query 
terms.

Conjunctive Term-at-a-Time



If we only plan to show the user the top k documents, that implies that 
all documents we return have scores at least as good as the kth-best 
document. 

Let τ be the minimum score of any document we return. We can use an 
estimate of τ to stop processing low-scoring documents early. 

• For doc-at-a-time, our estimate τ' is the score of the kth-best doc seen 
so far 

• For term-at-a-time, τ' is the kth-largest score in any accumulator

Threshold Methods



Return the top two documents. All scores are between 0 and 1. We score documents 
by taking the dot product of document and query scores. 

Query term vector: [0.7, 0.1, 0.2] 

Doc 1: [0.3, 0.4, 0.5] Score: 0.3×0.7 + 0.4×0.1 + 0.5×0.2 = 0.35 

Doc 2: [0.5, 0.1, 0.1] Score: 0.5×0.7 + 0.1×0.1 + 0.1×0.2 = 0.38 

Doc 3: [0.01, 1, 1] Score: 0.01×0.7 + 1×0.1 + 1×0.2 = 0.307 

For doc 3, even though the last two terms have perfect scores the document was 
rejected. We can tell from the first term that it will never score highly enough to be 
retrieved. We don’t even have to look at the second or third terms.

Example: Threshold Filtering



The MaxScore Method is an algorithm for efficiently retrieving the top k documents by 
comparing the top score a document could have to the estimate τ’. 

At index time, we compute the largest score μw any document achieved for each term 
w. We use these scores at query time to estimate the maximum score any document 
could have, based on the information so far. 

For instance, suppose τ’ > μtree in the below lists for the query “eucalyptus tree.” We can 
skip all the grey documents, because no score for tree is enough to be included 
without also matching eucalyptus. 

!

MaxScore Method



There are also many unsafe optimizations we could use. These may not return 
the top k documents, but they will generally return k “good enough” documents. 

• Query processing can be abandoned early, e.g., after some elapsed time or 
minimum document score is reached. 

• High-frequency terms can be ignored in term-at-a-time queries, and 
documents at the end of the lists can be ignored in doc-at-a-time. 

When we plan to process partial postings, it’s a good idea to sort them by 
some sort of quality score (e.g., PageRank) so we will probably return high-
quality documents.

Unsafe Optimizations
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Tiered Indexes
The organization of indexes in a large-scale search engine is important for 
rapid query processing. 

Inverted lists can be sorted in various ways to improve inexact top k retrieval 
performance, and tiered indexes are often used to handle “easy” queries 
quickly while still offering good performance for rarer, more difficult queries. 

Good multi-level caching strategies are also essential for achieving good 
performance, particularly for web and peer-to-peer search.



Champion Lists are inverted lists for terms 
which contain only the highest-scoring 
documents for that term. 

At indexing time, we compute a document’s 
matching score for a term. If it’s one of the top 
r documents, we add it to the champion list. 

At query time, we first match documents in 
the champion list for any query term, and only 
proceed to other documents if that didn’t find 
enough results. 

We can pick larger r for terms with higher df. 
Why would this help?

Champion Lists

used d1 d3 champions

cars d1 d3

d2

champions

others

cheap d1 d2 champions

d1 d2 d3
tf 2 6 0
tf 1 0 6
tf 8 3 5

Champion Lists



As a generalization of champion lists, we can 
sort the postings for a term by some 
document quality score qd. Suppose the 
quality score is part of our matching function: 

!

!

Recall that we want to sort the postings by a 
common value so we can easily merge them. 
We previously sorted by docid. 

Sorting by global document quality still 
allows efficient merging, though sorting by a 
term-based matching score would not.

Sorting by Quality
Postings sorted by quality

UEQTG(&,3) = ɐS& + (� � ɐ)
�

Y�3

H(Y) · I(Y)

used d3 d1

cars d3 d1

cheap d1 d2

d1 d2 d3
q 0.5 0.25 0.75

d2



If we use term-at-a-time processing, we 
can sort the lists in different orders. 

Impact Ordering sorts lists by some 
notion of term relevance. As a simple 
example, tfw,d can be used. 

Here, we often stop processing 
documents early in each list. We may 
process query terms in order of 
decreasing df, and stop processing each 
list when document scores stop 
changing much. We may also skip low-df 
terms.

Impact Ordering
Postings sorted by tf

used d3 d1

cars d1 d3

cheap d2 d1

d2

d1 d2 d3
tf 2 6 0
tf 1 0 6
tf 8 3 5



Tiered Indexes take these ideas further. 
We use multiple indexes. Documents 
likely to have the highest scores are in 
the first index, and subsequent indexes 
have progressively worse documents. 

We process queries in one index at a 
time, stopping when we find enough 
documents. Only a few queries will need 
all indexes. 

Early tiers are often optimized for speed. 
For instance, the top tier might be held 
in RAM, while lower tiers are on disk.

Tiered Indexes
d1 d2 d3

tf 27 3 0
tf 17 0 6
tf 8 13 16

used d1

cars d2 d3

cheap d1

used d3

cars d1

cheap d2

Tier 1!
tf ≥ 10

Tier 2!
tf < 10



Caching also plays an essential role in improving query performance for large search 
engines. Many forms of caching are used. 

• Results for common queries are cached. A substantial fraction of queries are run by 
many users (e.g., “facebook”). 

• Merged inverted lists for common sets of query terms are cached. This is particularly 
useful for common phrases (e.g., “new york city”). 

• Caching is particularly important in Peer-to-peer search, where a query may download 
cached results from other peers. 

Caching is often implemented in a multi-level way, e.g., the query cache is checked first, 
then a cache of merged lists is checked, and finally a cache of individual inverted lists.

Query Caching
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Indexing: Wrap Up



Inverted indexes are data structures 
meant to enable rapid query 
processing. 

We store many types of information in 
indexes; modern scoring functions 
combine evidence from many topical 
and quality features. 

The indexing process needs to be 
carefully engineered to create and 
update inverted lists efficiently, taking 
data volume into account. In particular, 
good index compression is key.

Inverted Indexes
Topical Features!
9.7 fish   
4.2 tropical   
22.1 tropical fish 
8.2 seaweed   
4.2 surfboards  
Quality Features!
14 incoming links    
3 days since last update     

Document

Query!
tropical fish Scoring Function

Document Score!
24.5



Queries may be processed in doc-at-
a-time or term-at-a-time order; either 
approach has its advantages and 
optimization strategies. 

Indexes are often sorted, tiered, and 
cached in order to support rapid 
results for common or easy queries 
and good results for uncommon or 
difficult queries.

Query Processing
Topical Features!
9.7 fish   
4.2 tropical   
22.1 tropical fish 
8.2 seaweed   
4.2 surfboards  
Quality Features!
14 incoming links    
3 days since last update     

Document

Query!
tropical fish Scoring Function

Document Score!
24.5


