Today’s Plan

Housekeeping
A few things about HWK 1

Introduction to HWK 2
Elias Gamma Encoding

Housekeeping

* Next Monday is a holiday, so class will be held
on Wednesday, Feb 18 from 6:30-9:30in

cl106

 TA online office hours...

— Are the times good?
— What can | tell them to make it work better?

HWK1: Indexing Workflow

Prepare the index

Parse the AP89 files

Index each document as it is parsed

Verify that all documents have been indexed

Elasticsearch Python: Prepare the
index

idx = elasticsearch.client.IndicesClient(es)
idx.delete('myindex’)
idx.create(index="myindex’,
body ="+
{"mappings": {' +
"text": {' +
"properties": {' +
"body": {' +
"type" "string","' +
""term_vector": "with_positions_offsets_payloads",' +

"'store" : true }}}}})

Note that you can index documents without this step, but they
will have defaults for “term_vector” which may mean you don’t
get position information, for example

HWK 1: workflow

To parse the documents:
<DOC>
<DOCNO> AP890110-1029 </DOCNO>

<HEAD> The document header — we are
ignoring this for now

</HEAD>

<TEXT> There may be more than one
The text we care about. text element in each <doc>
</TEXT>

</DOC>

HWK 1 (and HWK2) : Parsing the
document

1. Iterate through all files in the directory
2. For each file iterate through the lines of the file
a. If you see <TEXT> set Flag = True
b. If you see </TEXT> set Flag = False
c. If you see /<DOCNO>\s*([*<]+)\</
Capture the document id

d. If you see </DOC> index the document, clear
all variables

e. else, if Flag == True, aggregate the text

Elasticsearch: Index your documents

Python:

es.index(index='ap89', doc_type="text', id=docno, body={'body': doc_body})

In Python you can check that your method call is correct in the
interpreter:

Launch the python interpreter:

Vanessas-MacBook-Pro:~ Vanessa$S python
Python 2.7.9 (v2.7.9:648dcafa7e5f, Dec 10 2014, 10:10:46)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

>>> import elasticsearch
>>> es = Elasticsearch()

>>> es.index(index="'myindex’, doc_type="text', id='"AP891001-1001,
body={'body':'this is some text i want to index'})

Elasticsearch Indexing

* Check that your index contains all the
documents:

curl 'localhost:9200/ cat/indices?V'
health status index pri rep docs.count docs.deleted store.size pri.store.size
yvellow open ap89 5 1 84678 0 504.9mb 504.9mb

grep '<DOCNO>' AP89/AP_DATA/ap89 collection/* | wc -l
84679

Elasticsearch: Ranking

e Get the statistics

— Per term:

* Term frequency (TF)

 Document frequency (DF)

e Collection Frequency (TTF in elasticsearch
— Per Document:

* Document length (|D])

— Once for the collection:

* Average document length (ave(|D|))
* Vocabulary size (|V])

Elasticsearch: term statistics

* For each termin the query, get all the documents:
results = es.search(index="myindex', g='body:’'+term, size=1000000)
docs = [doc['_id'] for doc in results['hits']['hits']]

"hits" : {
"total" : 1000,
"max_score" : 1.0,
"hits" : [{
" index" : "bank",
" type" : "account",
"id" "1,
" score" :1.0," source":{"account_number":1,"balance":
39225, "firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880 Holmes

Lane","employer":"Pyrami","email":"amberduke @ pyrami.com","city":"Brogan","state":"IL"}
A
" index" : "bank",
" type" : "account",
"id":"e”,

Term Statistics (Java)

// get average doc length

StatisticalFacet f = getStatsOnTextTerms(client, index, type, null, null);
double avglLenDoc = f.getMean();

// get current document length

double lenDoc = getStatsOnTextTerms(client, index, type, "docno",
key).getTotal();

http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/modules-
advanced-scripting.html

Some things to remember

* Remove the stop words from the queries
using the stop list provided with the data

* Your mean average precision should be
around 0.15

— If you are getting around 0.05, this is essentially a
random result

HWK 2: Indexing

Two things you will re-use from HWK 1:
— Parse the collection
— Score the documents

JSON need not be generated

Parsing in this case means:

— Stemming

— Removing stop words

— Converting the textual terms to integers

Your MAP results (trec_eval) should be the same
independent of the indexing

Parsing the document

1. Iterate through all files in the directory
2. For each file iterate through the lines of the file
a. If you see <TEXT> set Flag = True
b. If you see </TEXT> set Flag = False
c. If you see /<DOCNO>\s*([*<]+)\</
Capture the document id

d. If you see </DOC> index the document, clear
all variables

e. else, if Flag == True, aggregate the text

Parsing the document, |

3. Convert all text to lower case
4. Tokenize the text, recording the position of each term

5. Remove (or replace) punctuation
— “the car wash” is 3 tokens
— “est. 1975” is 2 tokens
— “Dan’s car wash” is ??? tokens
— “175.85.0.101" is ??? Tokens?

— https://www.elasticsearch.org/index.php is ??? Tokens?
6. Convert all text to lower case

Parsing the document, IlI

Remove stop words (“stopping”)
Stem the collection (“stemming”)
Convert all tokens to integers

int in java is 32 bits,

— represents -231 to 231 - 1.

— |f your vocabulary is longer than this, you will
need to use a long
* (The vocab is unlikely to be larger than this in AP89)

Inverted Index

* Recall that the output you want is:

<term_id>: <doc_id>[position list];<doc_id>[position list];...

* The document ids should be in sorted order to
make query processing efficient

 The mapping from term to term_id has to be
stored, because the query will also have to be
converted into a term _id

Searching the Index

e The index is a file of the form:

<term_id> : <doc_id>[position list];<doc_id>[position list];...

e How do we search this?

Searching the inverted index

 Option 1: iterate through the file to find the
matching key terms

— In the worst case, the entire vocabulary is
searched for every term in the query

 Option 2: Sort the keys, and do binary search

— Worst case is O(log n) for search (sorting is O(n log
n) or O(nk) for radix sort, but this is done in
advance, not at search time)

We can do better...

Searching the Inverted Index

Space is cheap
Store a table of term id, file offset (in bytes)

This can be stored in memory (for instance in
a hash table)

Lookup in the hash table to get the byte offset

is O(1), and accessing the byte offset in the file
is O(1)

HWK 2

* Ultimately you produce:
— A file that contains the mapping of terms to term_ids

— A file that contains the mapping of term_ids to byte offsets
in the index file

— An inverted index file that contains term_ids, and postings
lists, and possibly other statistics

— Possibly a file with corpus statistics: total vocab size,
number of documents, ave doc length, total number of
terms

— If you want to retrieve the original document, you will
need a file that has a mapping from document_id to
original docno, original file name, plus byte offsets in the
ap89 file.

HWK 2, Il

 You will need to write the code to:

— parse the collection to produce these files
* With and without stopping and stemming

— Parse the queries in the same way the collection was
parsed

— Efficiently search the index
— Scores the documents

* Verify that your models have the same

performance with your index that they had with
Elasticsearch.

From Last time...

* Delta Encoding
* Elias Gamma Encoding

Elias Gamma Encoding

Decimal number = 2N + k Gamma encoding (N zeros)

1=29+4+0 1 1 (zero 0’s)
2=2'+0 10 0 10 (1 zero)
3=21+1 11 011 (1 zero)
4=22+0 100 00 100 (2 zeros)
5=22+1 101 00 101 (2 zeros)
6=2%2+2 110 00110
7=22+3 111 00111
8=23+0 1000 000 1000 (3 zeros)
9=23+1 1001 000 1001 (pattern
forming...)
10=23+2 1010 000 1010

11=23+3 1011 000 1011

Elias Gamma Encoding

* Let N =floor(log, x) be the highest power of 2,
such that 2N < x < 2N+

* Write out N zeros
* Append the binary form of x

Elias Gamma Decoding

The gamma encoded number is symmetrical:
— N zeros “1” N digits

Read and count zeros from the stream until
you reach a one.

— Count of zeros = N

The one that was read is the first digit of an
integer, and indicates the 2N portion of the
number

Read the remaining N digits of the integer

