
12. Text Processing
By: Steve Krenzel

Previous Index Next

Finding Blurbs

Suppose you ran a search engine and someone searched for a three word phrase
like "cheap pudding pops". Also suppose you've already solved the problem of
finding relevant URLs. The problem you're solving now is showing a blurb from
each of those websites on the results page. You want the shortest span of text in
the document that contains all of the words you searched for.

I used to know the name of this algorithm but it escapes me at the moment and
despite my attempts at googling and asking around various channels on IRC, no
one seems to know. The algorithm I'm going to describe uses a sliding window
technique across the positions of the words in the document. It runs in O(N)
time, where N is the number of occurences in the document of the word with the
most number of occurences.

Here is the algorithm:

1. First, you need a list of all of the positions of the words searched for in the
document. For example:

http://stevekrenzel.com/
http://stevekrenzel.com/articles/goofing-off
http://stevekrenzel.com/
http://stevekrenzel.com/articles/statement-of-purpose

2. Then you keep track of our window, which initially starts at the beginning of
each list:

3. At this point our smallest known blurb is the window [0, 1, 4] which has a
range of 4. To see if we can do any better, we move forward the window of
the word with the smallest position, in the case it's the list for the word
"cheap" because it's position in the window is 0. We get:

4. Our new window is [5, 1, 4] and has a range of 4 again. We repeat step 3,
moving forward the window of the word with the smallest position. This
time it is "pudding". We get:

5. Now our window is [5, 3, 4] and has a range of 2. This is our new smallest
window. It is also the smallest window possible, so we could stop if we
wanted to, but we won't because I want to show you what to do when you

get a window that hits the end of the list. If we keep repeating step 3, we
eventually get:

6. Our window with the smallest position is already at the end of it's respective
list, so we can't move it forward any more. In this case we simply go to the
next smallest and get:

7. When we repeat the process again, all windows will be at the end of their
respective lists. At this point we simply return the window that had the
smallest range, which we calculated all the way back in step 5. There are no
more windows to try.

If the shortest span is still too long for your blurb you'll have to find some other
way to split it up, which we won't cover here. You could also use the shortest span
as a metric in ranking relevant documents since you probably want documents
that contain the words close together.

The algorithm as presented can be optimized in a number of ways, but
complicates its implementation slighltly. Doing so is left as an excercise.

Here is some simple code that implements this algorithm, it also has some basic

http://files.getdropbox.com/u/196807/blurb.py

doctests included.

About the author
I'm Steve Krenzel, a software engineer and co-founder of
Thinkfuse. Contact me at steve@thinkfuse.com.

Previous Next

©2010 Steve Krenzel

http://www.thinkfuse.com/
http://stevekrenzel.com/articles/goofing-off
http://stevekrenzel.com/articles/statement-of-purpose

