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In the first module, we introduced Vector Space Models as an alternative to Boolean Retrieval. This module discusses 
VSMs in a lot more detail. By the end of the module, you should be ready to build a fairly capable search engine 
using VSMs. Let’s start by taking a closer look at what’s going on in a Vector Space Model.
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This video introduces Boolean Search, one of the first and most successful IR systems. Over the next few videos in this module, we’ll show how to build a simple but complete 
Boolean retrieval system. This will give us a chance to introduce all the main components of an IR system. Then, in future modules, we’ll examine each of these components in 
more detail.



• In ad-hoc search, a user’s information need is expressed as a list of 
keywords. We find relevant documents from the collection by 
performing semantic matching between the query and documents. 

• Semantic Matching is measuring the similarity of meaning between 
two texts, e.g. a query and a document. There are many approaches 
with varying degrees of sophistication. 

• For our first attempt at semantic matching, we will use a Boolean 
retrieval model. In this model, queries are Boolean expressions. Words 
match only themselves, and complex information needs are expressed 
by building complex queries.

Ad-hoc Search

Boolean Retrieval is a system for performing ad-hoc search. 
[1] As we saw in the last video, in ad-hoc search, a user’s information need is expressed as a list of keywords. We find relevant documents from the collection by performing 
what’s called “semantic matching” between the query and the documents in our collection. 
[2] Semantic Matching is measuring the similarity of meaning — semantics — between two texts. In this case, we’re comparing a query and a document. There are many 
approaches, and we’ll talk about quite a few in the module on Ranking, but for now we’ll keep it simple. 
[3] For our first attempt, we’ll Boolean Retrieval. In Boolean Retrieval, a query is a Boolean expression. A keyword matches itself, and only itself. That means we know nothing 
about synonyms or other nuances of language. In order to express a complex information need, the user will have to build a complex query that combines a lot of keywords 
using Boolean operators like AND and OR. Let’s see what this means.



In Boolean Retrieval, queries are keywords combined using Boolean 
operators. The result is the set of documents satisfying the expression. 

• “caesar” returns all documents which contain the term “caesar.”  

• “caesar AND brutus” returns documents which contain both terms. 

• “caesar OR brutus” returns documents which contain either term. 

Real world systems have many such operators, built out of Boolean 
logic and set theory.

Boolean Matching

Boolean Matching is very literal. We combine keywords using standard Boolean operators: AND, OR, and so on. Documents are filtered using the set operations specified by 
the query. A document is considered relevant if and only if it satisfies the Boolean expression. We leave it to the user to make sure the query precisely expresses their 
information need. 
For instance, the query “caesar” will return every document which contains “caesar,” whether it’s talking about the emperor or the salad. 
“caesar AND Brutus” will return every document which contains caesar and also contains brutus. “caesar OR brutus” returns every document which contains either keyword. 
In order to actually implement this, we’ll introduce a data structure to keep track of which keywords apply to which documents.



• A term incidence matrix records 
the terms used in each document in 
our collection. 

• It has one row for each term found 
in any document, and one column 
for each document in our collection. 

• We will use the example in the 
textbook by Manning et al, and use 
the plays of William Shakespeare as 
our collection.

Term Incidence Matrix

[1] A Term Inciastedence Matrix is a data structure we can use to run Boolean Retrieval. It records the terms used in each of the documents in our collection. 
[2] Each row represents one of the words in our vocabulary. There’s one row for each word found in any document. Columns represent our documents. The entry at row i and 
column j will be one if word i appears in document j, and zero otherwise. We can run queries using bitwise operators on the rows of this matrix. 

If you look at the matrix on the left, you can see some of the plays of William Shakespeare as columns, and terms 
found in those plays as rows. For instance, the word “Antony” appears in Antony and Cleopatra, Julius Caesar, and 
Macbeth, but not in any of the others. 
[3] Let’s use this matrix to work through an example, introduced in the IR textbook by Chris Manning. 



Example

For this example, we’ll look for words in the plays of William Shakespeare. Each play gets a column, and each word gets a row. If we wanted to run the query “Caesar,” we’d 
just look for ones in the row for “Caesar.” Let’s run a more interesting query, and look for “Caesar AND Brutus AND NOT Calpurnia.” 
We’ll start by searching for Caesar and Brutus. We’ll list the rows for each, and combine them using bitwise AND. The result is one whenever both of the inputs were one. 
Next, we need to figure out what NOT Calpurnia is. To get that, we just flip the zeros to ones and the ones to zeros in the Calpurnia row. 
Finally, we combine the two output rows using bitwise AND to calculate our final answer. And the winners are: Antony and Cleopatra, and Hamlet.



• Boolean Retrieval has been 
commercially successful, with 
products surviving for decades. 

• It has mainly been used by trained 
searchers in vertical search and 
enterprise search engines, e.g. in the 
leading legal and journalistic search 
engines from the 1970s on. 

• This happened somewhat to the 
frustration of IR researchers, whose 
more advanced matching models took 
years to become widely adopted.

Commercial Systems
Information need: Information on the legal theories 
involved in preventing the disclosure of trade 
secrets by employees formerly employed by a 
competing company. 
Query: "trade secret" /s disclos! /s prevent /s 
employe! 
!
Information need: Requirements for disabled 
people to be able to access a workplace. 
Query: disab! /p access! /s work-site work-place 
(employment /3 place) 
!
Information need: Cases about a host's 
responsibility for drunk guests.  
Query: host! /p (responsib! liab!) /p (intoxicat! 
drunk!) /p guest

Example Boolean Queries

Now that we’ve seen a really simple Boolean Retrieval system, let’s talk about what people use commercially. Boolean Retrieval was the dominant IR system in commercial 
software for decades, from the 60s and 70s until it was finally replaced by more sophisticated semantic matching systems in the 90s as the Internet gained in popularity. 
This was a little bit of an “I told you so” moment for the IR research community, whose improved models had been around for quite some time by then. We’ll look at some of 
those systems soon. 
First, let’s look at the query language for a real commercial Boolean Retrieval system. These examples come from Manning’s textbook. 
These systems were mainly used by expert searchers who were trained in the custom query language used by the search software. There are a few interesting query language 
features on display. Let’s look at the first query. First, you can surround a phrase with quotation marks. Also, if you look at the second and the last keywords, you can see the 
prefix of a word followed by an exclamation point. This is used to refer to any word that starts with that prefix. It’s a simple approach to what’s called stemming, which we’ll talk 
about quite a bit in the module on query understanding.  
Finally, these queries contain a lot of proximity operators. The slash-s means that the terms on either side should be found in the same sentence, and slash-p means they should 
be found in the same paragraph. There’s a slash-3 in the second query which means that the terms should be found within three words of each other. 
So these languages can get fairly complicated. There are quite a few other operators people have built into query languages. The textbook by Croft has a section on a query 
language for a search engine called Galago if you’re interested in seeing what a modern query language looks like.



• Boolean Retrieval is a simple model, but is precisely defined and 
easy to implement. 

• Its users feel they have control over the system, and can build up 
complex queries iteratively to refine the results. 

• Next, we’ll see how to refine our example to handle large scale 
collections.

Wrapping Up

Let’s wrap up. Although Boolean Retrieval is simple, it’s easy to define, implement, and extend. Its users can be very loyal, partly because it gives them a lot of precise control 
over what’s considered relevant for their queries. They typically run a few exploratory queries, building up a complex expression of their information need over the course of a 
search session. These properties have made Boolean Retrieval a very successful model. 
In our next video, we’ll flesh out our simplistic approach to Boolean Retrieval and introduce the key data structure used to make IR possible at scale. Thanks for watching.
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When I introduced Boolean Retrieval, I mentioned that the research community was somewhat relieved when the commercial world started to adopt some of its better retrieval 
models in the 90s. We’ll look at one of those improved models today. The vector space model uses a nice mathematical generalization of query/document matching which, 
unlike the set-based Boolean Retrieval model, has a lot of flexibility for tuning retrieval performance. But first, let’s look at why Boolean Retrieval isn’t good enough.



• Boolean Retrieval has a few big shortcomings that limit its usefulness. 

• Since it’s based on set membership, a document either matches the query 
or doesn’t. There’s no way for some documents to match more than others. 

• It also has little flexibility to allow us to try to match the information need. 
We often want to refine the submitted query before we run it, but the 
complex operators in Boolean Retrieval queries make that difficult. 

• It is helpful to use simpler queries in order to support more complex 
processing behind the scenes. The computer should generally do more 
work than the user.

Flaws of Boolean Retrieval

[read 1] Several of these shortcomings are fundamental to the system, so in order to fix them we’ll need to change our basic approach. 
First, [read 2]. We could get away with this when IR systems used comparatively tiny collections of documents and searchers were willing to spend hours carefully tuning 
complex queries. Once these users were satisfied with their queries, they often looked at every document the system retrieved. On a collection as large as the Internet, though, 
you’ll often find thousands of relevant documents for your query. The problem becomes choosing the BEST relevant documents. 
Another problem is that it has little… [read 3] 
We’ll talk at length about the query refinement techniques available to us, but for now let’s just say that the query a retrieval system actually runs is seldom the exact query the 
user types in. The system changes it in order to improve search results. 
[read 4]



• Let’s take another look at the term 
incidence matrix to find a way forward. 

• This (rotated) matrix has a column for 
every word in the vocabulary, so any 
document can be a vector in this 
matrix. 

• We can also represent keyword queries 
as vectors. From this point of view, 
queries are just “short documents.” 

• Our goal is to find documents which 
are “on the same topic” as the query.

Another Look at the Matrix

[read 1] 
[read 2] 
[read 3] This notion of representing queries and documents in the same way turns out to be very powerful. Remember that the core task of IR is to match documents and 
queries. It’s much more natural to compare objects with the same representation. 
[read 4] We’ll look at a lot of ways to approach this problem, but let’s start simple.



• So far, our matrix uses binary scores 
to indicate the presence of a term. 

• If we allow more values, we can also 
indicate how well the document 
matches that particular term. Terms 
more central to the document’s topic 
should have larger values. 

• Let’s use term frequency (TF): the 
number of occurrences of a term in a 
document. This reflects an intuition 
that a term which appears more often 
is more central to the document.

More Nuanced Term Scores
Binary Scores

TF Scores

[read 1] 
So the term vector for Julius Caesar would be 1 1 0 0, 
The Tempest is 0 0 1 1, 
Hamlet is 0 1 1 1, and 
Othello is 0 0 1 1. 
[read 2] Remember that our goal is to move beyond the simple binary set membership world, which is perfectly captured by ones and zeros, and into a more nuanced world 
where documents can be just a little relevant or highly relevant. When we match a given term from a query, we’d like the documents’ scores for that query term to be higher if 
those documents are more likely to be good matches. If the query has multiple terms, we’ll combine the scores from all its terms so that documents which match all terms will 
end up with higher scores than documents that just match one. 
One simple term score function we can use is term frequency: the number…[read rest of 3] 



• So far, our matrix uses binary scores 
to indicate the presence of a term. 

• If we allow more values, we can also 
indicate how well the document 
matches that particular term. Terms 
more central to the document’s topic 
should have larger values. 

• Let’s use term frequency (TF): the 
number of occurrences of a term in a 
document. This reflects an intuition 
that a term which appears more often 
is more central to the document.

More Nuanced Term Scores
Binary Scores

TF Scores

The TF scores for Julius Caesar turn out to be 128, 379, 0, and 0 
The scores for The Tempest are 0, 0, 8, and 1 
Hamlet gets 0, 1, 6, and 1, and 
Othello gets 0, 0, 5, and 2. 
We can already see that Julius Caesar is a much better result for the term “Brutus” than Hamlet is. Brutus is a central character of the first play, and the second only mentions 
him once, as a reference to his betrayal of Caesar. This distinction is obvious to anyone who knows the two plays, but is invisible to Boolean Retrieval’s binary term scores.



• In order to sort documents by their 
relevance to a particular query, we will 
generate a query matching score for 
each document and sort by that. 

• The matching score should be a function 
of two vectors which outputs a number. 
The number should be larger when the 
vectors express more similar topics. 

• If they use the same words, they 
probably express similar topics. A 
reasonable starting place is to use the 
dot product of the vectors.

Matching Scores
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[show 1] We compare a document and a query by calculating a matching score for the two term vectors. Those matching scores will impose an ordering on the collection of 
documents, and we’ll use that ordering as our final ranked list. 
That’s the big idea: each document gets a matching score, and the matching scores allow us to sort the documents. So, what properties should the matching score function 
have? [pause] 
I mentioned earlier that using the same mathematical representation for queries and documents makes it easier to compare them. In the Vector Space Model, we’re 
representing documents and queries as term vectors, so [read 2]. 
That is, we want to get larger numbers when the query and document are more related, and smaller numbers when they’re less related. But how can we look at two vectors and 
decide how related they are? !



• In order to sort documents by their 
relevance to a particular query, we will 
generate a query matching score for 
each document and sort by that. 

• The matching score should be a function 
of two vectors which outputs a number. 
The number should be larger when the 
vectors express more similar topics. 

• If they use the same words, they 
probably express similar topics. A 
reasonable starting place is to use the 
dot product of the vectors.

Matching Scores
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The intuition of the Vector Space Model is that [show 3] if they use the same words, they probably express similar topics. One function we could use to compare term vectors is 
the dot product. This function isn’t the best choice we could make, but it serves our purposes for now. 
Let’s see how this works. Suppose our query is for “caesar and brutus,” and our vocabulary includes caesar, brutus, mercy, and worser. The term vector for the query is going to 
be [1 1 0 0]. Using TF term scores, the play Julius Caesar has the term vector [128 379 0 0]. Since the query didn’t repeat any terms, the dot product of these vectors is just the 
sum of the scores for the two query terms, or 507. 
As another example, consider the play Hamlet with the term vector [0 1 6 1]. This play doesn’t mention caesar and only mentions brutus once, so its matching score is 1. That 
means Julius Caesar comes before Hamlet in the ranking, as it should. 
But something else happened that doesn’t happen in Boolean Retrieval: even though Caesar doesn’t appear in Hamlet at all, we still got a matching score for the document. In 
Boolean Retrieval, the document would have been excluded entirely. This kind of matching is a little fuzzier than in the strict world of Boolean Retrieval. It allows us to find the 
best matching documents in the collection, even if they don’t match all of the query terms.



In order to run a search engine using the 
vector space model: 

1. Create an inverted index containing the TF 
of each term in each document. 

2. When the user enters a query, create a term 
vector using the TF of each query term. 

3. Iterate over each document, calculating the 
matching score of the document’s term 
vector with the query’s term vector. 

4. Sort all documents by their matching scores 
in order to get a ranked list, and show the 
user the best 1000 documents.

Query/Document Matching

Let’s put it all together. Here are the steps for performing retrieval using the Vector Space Model. 
[read 0] 
[read 1] This is done in advance, as soon as we get the documents in our collection. 
[read 2] 
[read 3] 
Finally, [read 4] 
The number 1000 is arbitrary, but happens to be a standard choice. In Google, for instance, you initially see the top 10 results but you can go through the top 1000. In research, 
1000 is a convenient cut off because it gives us enough results to perform meaningful analysis on their quality, without trying to impose an order on the whole collection.



• In the module on vector space models, we’ll discuss this model in much 
more depth. Here are a few things that can change: 

‣ Which terms do we include? 

‣ Which term score function do we use? 

‣ Which matching score function do we use? 

‣ How do we avoid iterating over all indexed documents for every query? 

• In our next session, we’ll compare Boolean Retrieval to the Vector Space 
Model to see how they differ.

Wrapping Up

Let’s wrap up. We’ve seen two retrieval models now: Boolean Retrieval and Vector Space Models. In the next module, we’re going to take a much deeper look at VSMs. Vector-
based matching scores are pretty flexible, and you can do a lot of things to improve their performance beyond the simple example we just saw. In particular, consider these 
changes: 
[read 2] In particular, what terms could we add to the query to improve performance? 
[read 3] TF has some drawbacks, which we’ll look at later. 
[read 4] and finally, 
[read 5] We generally don’t have time to scan the whole index, and the user is only likely to read the first few documents we return anyway. How do we read just a small part of 
the index, but make sure that the best documents we find are the best documents in the collection? 
[read 6] 
Thanks for watching!



• In mathematical terms, Vector Space 
Models treat documents and queries as 
vectors in    , where n is the vocabulary 
size.!

• We define an inner product          which 
we use as a similarity function between 
query and document. Higher values 
should correspond to greater query 
relevance. 

• These models uses a “bag of words” 
assumption: word order makes no 
difference, and there is no concept of 
meaningful phrases.

Vector Spaces

RP
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Image from Wikipedia

[read 1] 
We have a number for each term in the vocabulary which indicates how related that term is to the document’s content. Generally, only the values for terms which actually 
appear in the document are nonzero. However, as we’ll see, it’s very useful to add some carefully-chosen nonzero terms to the vectors for queries: they’re so short that they 
don’t really express their topics adequately, and it makes a big difference if we can flesh them out a bit. 
Once we have our two vectors, we use an inner product as a similarity funciton… [read 2]. I say “an inner product” because there are many functions we could potentially use 
for this purpose. The simplest is the dot product, but there are many more. We’ll talk about several them later in the module. The inner product function we choose defines 
what’s called an “inner product space,” such that vectors within that space use the inner product for their notion of distance. Intuitively, the closer two vectors are to each other, 
based on their inner product, the more semantic content they should have in common. 
Note that [read 3]. These limitations will be relaxed in future modules, but many very useful models use the bag of words assumption. It turns out that you can get a long way 
using basic word use and word co-occurrence statistics, without having to figure out the much harder question of understanding what each document is really saying.



Our goal is to produce the best ranking we can get, using VSMs. We 
need to answer these questions: 

• What’s the best term score function we can use? 

• What’s the best way to calculate matching scores? 

• How can we do these calculations efficiently, to minimize query 
processing time? 

• How can we extend the query to better represent its topic?

Big Questions for VSMs

[read bullets]
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Before we dive into the technical details of VSMs let's talk about the bigger picture problem: semantic matching. This is a fundamental task of IR: matching documents to 
queries based on whether they mean the same thing.



• The concept of semantic matching 
between queries and documents is key to 
search, but useful for many other tasks. 

‣ In machine translation, we want to 
match passages with identical 
semantics but in different languages. 

‣ In advertising, we want to match ads 
for products related to what the user is 
searching for. 

‣ In genetics, we want to match amino 
acid sequences that produce proteins 
with similar effects.

Semantic Matching

As it turns out, semantic matching is involved in a lot of tasks beyond information retrieval. 
[read two] 
[read three] 
[read four] in this case, the semantics of the amino acid sequence involve how they will be interpreted by the protein building mechanisms of the cell rather than how a human 
would understand them.



• In VSMs, we model documents and queries 
as vectors within some space, and try to find 
vectors that are “near” each other. 

• There are several pitfalls to watch out for with 
this model: 

‣ We use the bag of words assumption, and 
lose phrase information. 

‣ Our matching score function has to 
account for document lengths. 

‣ Queries omit many keywords which the 
user would include if they were being 
thorough. The query “President Nixon” is 
missing the keyword “Richard.”

Semantic Matching with VSMs
Bag of Words Assumption

“Paul loves ice cream.” 
≅ 

“Ice cream loves Paul.” 
≅ 

“Ice loves cream Paul.”

Document Length Bias
“Paul loves ice cream.” 

≺ 
“Paul loves ice cream. 
Paul loves ice cream. 
Paul loves ice cream.”

Of course here we’re concerned mostly with Vector space models for IR. 
[read 1] This is done by carefully choosing the values we store in the vectors, and the way that we define distance between them. 
[read 2]  
[read 3] for instance consider these three examples. With the bag of words assumption, these three sentences are semantically identical. To a VSM, “Paul loves ice cream” and 
“ice cream loves Paul” are exactly the same sentence. 
[read 4] this might not be obvious at first, but the lengths of two documents has a big effect on how distant they are from each other, and doesn't necessarily affect whether 
they're on the same topic. The vector for “Paul loves ice cream” has a smaller magnitude than the same sentence repeated 3 times, even though the second document doesn't 
say anything extra. 
Also, [read 5]. Presumably the president's full name is relevant to the query. 
Let's talk about these three issues in more depth.



• There are a few problems with this 
assumption: 

‣ We can suffer from query document 
mismatch when alternative terms are 
used to specify some semantic 
concept. 

‣ Many alternate queries express the 
same information need, and users 
often choose different ways to phrase 
the same concept. 

‣ We can’t make use of phrasal 
features or language syntax.

Bag of Words Assumption

Query Document Semantic 
Match?

ny times new york times yes

seattle best hotel seattle best hotels yes

pool schedule swimming pool 
schedule yes

china kong china hong kong no

why are windows 
so expensive

why are macs so 
expensive no

Example due to: Li, H. and Xu, J. 2014. Semantic Matching in Search. 

Foundations and Trends® in Information Retrieval 7, 5 (Jun. 2014)

Here are some drawbacks of the bag of words assumption. 
First, [read 1]. We’re representing the meaning of a document as simply the collection of words it contains, so a naive implementation won’t be able to match documents that 
express the same topic in different ways. 
Relatedly, [read 2]. 
Another big drawback is that [read 3].



• With a naive matching score, such as the dot product, longer documents have an 
unfair advantage due to term repetition. 

• Very short documents may be less relevant (but what about a collection of FAQ 
answers?), but very long documents may also be less relevant. 

• We will discuss several ways to normalize term vectors to address this: 

‣ Instead of TF, consider the fraction of a document the term occupies. 

‣ Take into account the number of distinct terms in the document to account for 
repetitive documents. 

‣ Various fast approximations of these approaches.

Document Length Normalization

Document length normalization is another issue we'll cover. 
[read 1] 
[show 2] Very short documents are often less relevant, but very long documents often have the same problem. 
[read rest] 



• The user’s query may specify a 
concept using terms that happen to 
be missing from a given relevant 
document. 

• We address this by adding terms to 
the query before performing 
matching. 

• This must be done carefully in order 
to avoid adding terms not related to 
the user’s information need.

Query Expansion

Queries for “Obama family tree”

barack obama family
the obama family

obamas
barack obama geneology

obama’s ancestry
obama family tree

barack obama family history
Example due to: Li, H. and Xu, J. 2014. Semantic Matching in Search. 

Foundations and Trends® in Information Retrieval 7, 5 (Jun. 2014)

Query Expansion is our last topic of the module. 
[read 1] Consider this list of queries, all for the same information need. They’re expressing the same concept in slightly different ways, and in a naive implementation of VSMs 
they’ll all match slightly different collections of documents. 
[read 2] Our goal is for all queries with the same information need to match the most relevant documents to that need. 
However, [read 3]. This is called “topic drift,” and can cause you to match non-relevant documents. It’s challenging to pick the right terms when you have so little information 
about the information need.



• We’ll consider solutions to these problems and others in upcoming 
sessions. 

• Spoiler alert: the bag of words assumption is not relaxed in this 
module, but we do move away from it with Language Models. 

• Next, we’ll take a closer look at term scores and learn how to 
emphasize more important terms.

Wrapping Up

Let’s wrap up. 
[read bullets] 
Thanks for watching.
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This module explains what’s wrong with using simple term frequency scores for our document vectors, and then explains several useful alternatives.



• In the first module, we introduced term 
frequency tft,d as a way to measure how 
much term t contributes to document 
d’s meaning. 

• One obvious flaw with this scheme is 
that some of the most common words, 
such as “and” or “the,” contribute no 
meaning to a document. 

• We’d like a term score which assigns 
high weight to terms that are both 
distinctive to the document and 
frequent within the document.

Flaws of TF
Term Min TF Max TF # of Plays

and 426 1,001 37

the 403 1,143 37

die 3 40 37

love 12 171 37

betray 1 6 24

rome 1 110 16

fairy 1 28 10

brutus 1 379 8

verona 5 13 3

romeo 312 312 1
TF of selected terms in Shakespeare’s plays

[read 1] This is a good start, but it has some problems. 
[read 2] Take a look at this table, giving the TF scores for a selection of words in Shakespeare’s plays. The terms with the highest term scores are “syntactic glue” words, such as 
and and the, which show up in hundreds of times in every play. We clearly can’t trust a high TF score by itself to tell us which terms are most important for a document. 
However, it is giving us useful information for some words. The word “love” also shows up in every play, but the number of occurrences varies dramatically. A romantic play like 
Romeo and Juliet will include the word much more often than a political tale like Julius Caesar. As an extreme example, consider the term “romeo.” This word only shows up in 
one play, and it shows up 312 times there. These two facts indicate that it’s a strong signal of topicality, if “plays about romeo” is your topic. 
To summarize, what we’re looking for is a term score [read 3] 
Let’s take a deeper look at the relative frequency of different terms in a corpus. It turns out that, regardless of the language used, term frequencies in any sufficiently large 
corpus will approximately follow something informally called “Zipf’s Law.”



• If you sort words by their frequency, the 
frequency f times the rank r is roughly constant: 

!

!

!

‣ Word 2 appears 1/2 as often as word 1 

‣ Word 10 appears 1/10 as often as word 1, 
and 1/2 as often as word 5 

• Very common words have much higher TF 
values, but most are “syntactic glue” 

• In English, 

Zipf’s Law

HTGS(V) · TCPM(V) � M, SV

2T(V) · TCPM(V) � E
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Zipf’s Law

Zipf’s Law

Zipf’s Law states that if you sort all the terms in your corpus by their frequency, the frequency times the rank in that sorted list is roughly constant. 
That is, frequency times rank is always pretty close to some constant k. Equivalently, the probability of seeing a term times its rank when all the terms are sorted by frequency is 
roughly constant. 
In practical terms, that means that the second most popular word will show up roughly half as often as the most popular word. The tenth most popular word will appear 1/10 as 
often as the most popular word, and half as often as the fifth most popular. This is called a “power law” distribution. A handful of words appear extremely frequently, and a 
majority of the vocabulary is pretty uncommon. 
Anybody who’s learned multiple languages is already familiar with this concept: you can learn just a few hundred words of a new language and usually be able to get your point 
across, and as you learn more and more words you use each of them less and less often. 
Let’s look at a real world data set and see how Zipf’s Law holds up there.



• We want term scores to be proportional to TF, but 
we want to discount scores for too-common terms. 

• Two common ways to discount: 

‣ A term’s cumulative frequency cft is total number 
of occurrences of term t in the collection. 

‣ The term’s document frequency dft is the 
number of documents in the collection which 
contain term t. 

• The most common way to discount is to multiply 
by log(D/dft)., where D is the number of documents 
in the collection. This is called IDF, for inverse 
document frequency, and leads to TF-IDF scores. 

How do we fix it?

VH�KFHV,F := VHV,F · log (&/FHV)

Term Doc tf df cf tf
df

tf
cf tf-idf

and King Lear 737 37 25,932 19.92 0.028 0

love Romeo and 
Juliet 150 37 2,019 4.05 0.074 0

rome Hamlet 2 16 332 0.125 0.006 1.68

rome Julius 
Caesar 42 16 332 2.625 0.127 35.21

romeo Romeo and 
Juliet 312 1 312 312 1 1126.61

Various term score functions. 
Why is TF-IDF 0 for “love” in Romeo and Juliet?

So, we know that the highest TF scores are probably useless for semantic matching. How do we fix that? 
[read 1] 
Many approaches to discounting these terms have been suggested, but in general they reduce the scores when some other measure, like the total number of occurrences of 
the term in the whole collection, is high. 
Let’s look at two different ways we could do this. The cumulative frequency, or cf, is the number of times the term appears in the whole collection. The document frequency, or 
df, is the number of documents in which the term appears. 
We commonly discount by multiplying the TF score by the logarithm of the number of documents in the collection divided by the df. This is called the inverse document 
frequency, or IDF. 



• We want term scores to be proportional to TF, but 
we want to discount scores for too-common terms. 

• Two common ways to discount: 

‣ A term’s cumulative frequency cft is total number 
of occurrences of term t in the collection. 

‣ The term’s document frequency dft is the 
number of documents in the collection which 
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• The most common way to discount is to multiply 
by log(D/dft)., where D is the number of documents 
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love Romeo and 
Juliet 150 37 2,019 4.05 0.074 0
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Caesar 42 16 332 2.625 0.127 35.21
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Various term score functions. 
Why is TF-IDF 0 for “love” in Romeo and Juliet?

Let’s compare these different weighting schemes in the table on the right. 
The term and shows up in every document. Its TF in King Lear is 737. If you divide that by the DF you get roughly 20, and by CF you get almost zero. Its TF-IDF score is zero, 
because it appears in every document. 
The term rome shows up much more in Julius Caesar than in Hamlet, though it’s much less common than “and.” If we just discount by df or cf, it still has a lower score than 
“and.” However, its TF-IDF score is higher for Hamlet, and much higher for Julius Caesar. That’s exactly what we want. 
As an extreme example, the term Romeo, which only shows up in a single play, has a very high TF-IDF score. That’s perfect, because this term is a perfect feature in this corpus 
for finding plays about Romeo.



• Another problem with TF is that 
repeated use of a term doesn’t 
necessarily imply more information 
about it. 

• A document with TF=20 seems 
unlikely to have exactly ten times the 
information as a document with TF=2. 

• We want term repetition to give a 
document diminishing returns. A 
common solution is to use the 
logarithm instead of a linear function.

Nonlinear TF Scaling

YHV,F :=

�
� + NQI(VHV,F) MJ VHV,F > �
� SXLIV[MWI

YH�KFHV,F := YHV,F · KFHV

*wf stands for “weight function” and is not an official name.

Another issue with term frequency is [read 1]. 
[read 2] Maybe it was just more verbose or repetitive, not more informative. 
We commonly address this by using the logarithm of the term frequency rather than the TF itself. This has the diminishing returns we want to see for TF scores. 
But perhaps you’re not happy with using the logarithm: it’s just a heuristic, chosen because it happens to have the diminishing returns property. What else could you do?



• As an alternative to nonlinear 
scaling, we could consider 
normalizing the TF scores by the TF 
of the most popular term in the 
document. 

• The role of a in this formula is to 
produce scores that change more 
gradually as tft,d changes. 

• a is commonly set to 0.4.

Normalized TF Scores

PVHV,F := C + (� � C)
VHV,F

OCZ�VHF
, � < C < �

OCZ�VHF := max
ɘ�F

VHɘ,F

Another approach is to normalize the TF scores by the TF of the most popular term in the document. This approach is basically asking, “what fraction of the document is 
comprised of this term?” If the document is just repetitive, it will probably have a limited vocabulary. These terms won’t benefit from having a higher absolute TF, because they 
still comprise similar fractions of the document. On the other hand, if a document has a wide vocabulary but emphasizes a handful of terms, then they are probably central to 
the them of a diverse, informative document. 
In this particular formulation, we use a parameter, “a,” so we get similar scores for terms with very similar TF scores. This is called “smoothing,” and will be covered in more 
detail in the next module.



• The term score functions used for VSMs are often heuristics based on some insight 
into a problem with previously-used functions. 

• When we discuss Language Models, we will implement these insights in a more 
principled way. 

• We showed solutions for several problems with raw TF scores, but the resulting 
scores are far from perfect. 

‣ We don’t separate word senses: “love” can be used to mean many things 

‣ A popular word can nevertheless have pages devoted to it, and be the topic of 
some query. Can we effectively search for Shakespearean plays that tell love 
stories using TF-IDF scores?

Wrapping Up

Let’s wrap up. 
[read bullets] 
Thanks for watching.
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Now that we’ve looked at some different term score functions we can use, let’s focus on how to compare two term vectors to each other.



• Imagine that we have perfect term 
scores: our vectors exactly capture the 
document’s (or query’s) meaning. 

• How can we compare two of these 
vectors so we can rank the documents? 

• Let’s try a similarity function based on the 
Euclidean distance between the vectors.

Finding Similar Vectors

Play TF Distance Similarity
Henry VI, 

part 2 1 0 1.0

Hamlet 1 0 1.0
Antony and 
Cleopatra 4 4.59 0.179

Coriolanus 109 165.40 0.006
Julius 

Caesar 379 578.9 0.002

Plays for query “brutus” using TF-IDF term scores

• What’s wrong? 

‣ In the query’s term vector, TF=1. 

‣ Documents with TF > 1 are further from 
the query, so have lower similarity.

FKUV(S, F) :=

��

V

(SV � FV)�

UKO(S, F) :=
�

� + FKUV(S, F)

Imagine that we are incredibly brilliant, and have found the perfect term score function. Our term vectors perfectly capture the document’s meaning. We still have a big 
challenge: how can we compare two of these term vectors so we can rank the documents? 
For starters, let’s try a similarity function based on the Euclidean distance between vectors. Euclidean distance is the standard distance function you’re probably used to. It 
considers the two vectors as points in a Euclidean space, and measures how far those points are from each other. It’s the square root of the sum of the squared distances along 
each axis. This is exactly like Pythagorus’ theorem, scaled up to any number of dimensions. 
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Antony and 
Cleopatra 4 4.59 0.179

Coriolanus 109 165.40 0.006
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• What’s wrong? 

‣ In the query’s term vector, TF=1. 
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UKO(S, F) :=
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� + FKUV(S, F)

For our similarity function, we’ll use 1 over 1 plus the Euclidean distance. This gets bigger when the distance gets smaller, so closer documents will be more similar. 
How does it work? Well, let’s keep things simple and delete every word from Shakespeare’s plays except for “brutus.” We’ll use TF term scores, and compare just the six plays 
where the term appears. 
By this measure, Henry VI and Hamlet are perfect matches for the query “brutus,” with TF 1. Coriolanus and Julius Caesar, both of which have characters named Brutus, are 
considered terrible matches, with very low matching scores. 
In fact, the more often the term Brutus appears in a play, the lower the similarity gets. What’s going wrong here? 
Let’s think about exactly what we’re doing. In the query’s term vector, brutus has TF=1. Since we’re using Euclidean distance, documents with TF=1 will match perfectly; TF=0 
and TF=2 will be identical to each other and just a little worse than TF=1, and as TF gets higher than 2 the document’s vector moves further and further from the query vector. 
This is the opposite of what we want! This similarity function is a failed experiment.



• We used the dot product in module 1. How 
does that work? 

• For many documents, it gives the results we 
want. 

• However, imagine building a document by 
repeating the contents of some other 
document. 

• Should two copies of Julius Caesar really 
match better than a single copy? 

• Should “The Complete Plays of Shakespeare” 
match better than individual plays it contains?

Dot Product Similarity

Play TF Similarity
Henry VI, part 2 1 2.34

Hamlet 1 2.34
Antony and 
Cleopatra 4 9.38

Coriolanus 109 255.65
Julius Caesar 379 888.91

Julius Caesar x 2 758 1777.83
Julius Caesar x 3 1137 2666.74

Plays for query “brutus” using TF-IDF term scores

UKO(S, F) := S · F

What if we just use the dot product of the two vectors? We tried this in the last module, and it appeared to do pretty well. 
One reason this doesn’t work well is that it unfairly favors repetitive documents. If you made a new play by copying Julius Caesar twice, that new play would match everything 
the original play matched, but twice as much. 
This similarity function is fast and works fairly well, so it does get used sometimes. However, there’s a more principled way to compare these vectors.



• Cosine Similarity solves the 
problems of both Euclidean-based 
similarity and the dot product. 

‣ Instead of using distance 
between the vectors, we should 
use the angle between them. 

‣ Instead of using the dot product, 
we should use a length-
normalized dot product. That is, 
convert to unit vectors and take 
their dot product.

Cosine Similarity

Play TF Similarity
Henry VI, part 2 1 0.002

Antony and 
Cleopatra 4 0.004

Coriolanus 109 0.122
Julius Caesar 379 0.550

Julius Caesar x 2 758 0.550

Plays for query “brutus” using TF-IDF term scores

UKO(S, F) :=
S · F

�S� · �F�

=
S · F��

K S
�
K ·

��
K F

�
K

=
S��

K S
�
K

· F��
K F

�
K

Cosine Similarity solves the problems with our prior two similarity functions. It’s based on the intuition that the magnitude of a term vector isn’t very important. What matters is 
which terms show up in the vector, and what their relative sizes are. In other words, what’s the term vector’s angle? 
This function uses the angle between two vectors as the distance between them, and totally ignores their relative lengths. 
Another way to look at it is that it converts the two term vectors to unit vectors, with magnitude 1, and then uses the dot product between them. 
If we look at the same plays with Cosine Similarity, we get exactly the results we want. Henry VI is the worst match, and Julius Caesar the best. Double Julius Caesar doesn’t 
change its matching score at all, because it just changes the vector’s magnitude and we’re ignoring that. 
However, this function isn’t perfect either.



• The normalization term for cosine 
similarity can’t be calculated in 
advance, if it depends on dft or cft. 

• For faster querying, we sometimes 
approximate it using the number of 
terms in the document. 

• This preserves some information 
about relative document length, 
which can sometimes be helpful.

Approximating Cosine Similarity

Play TF Similarity
Henry VI, part 2 1 0.014

Antony and 
Cleopatra 4 0.056

Coriolanus 109 1.478
Julius Caesar 379 6.109

Julius Caesar x 2 758 8.639

Plays for query “brutus” using TF-IDF term scores

UKO(S, F) � S�
NGP(S)

· F�
NGP(F)

One problem is that [read 1]. If we’re using TF-IDF, for instance, we’ll need to calculate the term for the denominator at query time by iterating over all the terms in each 
document we’re considering. That gets expensive fast. 
[read 2] This isn’t quite converting the vectors to unit vectors, but it’s close, and much faster to calculate at query time. 
It also preserves some [read 3]. In fact, there’s another technique that’s sometimes used to preserve this information in a more precise way.



• Some long documents have many short 
sections, each relevant to a different 
query. 

• These are hurt by Cosine Similarity 
because they contain many more distinct 
terms than average. 

• If we normalize by a number less than the 
length for short documents, and more than 
the length for long documents, we can 
give a slight boost to longer documents. 

• This comes in both exact and approximate 
forms.

Pivoted Normalized Document Length

UKO(S, F) :=
S

�S� · F
C�F� + (� � C)RKX

,

� < C < �; RKX HIXIVQMRIH�IQTMVMGEPP]�

� S
�S� · F

CWF + (� � C)RKX
,

WF MW���YRMUYI�XIVQW�MR F

* See: http://nlp.stanford.edu/IR-book/html/htmledition/pivoted-normalized-document-length-1.html

Some long documents, such as FAQs, have many [read 1] 
[read 2] 
There’s a simple way to fix this: just normalize by a [read 3] 
The way you implement the details depend on exactly what you want to do. [read 4] 
If you’re interested in learning the details of this approach, follow the URL at the bottom of the slide.



• VSM weights can be denoted as ddd.qqq, where ddd indicates the scheme for document weights 
and qqq the scheme for queries. The triples are: term frequency, doc frequency, normalization. 

• A common choice is lnc.ltc: document vectors use log term frequency and cosine 
normalization, and query vectors use log term frequency, IDF, and cosine normalization.

SMART Notation

Image from: http://nlp.stanford.edu/IR-book/html/htmledition/document-and-query-weighting-schemes-1.html

Let’s bring this all together. There’s a standard notation for the term scores and matching scores for VSMs. It’s called SMART notation, named after one of the first VSMs 
published in the literature. 
In SMART notation, [read 1]. So if you wanted to use log term frequency weights with IDF and cosine similarity, you would call that l (for log TF) t (for IDF) c (for cosine 
normalization). 
A common choice in production systems is [read 2]. 
There are a few options in here that we didn’t cover. Check out the textbook by Manning et al for the details.



• Ultimately, the choice of a scoring system to use depends on a 
balance between accuracy and performance. 

• Ignoring document length entirely with cosine similarity is a big 
improvement over the simple dot product, but it turns out that there 
are subtle cases when document length information is helpful. 

• Next, we’ll look at ways to efficiently calculate these scores at query 
time.

Wrapping Up


