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Language Models



Vector Space Models work reasonably well, but have a few problems: 

• They are based on bag-of-words, so they ignore grammatical 
context and suffer from term mismatch. 

• They don’t adapt to the user or collection, but ideal term weights are 
user- and domain-specific. 

• They are heuristic-based, and don’t have much explanatory power.

What’s wrong with VSMs?



We can address these problems by moving to probabilistic models, 
such as language models: 

• We can take grammatical context into account, and trade off 
between using more context and performing faster inference. 

• The model can be trained from a particular collection, or conditioned 
based on user- and domain-specific features. 

• The model is interpretable, and makes concrete predictions about 
query and document relevance.

Probabilistic Modeling



1. Ranking as a probabilistic classification task 

2. Some specific probabilistic models for classification 

3. Smoothing: estimating model parameters from sparse data 

4. A probabilistic approach to pseudo-relevance feedback

In this Module…



Imagine we have a function that gives us the probability that a document D is 
relevant to a query Q, P(R=1|D, Q). We call this function a probabilistic model, 
and can rank documents by decreasing probability of relevance. 

There are many useful models, which differ by things like: 

• Sensitivity to different document properties, like grammatical context 

• Amount of training data needed to train the model parameters 

• Ability to handle noise in document data or relevance labels 

For simplicity here, we will hold the query constant and consider P(R=1|D).

Ranking with Probabilistic Models



Suppose we have documents and 
relevance labels, and we want to 
empirically measure P(R=1|D). 

Each document has only one 
relevance label, so every probability is 
either 0 or 1. Worse, there is no way to 
generalize to new documents. 

Instead, we estimate the probability of 
documents given relevance labels,   
P(D|R=1).

The Flaw in our Plan
D=1 
R=1

D=3 
R=0

D=4 
R=0

D=5 
R=0

2(4 = �|&) = �

D=1 D=2 D=3 D=4 D=5

P(D|R=1) 1/2 1/2 0 0 0

P(D|R=0) 0 0 1/3 1/3 1/3

D=2 
R=1

2(4 = �|&) = �



We can estimate P(D|R=1), not P(R=1|D), 
so we apply Bayes’ Rule to estimate 
document relevance. 

• P(D|R=1) gives the probability that a 
relevant document would have the 
properties encoded by the random 
variable D. 

• P(R=1) is the probability that a 
randomly-selected document is 
relevant.

Bayes’ Rule

2(4 = �|&) =
2(&|4 = �)2(4 = �)

2(&)

=
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Starting from Bayes’ Rule, we can easily build a classifier to tell us whether documents 
are relevant. We will say a document is relevant if: 

!

!

!

!

We can estimate P(D|R=1) and P(D|R=0) using a language model, and P(R=0) and P(R=1) 
based on the query, or using a constant. Note that for large web collections, P(R=1) is 
very small for virtually any query.

Bayesian Classification
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In order to put this together, we need a language model to estimate 
P(D|R). 

Let’s start with a model based on the bag-of-words assumption. We’ll 
represent a document as a collection of independent words 
(“unigrams”).

Unigram Language Model

& = (Y�,Y�, . . . ,YP)
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Let’s consider querying a collection of five short documents with a 
simplified vocabulary: the only words are apple, baker, and crab.

Example

Document Rel? apple? baker? crab?

apple apple crab! 1 1 0 1

crab baker crab 0 0 1 1

apple baker baker 1 1 1 0

crab crab apple 0 1 0 1

baker baker crab 0 0 1 1

2(4 = �) = �/�

2(4 = �) = �/�

Term # Rel # Non Rel P(w|R=1) P(w|R=0)

apple 2 1 2/2 1/3

baker 1 2 1/2 2/3

crab 1 3 1/2 3/3



Is “apple baker crab” relevant?

Example

Term P(w|R=1) P(w|R=0)

apple 1 1/3

baker 1/2 2/3

crab 1/2 1
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So far, we’ve focused on language models like P(D = w1, w2, …, wn). Where’s the query? 

Remember the key insight from vector space models: we want to represent queries and 
documents in the same way. The query is just a “short document:” a sequence of 
words. There are three obvious approaches we can use for ranking: 

1. Query likelihood: Train a language model on a document, and estimate the query’s 
probability. 

2. Document likelihood: Train a language model on the query, and estimate the 
document’s probability. 

3. Model divergence: Train language models on the document and the query, and 
compare them.

Retrieval With Language Models



Suppose that the query specifies a 
topic. We want to know the probability 
of a document being generated from 
that topic, or P(D|Q). 

However, the query is very small, and 
documents are long: document 
language models have less variance. 

In the Query Likelihood Model, we use 
Bayes' Rule to rank documents based 
on the probability of generating the 
query from the documents’ language 
models.

Query Likelihood Retrieval

Assuming uniform prior

Naive Bayes unigram model
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Example: Query Likelihood
Wikipedia: WWI

World War I (WWI or WW1 or World War One), 
also known as the First World War or the 
Great War, was a global war centred in Europe 
that began on 28 July 1914 and lasted until 11 
November 1918. More than 9 million 
combatants and 7 million civilians died as a 
result of the war, a casualty rate exacerbated 
by the belligerents' technological and industrial 
sophistication, and tactical stalemate. It was 
one of the deadliest conflicts in history, paving 
the way for major political changes, including 
revolutions in many of the nations involved.

Query: “deadliest war in history”
Term P(w|D) log P(w|D)

deadliest 1/94 = 0.011 -1.973
war 6/94 = 0.063 -1.195
in 3/94 = 0.032 -1.496

history 1/94 = 0.011 -1.973

Π = 2.30e-7 Σ = -6.637

http://en.wikipedia.org/wiki/World_war
http://en.wikipedia.org/wiki/Combatants
http://en.wikipedia.org/wiki/Civilian
http://en.wikipedia.org/wiki/World_War_I_casualties
http://en.wikipedia.org/wiki/List_of_wars_and_anthropogenic_disasters_by_death_toll


Example: Query Likelihood

Wikipedia: Taiping Rebellion

The Taiping Rebellion was a massive civil 
war in southern China from 1850 to 1864, 
against the ruling Manchu Qing dynasty. It 
was a millenarian movement led by Hong 
Xiuquan, who announced that he had 
received visions, in which he learned that he 
was the younger brother of Jesus. At least 20 
million people died, mainly civilians, in one of 
the deadliest military conflicts in history.

Query: “deadliest war in history”
Term P(w|D) log P(w|D)

deadliest 1/56 = 0.017 -1.748
war 1/56 = 0.017 -1.748
in 2/56 = 0.035 -1.447

history 1/56 = 0.017 -1.748

Π = 2.56e-8 Σ = −6.691

http://en.wikipedia.org/wiki/Civil_war
http://en.wikipedia.org/wiki/Southern_China
http://en.wikipedia.org/wiki/Manchu_people
http://en.wikipedia.org/wiki/Qing_dynasty
http://en.wikipedia.org/wiki/Millenarian
http://en.wikipedia.org/wiki/Hong_Xiuquan
http://en.wikipedia.org/wiki/Jesus
http://en.wikipedia.org/wiki/List_of_wars_and_anthropogenic_disasters_by_death_toll


There are many ways to move beyond this basic model. 

• Use n-gram or skip-gram probabilities, instead of unigrams. 

• Model document probabilities P(D) based on length, authority, genre, 
etc. instead of assuming a uniform probability. 

• Use the tools from the VSM slides: stemming, stopping, etc. 

Next, we’ll see how to fix a major issue with our probability estimates: 
what happens if a query term doesn’t appear in the document?

Summary: Language Model



There are three obvious ways to perform retrieval using language models: 

1. Query Likelihood Retrieval trains a model on the document and 
estimates the query’s likelihood. We’ve focused on these so far. 

2. Document Likelihood Retrieval trains a model on the query and 
estimates the document’s likelihood. Queries are very short, so these 
seem less promising. 

3. Model Divergence Retrieval trains models on both the document and 
the query, and compares them.

Retrieval With Language Models



The most common way to compare 
probability distributions is with 
Kullback-Liebler (“KL”) Divergence. 

This is a measure from Information 
Theory which can be interpreted as 
the expected number of bits you 
would waste if you compressed data 
distributed along p as if it was 
distributed along q. 

If p = q, DKL(p||q) = 0.

Comparing Distributions

&-.(R�S) =
�

G

R(G) log
R(G)
S(G)



Model Divergence Retrieval works as 
follows: 

1. Choose a language model for the 
query, p(w|q). 

2. Choose a language model for the 
document, p(w|d). 

3. Rank by –DKL(p(w|q) || p(w|d)) – more 
divergence means a worse match. 

This can be simplified to a cross-entropy 
calculation, as shown to the right.

Divergence-based Retrieval
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Model Divergence Retrieval 
generalizes the Query and Document 
Likelihood models, and is the most 
flexible of the three. 

Any language model can be used for 
the query or document. They don’t 
have to be the same. It can help to 
smooth or normalize them differently. 

If you pick the maximum likelihood 
model for the query, this is equivalent 
to the query likelihood model.

Retrieval Flexibility

Equivalence to Query Likelihood Model

4MGO R(Y|S) :=
VHY,S

|S| =
�
|S|

&-.(R(Y|S)�R(Y|F)) TCPM
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�
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�
|S| log R(Y|F)



We make the following model choices: 

• p(w|q) is Dirichlet-smoothed with a 
background of words used in 
historical queries. 

• p(w|d) is Dirichlet-smoothed with a 
background of words used in 
documents from the corpus. 

• Σw qfw = 500,000 

• Σw cfw = 1,000,000,000

Example: Model Divergence Retrieval

0IX SHY := EQWPV([SVH Y MR UYIV] PSK)

R(Y|S, ɑ = �) =
VHY,S + � � SHY�

Y SHY

|S| + �

R(Y|F, ɑ = ����) =
VHY,F + �, ��� � EHY�

Y EHY

|F| + �, ���

&-.(R(Y|S)�R(Y|F)) TCPM
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�

Y
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= �
�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log
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Y EHY
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Ranking by (negative) KL-Divergence provides a very flexible and theoretically-sound retrieval system.



Example: Model Divergence Retrieval

Wikipedia: WWI
World War I (WWI or WW1 or World War 
One), also known as the First World War or 
the Great War, was a global war centred in 
Europe that began on 28 July 1914 and 
lasted until 11 November 1918. More than 
9 million combatants and 7 million civilians 
died as a result of the war, a casualty rate 
exacerbated by the belligerents' 
technological and industrial sophistication, 
and tactical stalemate. It was one of the 

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 0.002 -1.891

war 2,000 35,000 0.202 0.003 -1.700

one 6,000 5E+07 0.205 0.049 -0.893

-4.484

�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

http://en.wikipedia.org/wiki/World_war
http://en.wikipedia.org/wiki/Combatants
http://en.wikipedia.org/wiki/Civilian
http://en.wikipedia.org/wiki/World_War_I_casualties
http://en.wikipedia.org/wiki/List_of_wars_and_anthropogenic_disasters_by_death_toll


Example: Model Divergence Retrieval

Wikipedia: Taiping Rebellion
The Taiping Rebellion was a massive civil 
war in southern China from 1850 to 1864, 
against the ruling Manchu Qing dynasty. It 
was a millenarian movement led by Hong 

Xiuquan, who announced that he had 
received visions, in which he learned that he 
was the younger brother of Jesus. At least 20 
million people died, mainly civilians, in one of 

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 8.75E-05 -2.723

war 2,000 35,000 0.202 0.001 -2.199

one 6,000 5E+07 0.205 0.049 -0.890

-5.812

�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

http://en.wikipedia.org/wiki/Civil_war
http://en.wikipedia.org/wiki/Southern_China
http://en.wikipedia.org/wiki/Manchu_people
http://en.wikipedia.org/wiki/Qing_dynasty
http://en.wikipedia.org/wiki/Millenarian
http://en.wikipedia.org/wiki/Hong_Xiuquan
http://en.wikipedia.org/wiki/Jesus


Although the bag of words model works very well for text classification, it is intuitively 
unsatisfying – it assumes the words in a document are independent, given the relevance 
label, and nobody believes this. 

What could we replace it with? 

• A “bag of paragraphs” wouldn’t work – too many paragraphs are unique in the 
collection, so we can’t do meaningful statistics without subdividing them. 

• A “bag of sentences” is better, but not much – many sentences are unique, and two 
documents expressing the same thought are unlikely to choose exactly the same 
sentence. We need similar documents to have similar features. 

• We’ll use sets of words, called n-grams, and consider sets of different sizes to balance 
between good probability estimates (for small n) and semantic nuance (for large n).

Modeling Language



Maximum likelihood probability 
estimates assign zero probability to 
terms missing from the training data. 

This is catastrophic for a Naive Bayes 
retrieval model: any document that 
doesn’t contain all query terms will get 
a matching score of zero. 

Many other probabilistic models have 
similar problems. Only truly impossible 
events should have zero probability.

Probability Estimation

Query Likelihood Model

Query: “world war one”

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.00

0.05

0.03

2(&|3)
TCPM
=

�
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2(Y|&)
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The solution is to adjust our probability estimates by taking some probability away from the 
most-likely events, and moving it to the less-likely events. 

!

!

!

!

!

This makes the probability distribution less spiky, or “smoother.” The probabilities all move 
just a little toward the mean.

Smoothing

Maximum Likelihood Estimate

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.00

0.05

0.03

Smoothed Estimate

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)
0.0010

0.0495

0.0295



Smoothing is important for many reasons. 

• Assigning zero probability to possible events is incorrect. 

• Maximum likelihood estimates from your data don’t generalize perfectly 
to new data, so a Bayesian update from some kind of prior works better. 

However, uniform smoothing doesn’t work very well for language 
modeling. Next, we’ll see why that is, and how we can do better. 

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to 
information retrieval.

Smoothing



Laplace Smoothing, aka “add-one 
smoothing,” smooths maximum likelihood 
estimates by adding one count to each 
event. 

!

!

!

!

This is equivalent to a Bayesian posterior 
with a uniform prior, as we'll see.

Laplace Smoothing

Pierre-Simon Laplace (1745-1827)
Image from Wikipedia

2(G) =
EQWPV(G) + ��

G�GXGPVU (EQWPV(G) + �)

2(Y|F) =
VHY,F + �
|F| + |8|



If we assume nothing about a 
document’s vocabulary distribution, 
we will use uniform probabilities for all 
terms. 

When we observe the terms in a 
document, the Bayesian update of 
these probabilities yields Laplace 
smoothing. 

This Bayesian posterior is our 
smoothed estimate of the vocabulary 
distribution for the document’s topic.

Deriving Laplace Smoothing
2(ř|Ɇ) MW &KTKEJNGV(ř|Ɇ�, . . . , Ɇ8) �

8�

K=�

řɆK��
K

2(F|ř) MW /WNVKPQOKCN(ř) �
8�

K=�

řVHK,F
K

2(Y|F) � 2(F|ř)2(ř|Ɇ) =
8�

K=�

řVHK,F+ɆK��
K

MW &KTKEJNGV(ř|Ɇ� + VH�,F, . . . , Ɇ8 + VH8,F)

E[2(Y|F)|Ɇ = �] =
VH�,F + �
|F| + 8



Laplace smoothing can be 
generalized from add-one smoothing 
to add-� smoothing, for � ∈ (0, 1]. 

This lets you tune the amount of 
smoothing you want to use: smaller 
values of � are closer to the maximum 
likelihood estimate.

Add-� Smoothing

2(G) =
EQWPV(G) + Ɇ�

G�GXGPVU (EQWPV(G) + Ɇ)

2(Y|F) =
VHY,F + Ɇ

|F| + Ɇ|8|



Uniform smoothing assigns the same probability to all unseen words, 
which isn’t realistic. This is easiest to see for n-gram models: 

!

We strongly believe that “house” is more likely to follow “the white” 
than “effortless” is, even if neither trigram appears in our training data. 

Our bigram counts should help: “white house” probably appears more 
often than “white effortless.” We can use bigram probabilities as a 
background distribution to help smooth our trigram probabilities.

Limits of Uniform Smoothing

2(JQWUG|VJG,YJKVG) > 2(GHHQTVNGUU|VJG,YJKVG)



One way to combine foreground and background distributions is to take their 
linear combination. This is the simplest form of Jelinek-Mercer Smoothing. 

!

For instance, you can smooth n-grams with (n-1)-gram probabilities. 

!

You can also smooth document estimates with corpus-wide estimates. 

Jelinek-Mercer Smoothing

R̂(G) = ɐRHI(G) + (� � ɐ)RDI(G), � < ɐ < �

R̂(YP|Y�, . . . ,YP��) = ɐR(YP|Y�, . . . ,YP��) + (� � ɐ)R(YP|Y�, . . . ,YP��)

R̂(Y|F) = ɐ
VHY,F

|F| + (� � ɐ)
EHY�
Y EHY



Most smoothing techniques amount to 
finding a particular value for λ in 
Jelinek-Mercer smoothing. 

For instance, add-one smoothing is 
Jelinek-Mercer smoothing with a 
uniform background distribution and a 
particular value of λ.

Relationship to Laplace Smoothing

4MGO ɐ =
|F|

|F| + |8|

R̂(Y|F) = ɐ
VHY,F

|F| + (� � ɐ)
�

|8|

=

�
|F|

|F| + |8|

�
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�
|8|

|F| + |8|

�
�

|8|

=
VHY,F

|F| + |8| +
�

|F| + |8|

=
VHY,F + �
|F| + |8|



TF-IDF is also closely related to 
Jelinek-Mercer smoothing. 

If you smooth the query likelihood 
model with a corpus-wide background 
probability, the resulting scoring 
function is proportional to TF and 
inversely proportional to DF.

Relationship to TF-IDF
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Dirichlet Smoothing is the same as 
Jelinek-Mercer smoothing, picking λ 
based on document length and a 
parameter μ – an estimate of the 
average doc length. 

!

The scoring function to the right is the 
Bayesian posterior using a Dirichlet 
prior with parameters: 

Dirichlet Smoothing

ɐ = � � ɑ
|F| + ɑ

�
ɑ

EHY��
Y EHY
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EHYP�
Y EHY

�
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Y EHY
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Example: Dirichlet Smoothing
Query: “president lincoln”

tf 15

cf 160,000

tf 25

cf 2,400

|d| 1,800

Σ 10

μ 2,000

log R(S|F) =
�

Y�S

log
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

= log
�� + �, ��� � (���, ���/���)

�, ��� + �, ���

+ log
�� + �, ��� � (�, ���/���)

�, ��� + �, ���
= log(��.��/�, ���) + log(��.���/�, ���)
= � �.�� + ��.��
= � ��.��



Dirichlet Smoothing is a good choice for 
many IR tasks. 

• As with all smoothing techniques, it never 
assigns zero probability to a term. 

• It is a Bayesian posterior which considers 
how the document differs from the corpus. 

• It normalizes by document length, so 
estimates from short documents and long 
documents are comparable. 

• It runs quickly, compared to many more 
exotic smoothing techniques.

Effect of Dirichlet Smoothing

tf tf ML Score Smoothed 
Score

15 25 -3.937 -10.53

15 1 -5.334 -13.75

15 0 N/A -19.05

1 25 -5.113 -12.99

0 25 N/A -14.4



Dirichlet Smoothing is the same as 
Jelinek-Mercer smoothing, picking λ 
based on  

 * doc length |d| 

 * doc vocabulary |V| (number of 
unique terms in document) 

!

Witten-Bell Smoothing

� =
|d|

|d|+ |V |



An n-gram is an ordered set of n 
contiguous words, usually found within 
a single sentence. Special cases are n 
= 1 (unigrams), n = 2 (bigrams), and n = 
3 (trigrams). 

Skip-grams are more “relaxed” – they 
can appear in any order, and need not 
be adjacent. They are an unordered 
set of n words that appear within a 
fixed window of k words.

N-grams and Skip-grams

The quick brown fox jumped over the lazy dog.
Sentence

Trigrams (n = 3)
the quick brown 
quick brown fox 

brown fox jumped 
…

Skip-grams (n = 3, k = 5)
quick brown fox 

fox jumped quick 
lazy dog jumped 

…



We typically construct a generative 
model of n-grams using Markov chains 
– what is the probability distribution over 
the next word in the n-gram, given the n 
– 1 words we’ve seen so far? 

P(wn|w1, w2, …, wn-1) 

This assumes that words are 
independent, given the relevance label 
and the preceding n – 1 words. 

We use a special token, like $, for words 
“before” the beginning of the sentence.

Markov Chains

The quick brown fox jumped over the lazy dog.
Sentence

Trigram Sentence Probability
2(VJG|$, $) · 2(SWKEM|$, VJG) · 2(DTQYP|VJG, SWKEM)
·2(HQZ|SWKEM, DTQYP) · 2(LWORGF|DTQYP, HQZ)
·2(QXGT|HQZ, LWORGF) · 2(VJG|LWORGF, QXGT)
·2(NC\[|QXGT, VJG) · 2(FQI|VJG, NC\[)



How many n-grams do we expect to see, as a 
function of the vocabulary size v and n-gram 
size n? 

• At first glance, you’d expect to see 

!

• However, most possible n-grams will never 
appear (like “correct horse battery 
staple?”), and n-grams are limited by 
typical sentence lengths. 

• As n increases, the number of distinct 
observed n-grams peaks around n = 4 and 
then decreases.

Number of n-grams in a Corpus

�
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P

�
= 1(XP)

Web 1T 5-gram Corpus
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Total tokens: 1,024,908,267,229 
Vocabulary size: 13,588,391



The best n-gram size to use depends on a variance-bias tradeoff: 

• Smaller values of n have more training data: infrequent n-grams will 
appear more often, reducing the variance of your probability estimates. 

• Larger values of n take more context into account: they have more 
semantic information, reducing the bias of your probability estimates. 

The best n-gram size is the largest value your data will support. Common 
choices are n = 3 for millions of words, or n = 2 for smaller corpora.

Choosing n-gram Size



Using n-grams and skip-grams allows us to include some linguistic 
context in our retrieval models. This helps disambiguate word senses 
and improve retrieval performance. 

Larger values of n are beneficial, if you have the data to support them. 
The number of n-grams does not grow exponentially in n, so the index 
size can be manageable. 

Next, we’ll see how to use an n-gram language model for retrieval.

Wrapping Up


