
Structures
Pointers and Structures

Linked Lists

Abstract data types

Abstraction = model
• present characteristics, model, design
• not the concrete data or objects

Example: design of a database
• tables, fields, properties

Example: many math definitions
• matrix = a table of numbers, etc
• vectorial space = a set with algebraic operators and properties

Abstractions very useful for humans when building "logic"

Combined data = structure

in C++ we can create a new "user" type
class person { //this is the new defined type
• int ID; // these are members
• int age;
• char name[25];
• int phone;
• char* address;
}

person x; //declare variable x of type person
• x contains combined data: ID, age, name, etc
• think of it like a "box" variable, or "record"
• how much memory x is allocated?

ID
AGE
NAME
PHONE
ADDRESS

Structure Members

person x,y; //declares two struct variables, same type

x.age is an integer variable for record x
• x.age is independent of y.age
• x.age independent x.ID, etc

Struct variables

What can we do with a struct/record variable?

Answer : everything that we do with normal variables.
• declare
• initialize
• assign
• point to
• address of
• array of
• etc

Struct variables

person x ={21, 34, "Virgil", 1234567};

• declares x of type person
• initializes x.ID=21, x.age=34, x.name="Virgil", x.phone=1234567
• x.address not initialized - WHY ?

Struct variables
Assignments work !

person x, y;

.....

x=y; //valid: all members of y are copied on x
• BE CAREFUL ABOUT POINTER MEMBERS!
• copy pointer/address VS copy the content(value) of the pointer
• x=y copies the pointer (address), not the value
• deep copy :

allocate x.pointer separately,
copy *(y.pointer) into *(x.pointer)

Array of struct variables

person A[10]; //declares an array of 10 struct objects

A[0] = first object/variable, A[1]= second variable

A[0].ID = member ID of first object

most array operations work like before

Struct object as function parameter

int myfunction (person x){//regular parameter
• cout << x.ID;
return 0;}

int myfunction (person &x){//reference parameter
• cout << x.ID;

• x.ID=25;//modifies the original call variable - WHY ?
return 0;}

int myfunction (person* x){//pointer parameter
• cout << (*x).ID;
return 0;}

person *p; p=memory location of a person object

*p = the "value", or the struct object stored

(*p). ID = the ID member variable of object *p

p->ID = the ID member variable of object pointed by p
• same as (*p).ID

Pointers to Struct Objects

Dereferencing member variables

Array of struct objects

person *p = new person[20]; //declares a pointer,
allocates dynamically space for 20 person objects
• (same as) person p[20]; //but this is static

person* p[20] ; //static array of 20 pointers

Linked Lists

Link List Philosophy

how do we implement this in C++ ?

data

next

data

next

data

next

NULL

List objects: contain data, and the link to the next list object

Linked List

class listobject{
• char* word;
• int count;
• double testscore;
• char[30] name;

 listobject* next;

};

//data section

//link to next object

have to "know" the first list object, to have a
way to get to it

Traversing a list looking for "value"

case 1: list does not exist
• create the first object, return it

case 2: list exists, but doesnt have an object with
data="value"
• create a new object, append it to the list, return it

case 3: list has an object with data="value"
• return that object

Traversing a list

listobject* GiveMeTheElement (value)
• listobject* t = <my_list_head>
• if t==0 CASE 1 //create the first object of a new list
• while (t->data != value){ //looking for "value" object

if (t->next==NULL) CASE 2 //create a new object of existing list

t = t->next //keep looking
• }
• CASE 3 //found the "value" object

}

Arrays vs Lists
Arrays are a contiguous
block of memory
• no need for "next"-WHY?

Arrays allow for direct
access to nth element A[n]

Arrays have to be allocated
at once

Lists are sparse locations in
memory
Lists have to be traversed from
beginning in order to access an
element
Lists are allocated "as we go"
one element at a time

NULL

data

next
data

next

data

next

data

next

data

next

data data data data data

Double-linked Lists

Use two link pointers : prev, and next

Thus we can traverse the list in any direction

data

prev
next

NULL

data

prev
next

data

prev
next NULL

Hash Tables - Collisions
when several keys (words) map to the same key (index)

have to store the actual keys in a list
• list head stored at the HASHTABLE index

key -> index -> list_head -> search for that key

Hashing
for each hash value, create a linked list of all strings that
hash to that value

 if hfunction (word1) = hfunction(word2) =n

then HASHTABLE[n] stores the head of a list containing
objects (word1, count1) and (word2, count2)

word1
count

next

word2
count

next

NULLHASHTABLE[n]

Hashing with linked lists

HASHTABLE[n] = listhead of a list with all words that
hash-map to n

when accessing an object "word"
• first get the hash value n = hash-map("word")
• then traverse the list starting at HASHTABLE[n] looking for

the the object that has "word"
• once found, do something with it : for the HW, increase the

word count.

