
Pointers
Memory Allocation

Variable address
& = address operator, returns the address

int a; &a = address of a

int A[10]; &A[3] = address of the 4-th element in A

char letter;// address 1200
short number; // address 1201
float amount; // address 1203

Pointer = address variable

pointer variable = holds as value a memory address
i.e. ptr = 0x7fff5fbff564, ptr = 0x7fff5fbff568

memory addresses identify specific locations in the
memory

pointers hold the address or location of other data
in other words, “points” to some piece of data

Pointers in Memory

pointers have their own address
• like any variable
• pointer address not important for this class

we care about the pointer value
• which is the address of other data

Using pointer variables

& (variable) = address/pointer of that variable

* (pointer) = value stored at that address/pointer

Address operator in use

int num; // creates an int variable called num

int *ptr; // ptr is the address of an int variable

ptr = # // ptr is assigned the address of num

Indirection operator in use

int num = 100; // num is initialized to 100

int *ptr = # // ptr points to num

cout << *ptr; // prints out the value of num

*ptr = 200; // num is now 200

*ptr += 100; // num is now 300

Arrays and Pointers

array names are constant pointers

int nums[10] declares an array of ints of size 10;

nums works like a pointer to int which holds the starting
address of the array

Note however that nums is a constant pointer - its value
cannot be changed to another address

Pointers as arrays

pointers can be used as array names

int nums[3] = {1, 2, 3};

int *ptr = nums;

cout << ptr[0]; // prints nums[0]

ptr[1] accesses nums[1] and ptr[2] accesses nums[2]

int * ptr[100] //declares an array of pointers

Comparing pointers

if one address comes before another in memory, the first
one is considered “less than” the second

C++ relational operators >, <, ==, !=, >=, <= can be
used to compare pointers

e.g., &nums[0] < &nums[1].

Pointers as function arguments

a pointer can be used as a function parameter

a pointer parameter gives the function access to the
location the pointer is pointing to

changes to the value "pointed" are reflected in the
original call variable

Function declaration

void function(int *);
declares a function called foo that takes a pointer to integer as
parameter

void function(int *ptr);
also valid but the formal name will be ignored

Function definition

void foo(int *ptr) {

 *ptr += 100; // dereferences ptr, add 100

}

Note that += operates on the variable pointed to by ptr,
this statement adds 100 to this original variable

Pointer and reference parameters

reference parameters give the function access to the
actual argument but “hides” all the mechanics of
dereferencing/indirection

pointer parameters are passed by value, but by
dereferencing them using the indirection operator, the
function gets access to the original variable that the
pointer points to

Constant pointers

constant pointer : constant address, variable value
• int * const ptr

pointer to constant : variable address, constant value
• const int * ptr

• a good idea for function declaration, to prevent the function to
change the argument value

• void myfunction (const double * x)

Dynamic Memory
Allocation

Why dynamic memory allocation

if we know the number of variables needed in a
program, we can define them up front

we need an array of size 24 to store the scores of 24 students

what do we do when we don’t know how many
variables are needed?

a program to store the scores of any number of students.

programs must be allowed to create variables on
the fly - during runtime

Dynamic memory allocation

Variables can be created or destroyed while a
program is running.

A program, while running, can put a request for a
chunk of memory to hold a variable of a particular
data type and can access the newly allocated
memory through its address.

This is called dynamic memory allocation.

new operator

in C++, dynamic memory allocation is done using the new
operator.

int *ptr;

ptr = new int;

*ptr = 100; *ptr += 1; cout << *ptr;

Dynamically allocating arrays

Not much point in dynamically allocating a single variable -
the new operator can also be used to dynamically create
an array.

int *ptr;

ptr = new int[100];

for(int i = 0; i < 100; i++) ptr[i] = 0;

delete operator

When a program is finished using dynamically allocated
memory, it should release it.

The delete operator is used to free memory allocated
with new operator.

delete ptr; // for single variable

delete [] ptr; // for array

malloc(), calloc(), free()

void * p = malloc (300); // allocates 300 bytes,
returns the head address

void * p = calloc (num, size); //allocates
num*size bytes, initializes with 0, returns head address

free (p); //releases the memory BLOCK at address p,
previously allocated with malloc or calloc

prefer to use new and delete, whenever possible

 Functions returning pointers

Functions can return pointers, but the item the pointer
references must still exists after the function ends

A function can return a pointer only if it is
a pointer to an item that was passed into the function as an
argument
a pointer to a dynamically allocated chunk of memory (see dynamic
memory alloc.)

Pointers to access array elements
int nums[3] = {1, 2, 3};

*nums accesses the first array element, same as nums[0]
*(nums + 1) accesses the second element, same as nums[1]
*(nums + 2) same as nums[2]

arr_name[i] same as *(arr_name + i)
expr *(arr_name + i*sizeof(<datatype>))

short numbers[10] // sizeof(short)=2

Pointer arithmetic
pointers can be added and subtracted; multiplication and division
are not allowed

use of ++, --, +=, and -= operators are allowed

note that adding a number to a pointer actually adds the
number times the sizeof(type)

ptr+3 means ptr+3*sizeof(int)
*(ptr+3) means value stored at address ptr+3*4, which is the same
as ptr[3]

(ptr+1)[2] same as ptr[3]

Type Casting

int * ptr = new int; *p=21;

short* p2 = ptr; // same address, only 2 bytes

cout<< *p2; //still displays 21 - WHY?

LITTLE ENDIAN : significant bits last (to the right)

BIG ENDIAN : significant bits first (to the left)

Cool indeed, but very easy to make mistakes!

Bitwise operators

shift operator (>>)

bitwise "and" (&): 72 & 184 = 8
• 01001000 &

• 10111000 =

• --------

• 00001000

bitwise "or" (|)
• 01001000 |

• 10111000 =

• --------

• 11111000

