
Loops
Reading data from file

Increment(++), Decrement (--)

n++; means increase n by 1

++n; means the same

n--; means decrease n by 1

--n; also means decrease n by 1

Increment(++), Decrement (--)

PREFIX increment : ++n. Happens before n is evaluated
in the expression
• int n=1; int m=++n + 3;

POSTFIX increment: n++. Happens after n is
evaluated in the expression
• int n=1; int m=n++ + 3;

same for decrement: PREFIX and POSTFIX

Loops - while

a block of statements that repeats.
while (expr_cond){
 statement;
 statement;

}

no “else”

expr_cond evaluated before each
iteration of the loop

• if false, the loop does not execute, and the
program jumps at the end of the loop

Loops - while

the loops should change/update the expr_cond
• might never execute
• might never finish

int counter=0; while (counter<10){
 counter++;
 cout<<“ \n at iteration ”<<counter;

}

pay special attention to the first and the last
expr_cond

• also figure out expr_cond after while exits

while loop for input validation

n=-1;
while (n<0 || n>=10){
 cout<<"\n\n give me a non-negative integer less than 10>";
 cin>>n;

}
cout<<"\n you gave me n="<<n;
cout << "\n";

do - while
do {

statement;
statement;
...

}while(expr_cond);

post-test loop = condition is
evaluated at the end
• opposite to the while loop, which is

pre-test loop

the statements block is
executed first time before
evaluating the expr_cond

do-while menu

display menu, ask user for a choice

read user choice, validate, check for sentinel (exit
option)

do some operations given the user choice

repeat

for
for (expr_init; expr_cond; expr_update){

statement;
statement;
...

}

for

usually know how many times want to execute the loop
• or know the the iterations i=1,2,3...,10 that might be executed

while, do-while : dont know how many times the loop will
execute, waiting for expr_cond to be false

for (expr_init; expr_cond; expr_update){
statement;
statement;
...

}

for loop

1) expr_init : done only once, first thing

2) expr_cond : evaluated at the beginning of each iteration
• if false, loop ends

3) body of statements inside the loop: each iteration

4) expr_update: last operation in each iteration
• avoid modifying expr_update in the loop body

for (expr_init; expr_cond; expr_update){
 ...
}

break, continue

break : exit the loop (jumps right after the loop/block)

continue : jump to the next iteration of the loop
• does not finish the current iteration

Nested loops

for (i=0;i<N;i++)

 for(j=0;j<M;j++){
 cout << “element at row=”<<i<<“ and column =”;
 cout<<j<<“is”<<A[i][j];

 }

Nested loops

//matrix multiplication A(N,P); B(P,M); C=A*B

for (int i=0;i<N;i++){
 cout <<“\nrow=“<<i<<“. columns:”;
 for(int j=0;j<M;j++){

cout << j<<“ “;
 for(int k=0;k<P;k++){
 C[i][j]+=A[i][k]*B[k][j];
 }
 }
}

multiple/no statements expressions
•multiple statements in expr_init, expr_update
for (i=0,j=0;i<N && j<M;i++,j++){
 cout << “diagonal element at”<<i<<“,”<<j;;
 cout<<“ is”<<A[i][j];
}

• no statements in expr_init, expr_update
int i=0,j=0;
for (;i<N && j<M;){
 cout << “diagonal element at”<<i<<“,”<<j;;
 cout<<“ is”<<A[i][j];
 i++; j=i;
}

Data from Files

Files
use class ifstream/ofstream/fstream
• #include <fstream>
• fstream filehandle ;

use class methods to manipulate data
• filehandle.open()
• filehandle.close()
• filehandle.get()
• filehandle.getline()
• filehandle >> a
• filehandle << a

• ...

data has to be well formatted

Reading from file

 int a;

 file.open (“myfile.txt”);

 while (file>>a){

 cout<<" read form file a=”<<a<<“\n";

 }

 file.close();

after file>>a fails, not clear where the get pointer is
• for now : only works for well formatted files

reading from file

filehandle.get() : get a character

filehandle.peek() : look up a character
• get (read) pointer does not advance

filehandle.getline(char*, int) : get a line

filehandle.ignore(int, int) : ignore a
sequence of chars

Files : change pointer location

look/move the get pointer (reading location)
• filehandle.tellg()
• filehandle.seekg()

look/move the put pointer (writing location)
• filehandle.tellp()
• filehandle.seekp()

Writing to file
fstream file;

file.open("writingfile.txt", fstream::in | fstream::out |
fstream::trunc);

cout <<"\n\n\n WRITING DATA TO FILE filehandle="<<file<<endl;

for (int i=0;i<10;i++){

 file<<"writing now "<<i<<"\n";

 }

 file.close();

