
Intro to Classes

Classes / Objects
Same idea as with struct
• create a new type of combined variable
• each instance (variable) has its own data
• each variable can have linkage / structural information

think of it as dependance to other instances
• everything works like with regular variables : allocation,

assignments, function calls, pointers etc.

Can have member functions

special member functions: Constructor, Destructor,
Operators

Objects
MEMBERS

data variables

links variable (optional)

class operations

Functions (operate on data)

Data

Linkage

Construct
Destruct
Operators

Functions

Rectangles
class rectangle{

double width;

double length;

rectangle();

void SetWidth(double w);

void GetWidth();

void SetLength(double l);

void GetLength();

double ComputeArea();
}

rectagle r;
r.SetWidth(19.1);
r.SetLength(12.04);
double area;
area=r.ComputeArea();

rectangle *r2 = new rectangle;
r2->SetWidth(10.6);
(*r2).SetLength(17);
area= r2->ComputeArea();
*r2=r1; ?????
delete r2;

Access to members

public: can be accessed directly from code outside the
member functions
• rectangle x;

• x.length =1; //length is a public member

private: only member functions can access these
• think of these variables as "internal data"
• cannot write x.length outside member functions, if "length" is

private
• member function can use x.length in their definition

Array of objects

rectangle A[10];

A[0].setwidth(15); A[0].setlength(20);

double area = A[0].ComputeArea();

Constructor

rectangle() //same name as the class

A special function that is called automatically when class
variable is declared
• Initialization of the declared variable
• Dynamically allocate members (that need to be allocated)

No return type

Possible to have more than one constructor for the class

Destructor
~rectangle() // "~" + classname

A special function called automatically when objects are
deleted
• rectangle *x = new rectangle;
•

• delete x; // calls the destructor

Usually necessary when the object contains members
dynamically allocated, for which we need to free the
memory

No return type

Class declaration style

Often, the class declaration, functions are written in a
different file "rectangle.h"

Any program that uses the class would have to include the
class definition
• #include "rectangle.h"

Object Oriented Programming
OOP = method of writing software centered on objects
• opposite to procedural programming of functional programing

Objects created from abstracted data types (like class
definitions)

Objects are variables for all practical purposes
• function calls and returns
• comparison, assignments

Objects have methods that operates on them

Facilitates big projects (like a game), simplifies modularity

Reusability, hierarchy

string class

string definitions

#include <string>
• string myname; myname="Virgil";
• string yourname; cin >> yourname;
• if (myname<yourname) {cout<< "myname is smaller
than yours\n";}

• string hisname ("William");
• if(hisname>yourname) {cout<<"hisname is bigger
than yours\n";}

string operators

>> extracts characters from stream and inserts them into
the string

<< inserts the string into a stream

= assignment

+, += concatenation

[] reference to character at index (like an array)

string member Functions

myname.length()
myname.append()
myname.assign()
myname.at()
myname.begin()
myname.c_str()
myname.clear()
myname.compare()
myname.copy()
myname.empty()
myname.end()

string member Functions

myname.erase()

myname.find()

myname.insert()

myname.replace()

myname.resize()

myname.size()

myname.substr()

myname.swap()

More on C++ Classes

Object Members

a member might be a struct or a (different)class object

example: myqueue class has a member of type listobject

class myqueue{
 listobject* builder;
 listobject* consumer;
....
}

Static members

regular members are "instance" members: each class
object has its own

static member is only one variable for all objects.

static function can access only static members
• but it can be called before defining any objects of the class
• can be called as an instance function, or as a class function
• class::function()

• object.function()

static member/functions exist before any object is
declared

Friends of Class
outside the class functions, private members are
unaccessible

bend the rule: define a function "friend" of the class
• then it can access private members
• without being a method/member function

class myqueue{
private:
 listobject* builder;
 listobject* consumer;

public:
void enqueue(void*);
....
friend int OTHERCLASS::MyFriendFunction (myqueue q);
}

Assignments of class objects
class rectangle{
• int length; int width;
• void* address;
}
rectangle r1;
r1.width=10;
r1.length=20;
rectangle r2;

r2=r1; //r2 has now the same length, width

r2 has also the same address (pointer)
• a modification of *(r2.address) value implies *(r1.address) value is

also modified, and vice-versa
• when we want different pointers, but we want to copy the values

at these address, we build a COPY CONSTRUCTOR

Copy constructors

a user-defined constructor that performs "deep copy"
class object1; //write something on it
class object2=object1; //also copies the pointers members

copy constructor: reallocates the pointers, copies the
values

requires parameter to be a reference

Operator Overloading
redefine operators to work in a particular way for your
class

example: for rectangle class we might want the
comparison operator ">" to compare the two areas
• if (r1>r2) {...}

class rectangle{
• int length; int width;
• void* address;
• bool operator>(rectangle);
}
bool rectangle::operator>(rectangle r2){
• if(length*width>r2.length*r2.width) return true;
• else return false;
}

Operator Overloading

overload += to mean append for myqueue class
• q1.+=q2 should append queue q2 to queue q1

void myqueue::operator+=(myqueue q2){
• //copy elements from second queue

• listobject* e = q2.consumer;

• while (e!=NULL){

• enqueue(e->address);

• e=e->next;

• }

}

Operator Overloading: overload +

want to write q3=q1+q2;
myqueue myqueue::operator+(myqueue q2){
 //create a new queue - this is the result
 myqueue ret;
 //copy elements from first queue
 listobject *e = consumer;
 while (e!=NULL){....
 ret.enqueue(e->address); e=e->next;
 }
 //copy elements from second queue
 e = q2.consumer;
 while (e!=NULL){
 ret.enqueue(e->address);e=e->next;
 }
 return ret;
}

Operator Overloading: overload []

want q[i] to return the i-th element in the queue (0 is the
consumer element)
• this is like array index functionality

void* myqueue::operator[](int n){
 cout<<"\n ---operator [] called\n";
 int i=0;
 listobject* e=consumer;
 while(e!=NULL){
 if (i==n) {return e->address;}
 i++; //counting
 e=e->next;
 }
 return NULL;
}

Operator overload: <<

class{...
• friend ostream &operator << (ostream &strm, myqueue);
}

ostream &operator << (ostream &strm, myqueue q){
 listobject* e=q.consumer;
 while(e!=NULL){
 strm<<e->address<<" ";
 e=e->next;
 }
 return strm;

}

this pointer

inside a member function (method), this is a pointer to the
"current" instance that is calling the method

useful for returning a pointer to the current instance
• otherwise we wouldn't know the address of the instance/object

that just called the method

