
A Statistical Method for System Evaluation Using
Incomplete Judgments

Javed A. Aslam∗ Virgil Pavlu Emine Yilmaz
College of Computer and Information Science

Northeastern University
360 Huntington Ave, #202 WVH

Boston, MA 02115

{jaa,vip,emine}@ccs.neu.edu

ABSTRACT
We consider the problem of large-scale retrieval evaluation,
and we propose a statistical method for evaluating retrieval
systems using incomplete judgments. Unlike existing tech-
niques that (1) rely on effectively complete, and thus pro-
hibitively expensive, relevance judgment sets, (2) produce
biased estimates of standard performance measures, or (3)
produce estimates of non-standard measures thought to be
correlated with these standard measures, our proposed sta-
tistical technique produces unbiased estimates of the stan-
dard measures themselves.

Our proposed technique is based on random sampling.
While our estimates are unbiased by statistical design, their
variance is dependent on the sampling distribution employed;
as such, we derive a sampling distribution likely to yield low
variance estimates. We test our proposed technique using
benchmark TREC data, demonstrating that a sampling pool
derived from a set of runs can be used to efficiently and ef-
fectively evaluate those runs. We further show that these
sampling pools generalize well to unseen runs. Our exper-
iments indicate that highly accurate estimates of standard
performance measures can be obtained using a number of
relevance judgments as small as 4% of the typical TREC-
style judgment pool.
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H.3.4 [Information Storage and Retrieval]: Systems
and Software – Performance evaluation
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1. INTRODUCTION
We consider the problem of large-scale retrieval evaluation

and propose a statistical technique for efficiently and effec-
tively estimating standard measures of retrieval performance
via random sampling. Standard methods of retrieval evalua-
tion can be quite expensive when conducted on a large-scale.
For example, in many years of the annual Text REtrieval
Conference (TREC), upwards of 100 runs each consisting
of a ranked list of up to 1,000 documents were submitted
with respect to each of 50 or more topics. In principle, each
document in the collection would need to be assessed for
relevance with respect to each query in order to evaluate
many standard retrieval measures such as average precision
and R-precision; in practice, this is prohibitively expensive.
TREC instead employs depth pooling wherein the union of
the top k documents retrieved in each run corresponding to
a given query is formed, and the documents in this depth k
pool are judged for relevance with respect to this query. In
TREC, k = 100 has been shown to be an effective cutoff in
evaluating the relative performance of retrieval systems [?,
?], and while the depth 100 pool is considerably smaller than
the document collection, it still engenders a large assessment
effort: in TREC8, for example, 86,830 relevance judgments
were used to assess the quality of the retrieved lists corre-
sponding to 129 system runs in response to 50 topics [?].
The table given below shows the relationship between pool
depth and the number of judgments required per topic on
average for various TRECs.

Pool TREC
Depth 7 8 10

1 27 29 25
3 65 71 64
5 98 110 100

10 179 200 184
20 337 379 339

100 1596 1712 1414

Shallower pools [?] and greedily chosen dynamic pools [?,
?] have also been studied in an attempt to alleviate the as-
sessment effort; however, such techniques tend to produce
biased estimates of standard retrieval measures, especially
when relatively few relevance judgments are used. Recently,
Buckley and Voorhees proposed a new measure, bpref, and
they show that when bpref is employed with a judged sam-
ple drawn uniformly from the depth 100 pool, the retrieval
systems can be effectively ranked [?]. However, bpref is not
designed to approximate any standard measure of retrieval



performance, and while bpref is correlated with average pre-
cision, especially at high sampling rates, these correlations
and the system rankings produced degenerate at low sam-
pling rates.

Our goal in this work is to efficiently and accurately es-
timate standard measures of retrieval performance. Unlike
previously proposed methodologies which tend to produce
biased estimates of standard measures using few relevance
judgments or methodologies based on estimating measures
other than the most widely reported standard measure, our
methodology, by statistical design, produces unbiased es-
timates of the standard measures of retrieval performance
themselves.

The core of our methodology is the derivation, for each
measure, of a distribution over documents such that the
value of the measure is proportional to the expectation of
observing a relevant document drawn according to that dis-
tribution. (In the case of average precision, the distribu-
tion is over pairs of documents, and the observation is the
product of the relevances for the pair drawn.) Given such
distributions, one can estimate the expectations (and hence
measurement values) using random sampling. By statisti-
cal design, such estimates will be unbiased. Furthermore,
through the use of the statistical estimation technique of
importance sampling [?], we show how low variance esti-
mates of multiple retrieval measures can be simultaneously
estimated for multiple runs given a single sample. In sum,
we show how both efficient and effective estimates of stan-
dard retrieval measures can be inferred from a random sam-
ple, thus providing an alternative to large-scale TREC-style
evaluations.

We tested our methodology using the benchmark TREC
data collections, and results are reported for TRECs 7, 8,
and 10. We compare the performance of TREC-style depth
pools to sampling pools of an equivalent size. Generally
speaking, as the number of relevance assessments is de-
creased (either by considering a lower depth pool, in the
case of TREC, or by sampling at a lower rate, in the case
of the proposed technique), the bias and variance of the
estimates inferred from TREC-style depth pools increases,
while only the variance of estimates inferred from sampling
pools increases. At equivalent levels of judgment effort, the
estimates produced by sampling are consistently better than
those produced by depth pooling, often dramatically so.

While TREC-style depth pools are used to evaluate the
systems from which they were generated, they are also of-
ten used to evaluate new runs which did not originally con-
tribute to the pool. Depth 100 TREC-style pools generalize
well in the sense that they can be used to effectively evalu-
ate new runs, and this has been a tremendous boon to re-
searchers who use TREC data. We also show that random
sampling pools generalize well, achieving estimation errors
on unseen runs comparable to the estimation errors on runs
from which the sample was drawn.

In the sections that follow, we describe our methodology
and the results from experiments using the TREC collec-
tions. We conclude with a summary and directions for fu-
ture research.

2. METHODOLOGY
In this section, we sketch our proposed statistical tech-

nique for efficiently and effectively estimating standard re-

trieval measures from random samples.1 While many of the
details are somewhat complex and/or necessarily omitted
for space considerations, the basic ideas can be summarized
as follows:

1. For each measure, we derive a random variable and as-
sociated probability distribution such that the value of
the measure in question is proportional to the expecta-

tion of the random variable with respect to the proba-
bility distribution. For example, to estimate precision-
at-cutoff 500, one could simply uniformly sample doc-
uments from the top 500 in a given list and output
the fraction of relevant documents seen. Thus, the
underlying random variable for precision-at-cutoff c is
dictated by the binary relevance assessments, and the
associated distribution is uniform over the top c doc-
uments. (Since R-precision is precision-at-cutoff R,
an identical strategy holds, given the value or an es-
timate of R.) For average precision, the situation is
somewhat more complex: we show that the required
sampling distribution is over pairs of documents and
the underlying random variable is the product of the
binary relevance judgments for that pair.

2. Given that the value of a measure can be viewed as the
expectation of a random variable, one can apply stan-
dard sampling techniques to estimate this expectation
and hence the value of the measure. To implement this
methodology efficiently , one would like to estimate all
retrieval measures for all runs simultaneously using a
single judged sample. As such, one is confronted with
the task of estimating the expectation of a random
variable with respect to a known distribution by using
a sample drawn according to a different (but known)
distribution. We employ scaling factors used in the
statistical estimation field of importance sampling [?]
in order to facilitate this goal.

3. Finally, to implement this methodology effectively, one
desires low variance unbiased estimators so that the
computed empirical means will converge to their true
expectations quickly. While we show that any known
sampling distribution can be used to yield unbiased
estimators for retrieval measures, we also describe a
heuristic for generating a specific sampling distribution
which is likely to yield low variance estimators.

In the sections that follow, we describe each of these ideas
in more detail, and we then present extensive experiments
using TREC data.

2.1 Sum precision as an expected value
While our goal is to simultaneously estimate multiple mea-

sures of performance over multiple lists, we begin by con-
sidering the problem of estimating average precision from
a random sample. Unlike R-precision or precision at stan-
dard cutoffs, deriving a sampling distribution for average
precision is non-trivial, and it yields a distribution which is
empirically quite useful for estimating the other measures of
interest.

By definition, average precision (AP) is the average of
the precisions at all relevant documents, or equivalently, the

1A somewhat different treatment of this material may be
found in our recent workshop work-in-progress report [?].



1 2 3 . . . Z
1 1
2 1/2 1/2
3 1/3 1/3 1/3
...
Z 1/Z 1/Z 1/Z . . . 1/Z

1 2 3 . . . Z
1 2 1/2 1/3 . . . 1/Z
2 1/2 1 1/3 . . . 1/Z
3 1/3 1/3 2/3 . . . 1/Z
...
Z 1/Z 1/Z 1/Z . . . 2/Z

Table 1: (Left) Weights associated with pairs of
ranks; normalizing by Z yields an asymmetric joint
distribution. (Right) Symmetric weights; normal-
izing by 2Z yields the symmetric joint distribution
JD.

sum of the precisions at all relevant documents divided by
R, the number of documents relevant to the query. Let SP

be this sum of precisions at all relevant documents. In what
follows, we first discuss estimating SP , and later we discuss
estimating R; our estimate of AP will be the ratio of the
estimates of SP and R.

One can compute sum precision as follows, where Z is the
length of the retrieved list, rel(i) is the binary relevance of
the document at rank i, and R is the number of documents
relevant to the query.

SP =
X

i : rel(i)=1

PC (i) =
ZX

i=1

rel(i) · PC (i)

=
ZX

i=1

rel(i)
iX

j=1

rel(j)/i =
X

1≤j≤i≤Z

1

i
· rel(i) · rel(j)

Thus, in order to evaluate SP , one must compute the weighted
product of relevances of documents at pairs of ranks, where
for any pair j ≤ i, the associated weight is 1/i. (See Ta-
ble ??, left.)

In order to view this sum as an expectation, we define
an event space corresponding to pairs of ranks (i, j), a ran-

dom variable X corresponding to the product of the binary
relevances rel(i) · rel(j), and an appropriate probability dis-

tribution over the event space. One such distribution cor-
responds to the (appropriately normalized) weights given in
Table ?? (left); for convenience, we shall instead define a
symmetrized version of these weights (see Table ?? (right))
and the corresponding joint distribution JD (appropriately
normalized by 2Z). It is not difficult to see that

SP = Z · E[X]

where the expectation is computed with respect to either
distribution. Thus, if U is a multiset of pairs drawn accord-
ing to JD , we obtain the following estimate for SP

cSP = Z ·
1

|U |

X

(i,j)∈U

rel(i) · rel(j).

2.2 Simultaneous estimation for multiple runs
One is often faced with the task of evaluating the average

precisions of many retrieval systems with respect to a given
query (as in TREC), and in a naive implementation of the
technique described, the documents judged for one system
will not necessarily be reused in judging another system.
In contrast, TREC creates a single pool of documents from
the collection of runs to be evaluated, judges that pool, and
evaluates all of the systems with respect to this single judged

Figure 1: AP evaluation diagram

Figure 2: PC evaluation diagram

pool. In order to combat this potential inefficiency, we shall
construct a single distribution over pairs of documents de-
rived from the joint distributions JDs associated with every
system s.

We shall effectively be sampling from a distribution dif-
ferent from the one necessary to estimate the expectations
desired. To combat this, we introduce scaling factors as fol-
lows. Let D(i, j) be the joint distribution over documents
from which we effectively sample. Note that i and j now de-
note documents, not ranks. Similarly abusing notation, let
JDs(i, j) denote the joint distribution over documents (not
ranks) required to estimate the proper expectation for sys-
tem s. We define scaling factors SF s(i, j) which correspond
to the ratio between the desired and sampling distributions

SF s(i, j) =
JDs(i, j)

Ds(i, j)

where Ds is the distribution induced by D over documents
retrieved by s. We then have

cSP = Zs ·
1

|Us|

X

(i,j)∈Us

rel(i) · rel(j) · SF s(i, j)

where Zs is the length of the list returned by system s and
Us ⊆ U is the subset of samples corresponding to documents
retrieved by s. Note that the above formulation holds for
any sampling distribution D. In what follows, we describe
a heuristic for determining a good sampling distribution—
one which corresponds to a distribution over documents (for
efficiency) and which explicitly attempts to minimize the
variance in the estimates produced (for accuracy).



2.3 Deriving the sampling distribution
The technique described above can be used to estimate the

average precision of one or more retrieval runs with respect
to any given query. However, it is relatively inefficient: (1)
On a per run basis, independent and identically distributed
(i.i.d.) pairs of documents are drawn and judged, but the
induced pairs of judged documents across i.i.d. samples are
not used. In order to combat this potential inefficiency, we
shall instead draw a sample from a distribution over docu-

ments and consider all induced pairs of judgments.
In determining a sampling distribution D, we consider two

factors. First, we impose the condition that D be a symmet-
ric product distribution, i.e., D(i, j) = M(i) ·M(j) for some
(marginal) distribution over documents M . The purpose
for this is efficiency: we will sample documents according to
M and consider all induced pairs of documents, which will
be distributed (approximately) according to D. Second, we
seek a D which explicitly attempts to minimize the variance
in our estimator, for accuracy. We begin by considering the
latter factor.

Variance minimization. For a sampling distribution D
and a given system s, let Ds be the distribution induced
by D over pairs of documents contained in the list returned
by system s. Furthermore, let Y be the random variable
rel(i) · rel(j) · SF s(i, j) such that SP = Zs · EDs [Y ]. Since
Zs and R are fixed, in order to minimize the variance of AP ,
we must minimize the variance of Y .

Var[Y ] = E[Y 2] − E2[Y ]

=
X

i,j

Ds(i, j) · rel(i)
2 · rel(j)2 · SF s(i, j)

2 − (SP/Zs)
2

=
X

i,j:rel(i)=rel(j)=1

Ds(i, j) ·
JDs(i, j)

2

Ds(i, j)2
− (SP/Zs)

2

=
X

i,j:rel(i)=rel(j)=1

JDs(i, j)
2

Ds(i, j)
− (SP/Zs)

2

To minimize this variance, it is enough to minimize the first
term since SP/Zs is fixed. Employing importance sampling

techniques for minimizing the variance of Monte Carlo esti-
mators, one can derive that the best sampling distribution D
is the distribution induced by JDs over relevant documents.
(See Anderson [?] for an example of such a derivation.) Of
course, we do not have the complete relevance judgments
necessary to calculate the ideal sampling distribution. How-
ever, the marginal distribution MDs(i) =

P
j JDs(i, j) as-

sociated with the average precision sampling distribution
JDs(i, j) has been shown to be a reasonable prior for rel-
evant documents [?], and using such a prior one can ar-
gue that a sampling distribution Ds(i, j) proportional2 to

(MDs(i) · MDs(j))
3/2 is likely to result in low variance. (De-

tails omitted for space considerations.) Ds(i, j) is a product
distribution having identical marginals with respect to i and
j; let MD ′

s(i) be the marginal associated with Ds(i, j).
If our task were to estimate the performance of only one

retrieval system, we could sample documents according to
MD ′

s(i), consider all induced pairs of documents, and es-
timate AP using appropriate scaling factors. However, in
general our task is to simultaneously estimate AP for N
systems from a single sample. We obtain a final sampling

2The expression must be normalized to form a distribution.

marginal M(i) by averaging the marginals associated with
each system s.

M(i) =
1

N

X

s

MD
′
s(i)

We finally note that in a typical TREC setting, one averages
AP over 50 queries to obtain a final estimate of the perfor-
mance of a system, and this averaging results in a further
significant variance reduction.

Exact computation of scaling factors. M(i) is the
distribution we use for sampling documents, and given a
sample of K such documents, we consider all K2 induced
pairs and estimate the required expectations from these in-
duced pairs and appropriate scaling factors. For sufficiently
large K, the distribution over induced pairs will approximate
the associated product distribution D(i, j) = M(i) · M(j);
however, the actual distribution is multinomial.

As a consequence, if Ks is the size of the subset of K
sampled documents which are retrieved by system s, one
obtains the following final scaling factors:

SF s(i, j) =
JDs(i, j)

I(i, j) · K2/Ks
2
.

Finally, we derive the exact form of the multinomial sam-
pling distribution over induced pairs. Sampling K docu-
ments (with replacement) from a distribution M and form-
ing all K2 pairs of documents yields a multinomial distribu-

tion I over the possible outcomes. Let ~k = (k1, k2, . . . , kW )
correspond to counts for the sampled documents where k1 +
k2 + · · ·+ kW = K and ki is the count associated with doc-
ument i. Then Pr(~k) =

`
K

k1,k2...kW

´
·

Q
d

M(d)kd .

For i 6= j and k > 2, the induced pairs distribution is
derived as follows

I(i, j) =
P

~k=(...,ki,...,kj,...)

ki·kj

K2 · Pr(~k)

= 1
K2

P
ki+kj≤K

“
kikj

`
K

ki,kj,...

´
M(i)kiM(j)kj ·

(1 − M(i) − M(j))K−ki−kj

”

= 1
K2

P
ki+kj≤K

“
(K−2)!(K−1)K

(ki−1)!(kj−1)!(K−ki−kj)!
M(i)M(j) ·

M(i)ki−1M(j)kj−1(1 − M(i) − M(j))K−ki−kj

”

= K(K−1)M(i)M(j)

K2

P
ki+kj≤K

“`
K−2

ki−1,kj−1,...

´
·

M(i)ki−1M(j)kj−1(1 − M(i) − M(j))K−ki−kj

”

=
K − 1

K
M(i)M(j)

When i = j, a similar derivation yields

I(i, i) =
1

K
M(i)

“
1 + (K − 1)M(i) + (1 − M(i))K−1

”
.

2.4 Estimating R and AP
To obtain an estimate for AP , we must know or obtain

estimates for SP , R and Zs, and the expectation described
above. We have described in detail how to estimate SP ,
and Zs is a known quantity (the length of the system’s re-
turned list). However, R, the total number of documents



Figure 3: Sampling diagram

relevant to the given query, is not typically known and must
also be estimated. Sophisticated approaches for estimating
R exist [?]; however, in this preliminary study we employ
techniques similar to those described above. In order to
estimate R (as calculated by TREC), one could simply uni-
formly sample documents from the depth 100 pool. Given
that our sample is drawn according to M(i) instead, one
can employ appropriate scaling factors to obtain the correct
estimate.

2.5 Estimating PC and RP
To estimate precision-at-cutoff c, one could simply uni-

formly sample documents from the top c in any given list.
Given that we sample documents according to M(i), we
again employ appropriate scaling factors to obtain correct
estimates for PC (c).

R-precision is simply the precision-at-cutoff R. We do

not know R; however, we can obtain an estimate bR for R as
described above. Given this estimate, we simply estimate

PC ( bR).

2.6 Practical summary
Below we give a summary for implementing the sampling

method. Figure ?? can serve as a guide.
(1) For each run s, use the joint distribution over pairs

of documents, JDs(i , j ), dictated by SP such that sampling
pairs of documents according to JD would yield SP in ex-
pectation.

(2) To minimize variance, we introduce a prior over rel-
evant documents (Figure ??, step 2). Let MDs(i) be the
marginal distribution of JDs(i, j), and let Ds(i, j) be the
(appropriately normalized) joint distribution corresponding

to (MDs(i) · MDs(j))
3/2. Let MD ′

s(i) be the marginal dis-
tribution of D . This is the sampling distribution over doc-
uments that would be used for run s.

(3) Over all runs, compute M(i), the average of these
sampling distributions over documents. M(i) is our single,
final sampling distribution for the query (all runs).

(4) Sample K documents with replacement according to
M(i) (Figure ??, black box) until T unique documents are
drawn; judge these documents. (T is the desired a priori

judgment effort.) Generate all K2 pairs of judged docu-
ments.

(5) Compute the multinomial induced pairs distribution
(Figure ??, step 1), I(i, j); this is the “effective” distribu-
tion over pairs of documents from which we sampled. From
I(i, j) and JDs(i, j), compute the required scaling factors.

(6) From the induced pairs and the scaling factors, com-
pute the estimates of SP for each run (Figure ?? black box).

(7) Estimate R using the sampled documents drawn ac-
cording to M (i) and appropriate scaling factors (Figure ??).

(8) Estimate AP by the ratio of the estimates for SP and
R. Note that the estimate of a ratio is not necessarily the
ratio of estimates. More accurate ratio estimates derived via
a second order Taylor series approximation [?] were tested,
and they were generally found to be of little benefit for the
computational effort required.

2.7 New retrieval runs
A question of particular importance is how can we use the

samples generated by our method to evaluate a new run,
i.e. a run that did not contribute to the sampling distribu-
tion. In order for sampling to work correctly, there should
be sufficient sampled documents in the new run so that the
evaluation using sampling is meaningful.

The evaluation (estimation) methodology is independent
of the fact that the run participated to the sampling process;
therefore it can be applied to the new runs in the same way
as for the runs used in producing the sample. On the scale
factor computation, the numerator is a function of the ranks
of sampled documents in the new list and the denominator
is computed based on the sampling distribution conditioned
to the new run.

In TREC data, it is already the case that the actual pools
are created from only a subset of the submitted runs. In all
our experiments, to computing the average sampling distri-
bution, we only use the runs that contributed to the pool
(training systems) and use the runs that did not contribute
to the pool as testing systems. In the plots that follow, the
dots (·) in the plots correspond to the training systems, and
the pluses (+) correspond to the testing systems.

3. EXPERIMENTAL RESULTS
We tested the proposed sampling method as a mechanism

for estimating the performance of retrieval systems using
data from TRECs 7, 8 and 10. We used mean average pre-
cision (MAP), mean R-precision (MRP), and mean preci-
sion at cutoffs 5, 10, 15, 20, 30, 100, 200, 500, and 1000
(MPC(c)) as evaluation measures. We compared the esti-
mates obtained by the sampling method with the “actual”
evaluations, i.e. evaluations obtained by depth 100 TREC-
style pooling. The estimates are found to be consistently
good even when the total number of documents judged is
far less than the number of judgments used to calculate the
actual evaluations.

To evaluate the quality of our estimates, we calculated
three different statistics, root mean squared (RMS) error
(how different the estimated values are from the actual val-

ues, i.e. RMS =
q

1
N

PN
i=1 (ai − ei)

2, where ai are the ac-

tual and ei are the estimates values), linear correlation co-
efficient ρ (how well the actual and estimated values fit to a
straight line), and Kendall’s τ (how well the estimated mea-
sures rank the systems compared to the actual rankings).
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Figure 4: Sampling vs. depth pooling mean av-
erage precision estimates at depths 1 and 10 in
TREC8. Each dot (·) corresponds to a distribution-
contributor run and each plus (+) to a distribution-
non-contributor run (there are 129 runs in TREC8.)

Note that in contrast to the RMS error, Kendall’s τ and ρ
do not measure how much the estimated values differ from
the actual values. Therefore, even if they indicate perfectly
correlated estimated and actual values, the estimates may
still not be accurate. Hence, it is much harder to achieve
small RMS errors than to achieve high τ or ρ values. Be-
cause of this, we mainly focus on the RMS error values when
evaluating the performance of the sampling method.

Since the performance of the sampling method varies de-
pending on the actual sample, we sampled 10 times and
picked a representative sample that exhibited typical per-
formance based on the three evaluation statistics used.

We report the results of the experiments for MAP, MRP,
and MPC(100) on TREC8 in Figure ??, Figure ??, and Fig-
ure ??, respectively. As can be seen, on TREC8 , for both
depth=1 (on avg 29 judgments/query) and depth=10 (on
avg 200 judgments/query), there is a significant improve-
ment in all three statistics when sampling is used versus
the TREC-style pooling for all the measures. The sampling
estimates have reduced variance and little or no bias com-
pared to depth pooling estimates. This can be seen from
the great reduction in the RMS error when the estimates are
obtained via sampling. Furthermore, the bottom-right plots
of all three figures show that with as few as 200 relevance
judgments on average per query, the sampling method can
very accurately estimate the actual measure values which
were obtained using 1,737 relevance judgments on average
per query.

Figure ?? illustrates how MAP estimates using TREC-
style depth pooling compare in terms of ρ and Kendall’s
τ with those obtained using sampling as the depth of the
pool changes. For depths 1 to 10, we first calculated the
number of documents required to be judged using TREC-
style depth pooling. Then, for each depth, we formed 10
different samples of the same size as the required judgment
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Figure 5: Sampling vs. depth pooling mean R-
precision estimates at depths 1 and 10 in TREC8.
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Figure 6: Sampling vs. depth pooling mean prec at
cutoff 100 estimates at depths 1 and 10 in TREC8.

set for each corresponding depth and calculated the average
ρ (left column) and τ (right column). As can be seen in
the figure, for all TRECs the sampling method significantly
outperforms the TREC-style depth pooling method at all
depths.

For comparison purposes, we also include the average
Kendall’s τ value of bpref obtained using random samples [?]
of the given size to the plots in the second column. The
Kendall τ values for bpref are the average values computed
over 10 different random sampling distributions.

3.1 Per query and per run results
While the MAP (and MRP and MPC) show improved

performance over depth-style pooling in both mean and bias,
there are certain situations when one needs the results of
a single query, hence not taking advantage of the massive
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Figure 7: Linear correlation coefficient and
Kendall’s τ error comparisons for mean average pre-
cision, in TRECs 7, 8 and 10.
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Figure 8: Sampling estimates for a query with mixed
system performance. Dots (·) represent training
runs; pluses (+) represent testing runs.
.

variance reduction achieved by averaging over 50 queries. It
is certainly not expected to see the same kind of performance
on per query basis; however our results show definite usable
query estimates (Figure ??). The method described in this
paper is self-contained for a query, i.e. estimates for a query
are not dependant on any data from other queries.

On a different setup, one may want to analyze only one
run over all queries (Figure ??) Note that this setup is not
self contained as the sampling method requires a set of runs
(not only the one plotted) and associated judgments.

3.2 Generalization on new runs
It is important that the performance of sampling over the

testing runs is virtually as good as the performance over
the training runs. Note that the testing systems do not
directly contribute to the sampling pool; their documents
are sampled only because they happen to appear in training
runs.

The trend of RMS error, as sample size increases from
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Figure 9: Sampling estimates for a fixed typical run
(Sab8A1) with MAP = 0.25, all queries. . Each dot
(·) is an AP for a query estimate (total 50); MAP
estimate is plotted as ”×”.

depth 1 to depth 10 equivalent for training and testing sys-
tems is shown in Figure ??. On x-axis the units are the
depth-pool equivalent number of judgments converted into
percentages of depth-100 pool.

4. CONCLUSIONS AND FUTURE WORK
We propose a statistical technique for efficiently and effec-

tively estimating standard measures of retrieval performance
from random samples, and we demonstrate that highly ac-
curate estimates of standard retrieval measures can be ob-
tained from judged subsamples as small as 4% of the stan-
dard TREC-style depth 100 pool.

This work leaves open a number of question for further
research: (1) In standard TREC settings, all documents in
the depth 100 pool are judged and no documents outside
the pool are judged. Our work indicates that more judging
effort should be placed on documents near the top of ranked
lists (they have high sampling probabilities) and less judg-
ing effort should be placed on documents near the bottom of
ranked lists (they have low sampling probabilities). What is
the optimal sampling distribution, and how does it change
as a function of the collection or systems to be evaluated?
Consider evaluating retrieval system on the web or with re-
spect to the TREC Terabyte track, for example. (2) Given
that our technique is based on random sampling, one could
in principle derive high probability confidence intervals for
the estimates obtained, and such confidence intervals would
be quite useful in practice. (3) Finally, we have prelimi-
nary results which show that given accurate estimates of
retrieval measures obtained from a judged subsample, one
can accurately infer relevance assessments for the remaining
unjudged documents. Such a technique would have obvious
benefits in the production of large test collections.
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Figure 10: RMS error train/test crossvalidation comparisons for MAP, RP, PC(100),in TRECs 7, 8 and 10.
Equivalent depths are indicated on the plot.


