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ABSTRACT
We present a model, based on the maximum entropy method,
for analyzing various measures of retrieval performance such
as average precision, R-precision, and precision-at-cutoffs.
Our methodology treats the value of such a measure as a
constraint on the distribution of relevant documents in an
unknown list, and the maximum entropy distribution can
be determined subject to these constraints. For good mea-
sures of overall performance (such as average precision), the
resulting maximum entropy distributions are highly corre-
lated with actual distributions of relevant documents in lists
as demonstrated through TREC data; for poor measures of
overall performance, the correlation is weaker. As such, the
maximum entropy method can be used to quantify the over-
all quality of a retrieval measure. Furthermore, for good
measures of overall performance (such as average precision),
we show that the corresponding maximum entropy distribu-
tions can be used to accurately infer precision-recall curves
and the values of other measures of performance, and we
demonstrate that the quality of these inferences far exceeds
that predicted by simple retrieval measure correlation, as
demonstrated through TREC data.
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1. INTRODUCTION
The efficacy of retrieval systems is evaluated by a num-

ber of performance measures such as average precision, R-
precision, and precisions at standard cutoffs. Broadly speak-
ing, these measures can be classified as either system-oriented
measures of overall performance (e.g., average precision and
R-precision) or user-oriented measures of specific perfor-
mance (e.g., precision-at-cutoff 10) [3, 12, 5]. Different mea-
sures evaluate different aspects of retrieval performance, and
much thought and analysis has been devoted to analyzing
the quality of various different performance measures [10, 2,
17].

We consider the problem of analyzing the quality of vari-
ous measures of retrieval performance and propose a model
based on the maximum entropy method for evaluating the
quality of a performance measure. While measures such as
average precision at relevant documents, R-precision, and
11pt average precision are known to be good measures of
overall performance, other measures such as precisions at
specific cutoffs are not. Our goal in this work is to develop
a model within which one can numerically assess the overall
quality of a given measure based on the reduction in un-
certainty of a system’s performance one gains by learning
the value of the measure. As such, our evaluation model
is primarily concerned with assessing the relative merits of
system-oriented measures, but it can be applied to other
classes of measures as well.

We begin with the premise that the quality of a list of
documents retrieved in response to a given query is strictly
a function of the sequence of relevant and non-relevant docu-
ments retrieved within that list (as well as R, the total num-
ber of relevant documents for the given query). Most stan-
dard measures of retrieval performance satisfy this premise.
Our thesis is then that given the assessed value of a “good”
overall measure of performance, one’s uncertainty about the
sequence of relevant and non-relevant documents in an un-
known list should be greatly reduced. Suppose, for exam-
ple, one were told that a list of 1,000 documents retrieved in
response to a query with 200 total relevant documents con-
tained 100 relevant documents. What could one reasonably
infer about the sequence of relevant and non-relevant doc-
uments in the unknown list? From this information alone,
one could only reasonably conclude that the likelihood of
seeing a relevant document at any rank level is uniformly
1/10. Now suppose that one were additionally told that the
average precision of the list was 0.4 (the maximum possi-



ble in this circumstance is 0.5). Now one could reasonably
conclude that the likelihood of seeing relevant documents at
low numerical ranks is much greater than the likelihood of
seeing relevant documents at high numerical ranks. One’s
uncertainty about the sequence of relevant and non-relevant
documents in the unknown list is greatly reduced as a conse-
quence of the strong constraint that such an average preci-
sion places on lists in this situation. Thus, average precision
is highly informative. On the other hand, suppose that one
were instead told that the precision of the documents in
the rank range [100, 110] was 0.4. One’s uncertainty about
the sequence of relevant and non-relevant documents in the
unknown list is not appreciably reduced as a consequence
of the relatively weak constraint that such a measurement
places on lists. Thus, precision in the range [100, 110] is not
a highly informative measure. In what follows, we develop
a model within which one can quantify how informative a
measure is.

We consider two questions: (1) What can reasonably be
inferred about an unknown list given the value of a mea-
surement taken over this list? (2) How accurately do these
inferences reflect reality? We argue that the former question
is properly answered by considering the maximum entropy
distributions subject to the measured value as a constraint,
and we demonstrate that such maximum entropy models
corresponding to good overall measures of performance such
as average precision yield accurate inferences about under-
lying lists seen in practice (as demonstrated through TREC
data).

More specifically, we develop a framework based on the
maximum entropy method which allows one to infer the
most “reasonable” model for the sequence of relevant and
non-relevant documents in a list given a measured constraint.
From this model, we show how one can infer the most “rea-
sonable” model for the unknown list’s entire precision-recall
curve. We demonstrate through the use of TREC data that
for “good” overall measures of performance (such as average
precision), these inferred precision-recall curves are accurate
approximations of actual precision-recall curves; however,
for “poor” overall measures of performance, these inferred
precision-recall curves do not accurately approximate actual
precision-recall curves. Thus, maximum entropy modeling
can be used to quantify the quality of a measure of overall
performance.

We further demonstrate through the use of TREC data
that the maximum entropy models corresponding to “good”
measures of overall performance can be used to make ac-
curate predictions of other measurements. While it is well
known that “good” overall measures such as average preci-
sion are well correlated with other measures of performance,
and thus average precision could be used to reasonably pre-
dict other measures of performance, we demonstrate that
the maximum entropy models corresponding to average pre-
cision yield inferences of other measures even more highly
correlated with their actual values, thus validating both av-
erage precision and maximum entropy modeling.

In the sections that follow, we first describe the maxi-
mum entropy method and discuss how maximum entropy
modeling can be used to analyze measures of retrieval per-
formance. We then describe the results of applying our
methodology using TREC data, and we conclude with a
summary and future work.

2. THE MAXIMUM ENTROPY METHOD
The concept of entropy as a measure of information was

first introduced by Shannon [20], and the Principle of Max-
imum Entropy was introduced by Jaynes [7, 8, 9]. Since its
introduction, the Maximum Entropy Method has been ap-
plied in many areas of science and technology [21] including
natural language processing [1], ambiguity resolution [18],
text classification [14], machine learning [15, 16], and infor-
mation retrieval [6, 11], to name but a few examples. In
what follows, we introduce the maximum entropy method
through a classic example, and we then describe how the
maximum entropy method can be used to evaluate measures
of retrieval performance.

Suppose you are given an unknown and possibly biased
six-sided die and were asked the probability of obtaining any
particular die face in a given roll. What would your answer
be? This problem is under-constrained and the most seem-
ingly “reasonable” answer is a uniform distribution over all
faces. Suppose now you are also given the information that
the average die roll is 3.5. The most seemingly “reasonable”
answer is still a uniform distribution. What if you are told
that the average die roll is 4.5? There are many distribu-
tions over the faces such that the average die roll is 4.5; how
can you find the most seemingly “reasonable” distribution?
Finally, what would your answer be if you were told that
the average die roll is 5.5? Clearly, the belief in getting a
6 increases as the expected value of the die rolls increases.
But there are many distributions satisfying this constraint;
which distribution would you choose?

The “Maximum Entropy Method” (MEM) dictates the
most “reasonable” distribution satisfying the given constraints.
The “Principle of Maximal Ignorance” forms the intuition
behind the MEM; it states that one should choose the dis-
tribution which is least predictable (most random) subject
to the given constraints. Jaynes and others have derived nu-
merous entropy concentration theorems which show that the
vast majority of all empirical frequency distributions (e.g.,
those corresponding to sequences of die rolls) satisfying the
given constraints have associated empirical probabilities and
entropies very close to those probabilities satisfying the con-
straints whose associated entropy is maximal [7].

Thus, the MEM dictates the most random distribution
satisfying the given constraints, using the entropy of the
probability distribution as a measure of randomness. The
entropy of a probability distribution ~p = {p1, p2, . . . , pn} is
a measure of the uncertainty (randomness) inherent in the
distribution and is defined as follows

H(~p) = −
nX

i=1

pi lg pi.

Thus, maximum entropy distributions are probability dis-
tributions making no additional assumptions apart from the
given constraints.

In addition to its mathematical justification, the MEM
tends to produce solutions one often sees in nature. For
example, it is known that given the temperature of a gas, the
actual distribution of velocities in the gas is the maximum
entropy distribution under the temperature constraint.

We can apply the MEM to our die problem as follows.
Let the probability distribution over the die faces be ~p =
{p1, . . . , p6}. Mathematically, finding the maximum entropy
distribution over die faces such that the expected die roll is
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Figure 1: Maximum entropy die distributions with mean die rolls of 3.5, 4.5, and 5.5, respectively.

d corresponds to the following optimization problem:

Maximize: H(~p)

Subject to:

1.
6P

i=1

pi = 1

2.
6P

i=1

i · pi = d

The first constraint ensures that the solution forms a distri-
bution over the die faces, and the second constraint ensures
that this distribution has the appropriate expectation. This
is a constrained optimization problem which can be solved
using the method of Lagrange multipliers. Figure 1 shows
three different maximum entropy distributions over the die
faces such that the expected die roll is 3.5, 4.5, and 5.5,
respectively.

2.1 Application of the Maximum Entropy
Method to Analyzing Retrieval Measures

Suppose that you were given a list of length N correspond-
ing to the output of a retrieval system for a given query,
and suppose that you were asked to predict the probabil-
ity of seeing any one of the 2N possible patterns of relevant
documents in that list. In the absence of any information
about the query, any performance information for the sys-
tem, or any a priori modeling of the behavior of retrieval
systems, the most “reasonable” answer you could give would
be that all lists of length N are equally likely. Suppose now
that you are also given the information that the expected
number of relevant documents over all lists of length N is
Rret. Your “reasonable” answer might then be a uniform
distribution over all

`
N

Rret

´
different possible lists with Rret

relevant documents. But what if apart from the constraint
on the number of relevant documents retrieved, you were
also given the constraint that the expected value of aver-
age precision is ap? If the average precision value is high,
then of all the

`
N

Rret

´
lists with Rret relevant documents,

the lists in which the relevant documents are retrieved at
low numerical ranks should have higher probabilities. But
how can you determine the most “reasonable” such distribu-
tion? The maximum entropy method essentially dictates the
most reasonable distribution as a solution to the following
constrained optimization problem.

Let p(r1, ..., rN ) be a probability distribution over the
relevances associated with document lists of length N , let
rel(r1, ..., rN ) be the number of relevant documents in a list,
and let ap(r1, ..., rN ) be the average precision of a list. Then
the maximum entropy method can be mathematically for-
mulated as follows:

Maximize: H(~p)

Subject to:

1.
P

r1,...,rN

p(r1, . . . , rN ) = 1

2.
P

r1,...,rN

ap(r1, . . . , rN ) · p(r1, . . . , rN ) = ap

3.
P

r1,...,rN

rel(r1, . . . , rN ) · p(r1, . . . , rN ) = Rret

Note that the solution to this optimization problem is a
distribution over possible lists, where this distribution ef-
fectively gives one’s a posteriori belief in any list given the
measured constraint.

The previous problem can be formulated in a slightly dif-
ferent manner yielding another interpretation of the problem
and a mathematical solution. Suppose that you were given
a list of length N corresponding to output of a retrieval sys-
tem for a given a query, and suppose that you were asked
to predict the probability of seeing a relevant document at
some rank. Since there are no constraints, all possible lists
of length N are equally likely, and hence the probability of
seeing a relevant document at any rank is 1/2. Suppose now
that you are also given the information that the expected
number of relevant documents over all lists of length N is
Rret. The most natural answer would be a Rret/N uniform
probability for each rank. Finally, suppose that you are
given the additional constraint that the expected average
precision is ap. Under the assumption that our distribu-
tion over lists is a product distribution (this is effectively
a fairly standard independence assumption), we may solve
this problem as follows. Let

p(r1, . . . , rN ) = p(r1) · p(r2) · · · p(rN )

where p(ri) is the probability that the document at rank i is
relevant. We can then solve the problem of calculating the
probability of seeing a relevant document at any rank using
the MEM. For notational convenience, we will refer to this
product distribution as the probability-at-rank distribution
and the probability of seeing a relevant document at rank i,
p(ri), as pi.

Standard results from information theory [4] dictate that
if p(r1, . . . , rN ) is a product distribution, then

H(p(r1, . . . , rN )) =

NX
i=1

H(pi)

where H(pi) is the binary entropy

H(pi) = −pi lg pi − (1 − pi) lg(1 − pi).

Furthermore, it can be shown that given a product distribu-
tion p(r1, . . . , rN ) over the relevances associated with docu-



Maximize:
PN

i=1 H(pi)

Subject to:

1. 1
R

NP
i=1

`
pi
i

`
1 +

i−1P
j=1

pj

´´
= ap

2.
NP

i=1

pi = Rret

Figure 2: Maximum entropy
setup for average precision.

Maximize:
PN

i=1 H(pi)

Subject to:

1. 1
R

RP
i=1

pi = rp

2.
NP

i=1

pi = Rret

Figure 3: Maximum entropy
setup for R-precision.

Maximize:
PN

i=1 H(pi)

Subject to:

1. 1
k

kP
i=1

pi = PC (k)

2.
NP

i=1

pi = Rret

Figure 4: Maximum entropy
setup for precision-at-cutoff.

ment lists of length N , the expected value of average preci-
sion is

1

R

NX
i=1

 
pi

i

 
1 +

i−1X
j=1

pj

!!
. (1)

(The derivation of this formula is omitted due to space con-
straints.) Furthermore, since pi is the probability of seeing
a relevant document at rank i, the expected number of rel-
evant documents retrieved until rank N is

PN
i=1 pi.

Now, if one were given some list of length N , one were told
that the expected number of relevant documents is Rret, one
were further informed that the expected average precision is
ap, and one were asked the probability of seeing a relevant
document at any rank under the independence assumption
stated, one could apply the MEM as shown in Figure 2.
Note that one now solves for the maximum entropy product
distribution over lists, which is equivalent to a maximum en-
tropy probability-at-rank distribution. Applying the same
ideas to R-precision and precision-at-cutoff k, one obtains
analogous formulations as shown in Figures 3 and 4, respec-
tively.

All of these formulations are constrained optimization prob-
lems, and the method of Lagrange multipliers can be used
to find an analytical solution, in principle. When analyti-
cal solutions cannot be determined, numerical optimization
methods can be employed. The maximum entropy distri-
butions for R-precision and precision-at-cutoff k can be ob-
tained analytically using the method of Lagrange multipli-
ers. However, numerical optimization methods are required
to determine the maximum entropy distribution for aver-
age precision. In Figure 5, examples of maximum entropy
probability-at-rank curves corresponding to the measures
average precision, R-precision, and precision-at-cutoff 10 for
a run in TREC8 can be seen. Note that the probability-
at-rank curves are step functions for the precision-at-cutoff
and R-precision constraints; this is as expected since, for
example, given a precision-at-cutoff 10 of 0.3, one can only
reasonably conclude a uniform probability of 0.3 for seeing
a relevant document at any of the first 10 ranks. Note,
however, that the probability-at-rank curve corresponding
to average precision is smooth and strictly decreasing.

Using the maximum entropy probability-at-rank distribu-
tion of a list, we can infer the maximum entropy precision-
recall curve for the list. Given a probability-at-rank distri-
bution ~p, the number of relevant documents retrieved un-
til rank i is REL(i) =

Pi
j=1 pj . Therefore, the precision

and recall at rank i are PC (i) = REL(i)/i and REC (i) =
REL(i)/R. Hence, using the maximum entropy probability-
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Figure 5: Probability-at-rank distributions.

at-rank distribution for each measure, we can generate the
maximum entropy precision-recall curve of the list. If a mea-
sure provides a great deal of information about the under-
lying list, then the maximum entropy precision-recall curve
should approximate the precision-recall curve of the actual
list. However, if a measure is not particularly informa-
tive, then the maximum entropy precision-recall curve need
not approximate the actual precision-recall curve. There-
fore, noting how closely the maximum entropy precision-
recall curve corresponding to a measure approximates the
precision-recall curve of the actual list, we can calculate how
much information a measure contains about the actual list,
and hence how “informative” a measure is. Thus, we have a
methodology for evaluating the evaluation measures them-
selves.

Using the maximum entropy precision-recall curve of a
measure, we can also predict the values of other measures.
For example, using the maximum entropy precision-recall
curve corresponding to average precision, we can predict
the precision-at-cutoff 10. For highly informative measures,
these predictions should be very close to reality. Hence, we
have a second way of evaluating evaluation measures.

3. EXPERIMENTAL RESULTS
We tested the performance of the evaluation measures av-

erage precision, R-precision, and precision-at-cutoffs 5, 10,
15, 20, 30, 100, 200, 500 and 1000 using data from TRECs
3, 5, 6, 7, 8 and 9. For any TREC and any query, we chose
those systems whose number of relevant documents retrieved
was at least 10 in order to have a sufficient number of points
on the precision-recall curve. We then calculated the maxi-
mum entropy precision-recall curve subject to the given mea-
sured constraint, as described above. The maximum entropy
precision-recall curve corresponding to an average precision



constraint cannot be determined analytically; therefore, we
used numerical optimization1 to find the maximum entropy
distribution corresponding to average precision.

We shall refer to the execution of a retrieval system on
a particular query as a run. Figure 6 shows examples of
maximum entropy precision-recall curves corresponding to
average precision, R-precision, and precision-at-cutoff 10 for
three different runs, together with the actual precision-recall
curves. We focused on these three measures since they are
perhaps the most commonly cited measures in IR. We also
provide results for precision-at-cutoff 100 in later plots and
detailed results for all measures in a later table. As can be
seen in Figure 6, using average precision as a constraint, one
can generate the actual precision-recall curve of a run with
relatively high accuracy.

In order to quantify how good an evaluation measure is
in generating the precision-recall curve of an actual list,
we consider two different error measures: the root mean
squared error (RMS) and the mean absolute error (MAE).
Let {π1, π2, . . . , πRret} be the precisions at the recall levels
{1/R, 2/R, . . . , Rret/R} where Rret is the number of rele-
vant documents retrieved by a system and R is the number of
documents relevant to the query, and let {m1, m2, . . . , mRret}
be the estimated precisions at the corresponding recall lev-
els for a maximum entropy distribution corresponding to a
measure. Then the MAE and RMS errors are calculated as
follows.

RMS =

vuut 1

Rret

RretX
i=1

(πi − mi)2

MAE =
1

Rret

RretX
i=1

|πi − mi|

The points after recall Rret/R on the precision-recall curve
are not considered in the evaluation of the MAE and RMS
errors since, by TREC convention, the precisions at these
recall levels are assumed to be 0.

In order to evaluate how good a measure is at inferring
actual precision-recall curves, we calculated the MAE and
RMS errors of the maximum entropy precision-recall curves
corresponding to the measures in question, averaged over all
runs for each TREC. Figure 7 shows how the MAE and RMS
errors for average precision, R-precision, precision-at-cutoff
10, and precision-at-cutoff 100 compare with each other for
each TREC. The MAE and RMS errors follow the same
pattern over all TRECs. Both errors are consistently and
significantly lower for average precision than for the other
measures in question, while the errors for R-precision are
consistently lower than for precision-at-cutoffs 10 and 100.

Table 1 shows the actual values of the RMS errors for all
measures over all TRECs. In our experiments, MAE and
RMS errors follow a very similar pattern, and we therefore
omit MAE results due to space considerations. From this
table, it can be seen that average precision has consistently
lower RMS errors when compared to the other measures.
The penultimate column of the table shows the average RMS
errors per measure averaged over all TRECs. On average,
R-precision has the second lowest RMS error after average
precision, and precision-at-cutoff 30 is the third best mea-
sure in terms of RMS error. The last column of the table

1We used the TOMLAB Optimization Environment for
Matlab.

shows the percent increase in the average RMS error of a
measure when compared to the RMS error of average preci-
sion. As can be seen, the average RMS errors for the other
measures are substantially greater than the average RMS
error for average precision.

We now consider a second method for evaluating how in-
formative a measure is. A highly informative measure should
properly reduce one’s uncertainty about the distribution of
relevant and non-relevant documents in a list; thus, in our
maximum entropy formulation, the probability-at-rank dis-
tribution should closely correspond to the pattern of rele-
vant and non-relevant documents present in the list. One
should then be able to accurately predict the values of other
measures from this probability-at-rank distribution.

Given a probability-at-rank distribution p1, p2, . . . , pN , we
can predict average precision, R-precision and precision-at-
cutoff k values as follows:

• ap =
1

R

NX
i=1

 
pi

i

 
1 +

i−1X
j=1

pj

!!

• rp =
1

R

RX
i=1

pi

• PC (k) =
1

k

kX
i=1

pi

The plots in the top row of Figures 8 and 9 show how average
precision is actually correlated with R-precision, precision-
at-cutoff 10, and precision-at-cutoff 100 for TRECs 6 and 8,
respectively. Each point in the plot corresponds to a sys-
tem and the values of the measures are averaged over all
queries. Using these plots as a baseline for comparison, the
plots in the bottom row of the figures show the correlation
between the actual measures and the measures predicted
using the average precision maximum entropy probability-
at-rank distribution. Consider predicting precision-at-cutoff
10 values using the average precision maximum entropy dis-
tributions in TREC 6. Without applying the maximum en-
tropy method, Figure 8 shows that the two measures are
correlated with a Kendall’s τ value of 0.671. However, the
precision-at-cutoff 10 values inferred from the average pre-
cision maximum entropy distribution have a Kendall’s τ
value of 0.871 when compared to actual precisions-at-cutoff
10. Hence, the predicted precision-at-cutoff 10 and actual
precision-at-cutoff 10 values are much more correlated than
the actual average precision and actual precision-at-cutoff 10
values. Using a similar approach for predicting R-precision
and precision-at-cutoff 100, it can be seen in Figures 8 and 9
that the measured values predicted by using average preci-
sion maximum entropy distributions are highly correlated
with actual measured values.

We conducted similar experiments using the maximum
entropy distributions corresponding to other measures, but
since these measures are less informative, we obtained much
smaller increases (and sometimes even decreases) in inferred
correlations. (These results are omitted due to space con-
siderations.) Table 2 summarizes the correlation improve-
ments possible using the maximum entropy distribution cor-
responding to average precision. The row labeled τact gives
the actual Kendall’s τ correlation between average precision
and the measure in the corresponding column. The row
labeled τinf gives the Kendall’s τ correlation between the
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Figure 6: Inferred precision-recall curves and actual precision-recall curve for three runs in TREC8.
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Figure 7: MAE and RMS errors for inferred precision-recall curves over all TRECs.

TREC3 TREC5 TREC6 TREC7 TREC8 TREC9 AVERAGE %INC
AP 0.1185 0.1220 0.1191 0.1299 0.1390 0.1505 0.1298 −
RP 0.1767 0.1711 0.1877 0.2016 0.1878 0.1630 0.1813 39.7
PC-5 0.2724 0.2242 0.2451 0.2639 0.2651 0.2029 0.2456 89.2
PC-10 0.2474 0.2029 0.2183 0.2321 0.2318 0.1851 0.2196 69.1
PC-15 0.2320 0.1890 0.2063 0.2132 0.2137 0.1747 0.2048 57.8
PC-20 0.2210 0.1806 0.2005 0.2020 0.2068 0.1701 0.1968 51.6
PC-30 0.2051 0.1711 0.1950 0.1946 0.2032 0.1694 0.1897 46.1
PC-100 0.1787 0.1777 0.2084 0.2239 0.2222 0.1849 0.1993 53.5
PC-200 0.1976 0.2053 0.2435 0.2576 0.2548 0.2057 0.2274 75.2
PC-500 0.2641 0.2488 0.2884 0.3042 0.3027 0.2400 0.2747 111.6
PC-1000 0.3164 0.2763 0.3134 0.3313 0.3323 0.2608 0.3051 135.0

Table 1: RMS error values for each TREC.

TREC3 TREC5 TREC6
RP PC-10 PC-100 RP PC-10 PC-100 RP PC-10 PC-100

τact 0.921 0.815 0.833 0.939 0.762 0.868 0.913 0.671 0.807
τinf 0.941 0.863 0.954 0.948 0.870 0.941 0.927 0.871 0.955
%Inc 2.2 5.9 14.5 1.0 14.2 8.4 1.5 29.8 18.3

TREC7 TREC8 TREC9
RP PC-10 PC-100 RP PC-10 PC-100 RP PC-10 PC-100

τact 0.917 0.745 0.891 0.925 0.818 0.873 0.903 0.622 0.836
τinf 0.934 0.877 0.926 0.932 0.859 0.944 0.908 0.757 0.881
%Inc 1.9 17.7 3.9 0.8 5.0 8.1 0.6 21.7 5.4

Table 2: Kendall’s τ correlations and percent improvements for all TRECs.
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Figure 8: Correlation improvements, TREC6.

measure inferred from the maximum entropy distribution
corresponding to average precision and the measure in the
corresponding column. The row labeled %Inc gives the per-
cent increase in correlation due to maximum entropy mod-
eling. As can be seen, maximum entropy modeling yields
great improvements in the predictions of precision-at-cutoff
values. The improvements in predicting R-precision are no-
ticeably smaller, though this is largely due to the fact that
average precision and R-precision are quite correlated to be-
gin with.

4. CONCLUSIONS AND FUTURE WORK
We have described a methodology for analyzing measures

of retrieval performance based on the maximum entropy
method, and we have demonstrated that the maximum en-
tropy models corresponding to “good” measures of overall
performance such as average precision accurately reflect un-
derlying retrieval performance (as measured by precision-
recall curves) and can be used to accurately predict the val-
ues of other measures of performance, well beyond the levels
dictated by simple correlations.

The maximum entropy method can be used to analyze
other measures of retrieval performance, and we are presently
conducting such studies. More interestingly, the maximum
entropy method could perhaps be used to help develop and
gain insight into potential new measures of retrieval perfor-
mance. Finally, the predictive quality of maximum entropy
models corresponding to average precision suggest that if
one were to estimate some measure of performance using an
incomplete judgment set, that measure should be average
precision—from the maximum entropy model correspond-
ing to that measure alone, one could accurately infer other
measures of performance.

Note that the concept of a “good” measure depends on
the purpose of evaluation. In this paper, we evaluate mea-
sures based on how much information they provide about
the overall performance of a system (a system-oriented eval-

uation). However, in different contexts, different measures
may be more valuable and useful, such as precision-at-cutoff
10 in web search (a user-oriented evaluation). R-precision
and average precision are system-oriented measures, whereas
precision-at-cutoff k is typically a user-oriented measure.
Another important conclusion of our work is that one can ac-
curately infer user-oriented measures from system-oriented
measures, but the opposite is not true.

Apart from evaluating the information captured by a sin-
gle measure, we could use the MEM to evaluate the informa-
tion contained in combinations of measures. How much does
knowing the value of precision-at-cutoff 10 increase one’s
knowledge of a system’s performance beyond simply know-
ing the system’s average precision? Which is more infor-
mative: knowing R-precision and precision-at-cutoff 30, or
knowing average precision and precision-at-cutoff 100? Such
questions can be answered, in principle, using the MEM.
Adding the values of one or more measures simply adds one
or more constraints to the maximum entropy model, and
one can then assess the informativeness of the combination.
Note that TREC reports many different measures. Using
the MEM, one might reasonably be able to conclude which
are the most informative combinations of measures.
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