Extractors for circuit sources

Emanuele Viola

Northeastern University

April 22 2011
Randomness

- Randomness useful in computation, crucial in crypto

- Sources of randomness in nature (various statistics, quantum effects, human brain, ...) appear to exhibit correlations, biases

- Want: turn such weak source into good source of randomness: close to uniform
Randomness extractors

- Extractor : \(\{0,1\}^n \rightarrow \{0,1\}^m \) for sources (distributions) \(S \)
 \[\forall D \in S, \quad \text{Extractor}(D) \quad \varepsilon\text{-close to uniform} \]

- **Deterministic** (no seed) [Von Neumann '51, Santha Vazirani ...]

- **Randomized** (seed) [Nisan Zuckerman '93, Trevisan, …, Guruswami Umans Vadhan]

- Recent interest in deterministic (also for cryptography) [Trevisan Vadhan '00, Dodis, …]
Deterministic extractors for:

- **Independent-blocks source:** [Chor Goldreich 88, Barak Bourgain, Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson ...]

- **Bit-fixing source:** some bits uniform & indep., others fixed
 [Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]

- **Small-space:** output of one-way, space-bounded algorithm
 [Blum '86, Vazirani, Koenig Maurer, Kamp Rao Vadhan Zuckerman]

- **Affine:** uniform over affine space
 [BKSSW, Bourgain, Rao, Ben-Sasson Kopparty, ...]

- **This work:** first extractor for circuit sources: local, NC^0, AC^0
Outline of talk

- Extractors and the complexity of distributions
- Extractors for local sources
- Extractors for bounded-depth circuits (AC^0)
- Other results
Trevisan Vadhan [2000]

- Sources D with min-entropy $k : \Pr[D = a] < 2^{-k}$ \forall a, sampled (or generated) by small circuit $C : \{0,1\}^* \rightarrow \{0,1\}^n$ given random bits.

- **Extractor** \Rightarrow Circuit lower bound
 (even 1 bit from $k=n-1$)

- **Extractor** \Leftarrow Time($2^{O(n)}$) $\not\subseteq \Sigma_5$-circuits of size $2^{o(n)}$
This work

- **Extractor** ⇔ **Circuit lower bound for sampling**
 (1 bit from $k=n-1$) [V 2010]

- Balanced $f : \{0,1\}^n \rightarrow \{0,1\}$ extractor ⇔
 small circuits cannot sample $f^{-1}(0)$ given random bits

 I.e., \forall small circuit $C : \{0,1\}^* \rightarrow \{0,1\}^n$
 output distribution $C(X)$ not uniform over $\{y : f(y) = 0\}$
The complexity of distributions

- Study of **sampling lower bounds** advocated in [V 2010]

 Surprising power of “restricted” models
 E.g.: AC^0 samples $(Y, \text{Majority}(Y))$ with error 2^{-n}

- First sampling lower bounds in [V, Lovett V]

 E.g.: NC^0 cannot sample $(Y, \text{Majority}(Y))$ with error $o(1)$

 \Downarrow

 extract 1 bit error < 1 from n-bit entropy $k = n-1$ NC^0 source
Outline of talk

• Extractors and the complexity of distributions

• Extractors for local sources

• Extractors for bounded-depth circuits (AC^0)

• Other results
Extractors for local functions

- \(f : \{0,1\}^* \rightarrow \{0,1\}^n \) d-local: each output bit depends on \(d \) input bits

- **Theorem** From d-local n-bit source with min-entropy \(k \):
 - Let \(T := k \text{ poly}(k/nd) \)
 - Extract \(T \) bits, error \(\exp(-T) \)

- E.g. extract \(T = k^c \) bits from entropy \(k = n^{1-c} \) locality \(d = n^c \)

- Note: any entropy-\(k \) source is k-local: always need \(k > d \)
Extractors for local functions

- **Theorem** From d-local n-bit source with min-entropy k:

 Let $T := k \text{ poly}(k/nd)$

 Extract T bits, error $\exp(-T)$

- $d = O(1) \implies$ extract from NC^0 sources

 [Independently obtained by De & Watson]

- Theorem later used for AC^0

- Various values of $\text{poly}(k/nd)$
High-level proof

- Theorem: d-local n-bit min-entropy k source (T=\(k \text{ poly}(k/nd)\)) is convex combination of bit-block source
 - block-size = \(dn/k\), entropy T, error \(\exp(-T)\)

- Bit-block source with entropy T:
 \[
 (0, 1, X_1, 1- X_5, X_3, X_3, 1- X_2, 0, X_7, 1- X_8, 1, X_1)
 \]
 \(X_1, X_2, \ldots, X_T \in \{0,1\}\)
 \(0 < \text{occurrences of } X_i < \text{block-size} = dn/k\)

- Special case of low-weight affine sources
 Use extractor by Rao '09
Proof

- d-local n-bit source min-entropy k: convex combo bit-block

\[
\begin{array}{ccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
\end{array}
\]

w.l.o.g. \rightarrow \frac{nd}{k} \quad d

\[
\begin{array}{cccccc}
 y_1 & y_2 & y_3 & y_4 & y_5 \\
\end{array}
\]

n output bits

- Output entropy $> k \Rightarrow \exists y_i$ with variance $> \frac{k}{n}$
- Isoperimetry $\Rightarrow \exists x_j$ with influence $> \frac{k}{nd}$
- Set uniformly $N(N(x_j)) \setminus \{x_j\}$ (\(N(v) = \text{neighbors of } v\)) with prob. $> \frac{k}{nd}$, $N(x_j)$ non-constant block of size $\frac{nd}{k}$
- Repeat $k / |N(N(x_j))| = k \frac{1}{nd^2}$ times, expect $k \frac{k^2}{n^2d^3}$ blocks

Qed
Outline of talk

- Extractors and the complexity of distributions
- Extractors for local sources
- Extractors for bounded-depth circuits (AC0)
- Other results
• **Theorem** From AC^0 n-bit source with min-entropy k:

 Extract $k \text{ poly}\left(\frac{k}{n^{1.001}}\right)$ bits, error $1/n^{\omega(1)}$
High-level proof

- Apply random restriction \([\text{Furst Saxe Sipser, Ajtai, Yao, Hastad}]\)

- Switching lemma: Circuit collapses to \(d=n^\varepsilon\)-local
 apply previous extractor for local sources

- Problem: fix 1-\(o(1)\) input variables, entropy?
The effect of restrictions on entropy

- Theorem $f : \{0,1\}^* \rightarrow \{0,1\}^n \quad f(X) \text{ min-entropy } k$

 Let R be random restriction with $Pr[*] = p$

 With high probability, $f |_R (X)$ has min-entropy pk

- Parameters: $k = \text{poly}(n), \ p = 1/\sqrt{k}$

- After restriction both circuit collapsed

 and min-entropy $pk = \sqrt{k}$ still poly(n)
Proof idea

- **Theorem** \(f : \{0,1\}^* \rightarrow \{0,1\}^n \quad f(X) \) min-entropy \(k \)

 Let \(R \) be random restriction with \(\Pr[*] = p \)

 With high probability, \(f|_R(X) \) has min-entropy \(pk \)

- **Proof**: Builds on \([\text{Lovett V}]\)

- Isoperimetric inequality for noise: \(\forall \, A \subseteq \{0,1\}^L \) of density \(\alpha \) random \(m, \, m' \) obtained flipping bits w/ probability \(p \) :
 \[
 \alpha^2 \leq \Pr[\text{both } m \in A \text{ and } m' \in A] \leq \alpha^{1/(1-p)}
 \]

- Bound collision probability \(\Pr[f|_R(X) = f|_R(Y)] \)
 \(\text{Qed} \)
Outline of talk

• Extractors and the complexity of distributions

• Extractors for local sources

• Extractors for bounded-depth circuits (AC0)

• Other results
The complexity of distributions

• **Theorem** Explicit \(b : \{0,1\}^n \rightarrow \{0,1\} : \)

 Small AC\(^0\) circuits cannot generate \((Y, b(Y))\)

• **Proof**: \(b \) := first bit of AC\(^0\) extractor

 Suppose \(C \) generates \((Y, b(Y))\)

 Apply restriction.

 Fix uniformly additional \(< \log n\) bits that determine \(b(Y) \)

 \((\text{path in small-depth decision tree}) \)

 \(b(Y) \) fixed but \(Y \) has lots of entropy. \hspace{1cm} \text{Contradiction.}
Simple extractor for NC^0

- Previous theorems use Rao's affine extractor (In some settings can use others, e.g. [Bourgain])

- Somewhat complicated

- Want: simple extractors

 \[\Rightarrow\] sampling lower bound for simple functions

- Theorem Hamming weight extracts $\omega(1)$ bits with error $o(1)$ from NC^0 sources of entropy $n - \sqrt{n}$
Tool for extractor proof

- Central limit theorem:
 \[x_1, x_2, \ldots, x_n \text{ independent} \implies \sum x_i \approx \text{normal} \]

- Bounded-independence central limit theorem
 [Diakonikolas Gopalan Jaiswal Servedio V.]
 \[x_1, x_2, \ldots, x_n \text{ k-wise independent} \implies \sum x_i \approx \text{normal} \]

\[\forall t \quad \left| \Pr[\sum x_i < t] - \Pr[\text{normal} < t] \right| < \frac{1}{\sqrt{k}} \]
Simple extractor for NC^0

- Theorem Hamming weight extracts $\omega(1)$ bits with error $o(1)$ from NC^0 sources of entropy $n - \sqrt{n}$

- Proof:

n-\sqrt{n} output bits are almost 100-wise independent. [Shaltiel V]

$\text{NC}^0 \Rightarrow$ exactly 100-wise independent

Bounded-independence central limit theorem
[Diakonikolas Gopalan Jaiswal Servedio V.]

Qed
Summary

• First extractors for circuit sources: NC^0, local, AC^0

Techniques:
local = convex comb. of bit-block, use Rao's affine extractor for AC^0 also bound entropy loss in restrictions

• Extractor \iff Circuit lower bound for sampling
(1 bit from $k=n-1$) [V 2010]

• Corollary: Explicit $b : \{0,1\}^n \rightarrow \{0,1\}$:
Small AC^0 circuits cannot generate $(Y, b(Y))$
Open problems

• Min-entropy k \textit{2-local} source $f : \{0,1\}^* \rightarrow \{0,1\}^n$

• Current extractor applies when $k > n^{2/3}$

• Given better affine extractor, when $k > n^{1/2}$

• Challenge: extract from $k < n^{1/2}$
Open problems

- **Note** \(\exists \) 2-local \(f : \{0,1\}^{2n} \rightarrow \{0,1\}^n \)
 \[\text{Distance}(f(X), W_{n/4} = \text{uniform w/ weight } n/4) = 1 - \Theta(1)/\sqrt{n} \]

- **Challenge**: \(\text{Distance } 1 - 2^{-\Omega(n)} \) input length = \(H(1/4)n+o(n) \)

- **Recall**: \(AC^0 \) can generate \((Y, \text{majority}(Y))\), error \(2^{-|Y|} \)
 Challenge: error 0?

- **Related** [Lovett V.]: Any bijection
 \[\{0,1\}^n = \begin{array}{c} \diamondsuit \end{array} \rightarrow \begin{array}{c} \triangle \end{array} = \{x \in \{0,1\}^{n+1} : \sum x_i \geq n/2 \} \]
 has large expected hamming distortion? (\(n \) even)
Recall: edit style changes ALL settings.
Click on “line” for just the one you highlight