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Two goals

• Classical goal of complexity theory: Lower bounds for computing functions:
Example: Parity not in AC0

• This work: Lower bounds for sampling distributions, given uniform bits

Line of research spanning 10+ years

Connections with 1) randomness extractors [will not see]

2) data structures              [will touch on this later]



The model in this work: Forest
• Input: Uniform, independent cells of w bits,

no restriction on number of cells.
Write input as [𝑾𝑾]𝑳𝑳 for some 𝑳𝑳; 𝑾𝑾 = 𝟐𝟐𝒘𝒘 .

• Output: m cells of w bits

• Each output cell computed by a 𝑾𝑾-ary tree of depth q, querying input cells.
A.k.a. time-q cell-probe algorithm

• Have m distinct trees, one per output cell

• Think W = m.  Generalizes boolean decision trees (w = 1)

Y1 Y2 ... ... ... Ym

...X1 X2



Previous lower bounds for forests

• Follow from lower bounds for AC0 [V]

Apply to “pseudorandom objects” like extractors, codes

• Shortcomings:

Cannot prove separation between AC0 and forest samplers
(cf. known separations for computing)

Do not apply to “simple” distributions



Overview of this work
• New lower bounds for sampling by forests

• Separate AC0 and forest samplers

• Prove a hierarchy for forest samplers: more depth, more power

• Apply to “simple” distributions
Reprove some data-structure lower bounds as corollary

• New tool: The separator:
Can restrict input so that output of forest is “close to” pair-wise independent



Outline
• Overview

• Two sampling lower bounds

• The separator



Lower bound for Rank (a.k.a. prefix sums)
• Definition: Rank(x)= 𝑥𝑥1, 𝑥𝑥1 + 𝑥𝑥2, 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3, … , 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑚𝑚 ∈ 𝑚𝑚 𝑚𝑚

Where 𝑥𝑥 ∈ 0,1 𝑚𝑚, sum over integers (sum mod 2 easy to sample)

• Theorem: For any depth-q forest sampler f:
Statistical-Distance( f([𝑊𝑊]𝐿𝐿), Rank( 0,1 𝑚𝑚) ) > 1 – 2−𝑚𝑚/𝑤𝑤𝑂𝑂(𝑞𝑞) − Tight

• Note: [𝑊𝑊]𝐿𝐿, 0,1 𝑚𝑚 also denote uniform distribution on those sets

• Distance close to 1 ⇒ lower bounds for succinct data structures
⇒ reprove Patrascu-V data-structure lower bound for Rank

• Rank can be sampled by quasi-polynomial AC0.  Open: Poly-size AC0



Lower bound for Predecessor
• Definition: Pred(x) = 𝑦𝑦 ∈ 0,1, … ,𝑚𝑚 𝑚𝑚

where 𝑦𝑦𝑖𝑖 = max 𝑗𝑗 ≤ 𝑖𝑖: 𝑥𝑥𝑗𝑗 = 1 is predecessor of 𝑖𝑖, and x ∈ 0,1 𝑚𝑚

• Pred(U) easy to sample.
• Consider Pred(H) for distribution H encoding “direct product” predecessor

• Theorem: For any depth-q forest sampler f:
Statistical-Distance( f([𝑊𝑊]𝐿𝐿), Pred(H) ) > 1 – 2−𝑚𝑚/𝑤𝑤𝑂𝑂(𝑞𝑞) − Tight

• Pred(H) can be sampled in poly-size AC0 => separating forest & AC0 samplers

• Also gives sampling hierarchy: depth O(q) samples more than depth q



Outline
• Overview

• Two sampling lower bounds

• The separator



The separator
• Theorem: Let 𝑓𝑓 = (𝑓𝑓1, 𝑓𝑓2, … ,𝑓𝑓𝑚𝑚) be depth-q forest, S a distribution

If    Statistical-Distance ( f([𝑊𝑊]𝐿𝐿), S) < 1 - 𝜖𝜖 then ∃ large 𝐷𝐷 ⊆ [𝑊𝑊]𝐿𝐿:

(1) f(D) is suitably close to S          
(2) Most pairs of output words of f(D) are almost independent

• [𝑊𝑊]𝐿𝐿 ,𝐷𝐷, 𝑆𝑆 denote sets as well as uniform distributions over them

• Suitably close :=  Supp(𝑓𝑓 𝐷𝐷 ) ⊆ Supp(𝑆𝑆) and 𝐻𝐻∞ 𝑓𝑓 𝐷𝐷 ≥ 𝐻𝐻∞ 𝑆𝑆 − 𝑐𝑐 log 1/𝜖𝜖

• Key: Number of pairs in (2) compares favorably to entropy loss in (1)

• Distributions suitably close to Rank/Pred do not satisfy (2) ⇒ lower bounds



The separator
• Theorem: Let 𝑓𝑓 = (𝑓𝑓1, 𝑓𝑓2, … ,𝑓𝑓𝑚𝑚) be depth-q forest, S a distribution

If    Statistical-Distance ( f([𝑊𝑊]𝐿𝐿), S) < 1 - 𝜖𝜖 then ∃ large 𝐷𝐷 ⊆ [𝑊𝑊]𝐿𝐿:

(1) f(D) is suitably close to S         
(2) Most pairs of output words of f(D) are almost independent

• High-level proof idea:
If (2) Does not hold

⇒ trees 𝑓𝑓𝑖𝑖 intersect queries often
⇒ can fix some queries, further restrict 𝐷𝐷, and reduce depth of forest.

Implementation is somewhat technical.  Next some proof highlights.



The separator
• Theorem: Let 𝑓𝑓 = (𝑓𝑓1, 𝑓𝑓2, … ,𝑓𝑓𝑚𝑚) be depth-q forest, S a distribution

If    Statistical-Distance ( f([𝑊𝑊]𝐿𝐿), S) < 1 - 𝜖𝜖 then ∃ large 𝐷𝐷 ⊆ [𝑊𝑊]𝐿𝐿:

(1) f(D) is suitably close to S         
(2) Most pairs of output words of f(D) are almost independent

• How to get started:
Particular way in which assumption can be satisfied:
𝑓𝑓 [𝑊𝑊]𝐿𝐿 = 𝑆𝑆 with probability 𝜖𝜖, and 𝑓𝑓 [𝑊𝑊]𝐿𝐿 = 0 otherwise

• Lemma: Particular way is general way: ∃ large 𝐷𝐷 ⊆ [𝑊𝑊]𝐿𝐿 : (1) holds

• Now “forget” S; goal is to restrict D to ensure (2)



The separator
• Theorem: Let 𝑓𝑓 = (𝑓𝑓1, 𝑓𝑓2, … ,𝑓𝑓𝑚𝑚) be depth-q forest, S a distribution

If    Statistical-Distance ( f([𝑊𝑊]𝐿𝐿), S) < 1 - 𝜖𝜖 then ∃ large 𝐷𝐷 ⊆ [𝑊𝑊]𝐿𝐿:

(1) f(D) is suitably close to S 
(2) Most pairs of output words of f(D) are almost independent

• How to iterate

• Fixed-Set Lemma [GSV]: ∃ large 𝐷𝐷′ ⊆ 𝐷𝐷 ⊆ [𝑊𝑊]𝐿𝐿 :
𝐷𝐷𝐷 looks like product distribution to small-depth trees

• If (𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗) 𝐷𝐷′ not close to independent, by Fixed-Set Lemma
𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗 intersect queries often ⇒ can restrict 𝐷𝐷𝐷 to reduce forest depth



Overview of this work
• New lower bounds for sampling by forests

• Separate AC0 and forest samplers

• Prove a hierarchy for forest samplers: more depth, more power

• Apply to “simple” distributions
Reprove some data-structure lower bounds as corollary

• New tool: The separator:
Can restrict input so that output of forest is “close to” pair-wise independent



Open problems

• Sampling lower bounds still uncharted area

• Open: Sample Rank by poly-size AC0

• Open: Sample a uniform permutation by a forest.
Can you even settle depth 2?



Thanks!
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