Computation

- The universe is computational
- Computation of increasing importance to many fields
 - biology
 - physics
 - economics
 - mathematics
- Goal: understand computation
Milestones

• Uncomputability
 [Gödel, Turing, Church; 1930’s]

• NP-completeness
 [Cook, Levin, Karp; 1970’s]

• Randomness
 [...; today]
Pseudorandomness

• Key to understanding randomness

• Goal of Pseudorandomness:
 Construct objects that “look random” using little or no randomness

• Example:
 Random 10-digit number is prime with probab. 1/10

Challenge: Deterministic construction?
Motivation for Pseudorandomness (1)

- Algorithm design, Monte Carlo method

- **Breakthrough** [Reingold 2004]
 Connectivity in logarithmic space (SL = L)

- **Breakthrough** [Agrawal Kayal Saxena 2002]
 Primality in polynomial time (PRIMES ∈ P)

- Originated from pseudorandomness
Motivation for Pseudorandomness (2)
[Shannon 1949; Goldwasser Micali 1984]

• Cryptography

Buy oil

Cipher

11010110101101000011101001

Buy oil

• Security ⇔ cipher looks random to eavesdropper
Motivation for Pseudorandomness (3)

• Surprise: “P ≠ NP ⇔ P = RP” (1980’s-present)
 Hard problems exist ⇔ randomness does not help

[Babai Fortnow Kabanets Impagliazzo Nisan Wigderson…]

• Idea: Hard problem ⇒ source of randomness

![Sudoku puzzle](image)
Outline

• Overview
 Motivation

• Pseudorandom generators
 Examples
 Circuits
 Polynomials

• Future directions
Pseudorandom generator
[Blum Micali; Yao; Nisan Wigderson]

- Efficient, deterministic
- Short seed $s(n) \ll n$
- Output "looks random"
Definition of “looks random”

- “Looks random” to test $T: \{0,1\}^n \rightarrow \{0,1\}$

- Example: $T = \text{“Does pattern 1010 occur?”}$
Classes of tests

- **General**: $P = RP$, cryptography, etc.
 - $T = \text{any algorithm}$

- **Restricted**: Also many applications.
 - $T = \text{Space bounded}$
 - Rectangles
 - look at k bits
 - Circuits
 - Polynomials

- **Conditional**
- Unconditional

[Nisan, Reingold, Trevisan, Vadhan, …]
[Armoni, Saks, Wigderson, Zhou, Lu]
[Chor, Goldreich, Alon, Babai, Itai, …]
[Nisan, Luby, Velickovic, Wigderson, V.]
[Naor, Naor, Bogdanov, V., V.]
Toy example

- **Test:** Just look at 1 bit (but you don’t know which)

- **Want:** each output bit is random

- **Question:** Minimal seed length \(s \)?

Diagram

```
s(n)  \rightarrow\quad \text{Gen} \quad \rightarrow 100110 \cdots 01100
```

- 1 with probability 50%
Solution to toy example

- **Solution**: Seed length $s = 1$!

![Diagram](image-url)
Pairwise independence

- **Test:** Just look at 2 bits

- **Want:**

 \[s(n) \]

 every two output bits are random:

 \[00, 01, 10, 11 \]

 with prob. 25%

- **Theorem** [Carter Wegman ‘79,...] \(s = \log n \)

- **Idea:** \(y \)-th output bit: \(\text{Gen}(x)_y := \sum_i x_i \cdot y_i \in \{0,1\} \)

 \(|x| = |y| = \log n\)
Application to MAXCUT
[Chor Goldreich, Alon Babai Itai]

• **Want**: Cut in graph that maximizes edges crossing

• **Random cut**: $C(v) = 0, 1$ with prob. $1/2$

 $E[\# \text{ edges crossing}] = \sum_{(u,v)} \text{Prob}[C(u) \neq C(v)] = |E|/2$

• **Pairwise independent cut suffices!**

 \Rightarrow deterministic algorithm (try $2^{\log n} = n$ cuts)

• “The amazing power of pairwise independence”
Outline

• Overview
 Motivation

• Pseudorandom generators
 Examples
 Circuits
 Polynomials

• Future directions
Previous results for circuits

- **Theorem** [Nisan ‘91]: Generator for constant-depth circuits with AND (\(\land\)), OR (\(\lor\)) gates

- **Application** to average-case “P vs NP” problem

[Healy Vadhan V. ; SIAM J. Comp. STOC special issue]
Our Results

[V.; SIAM J. Comp., SIAM student paper prize 2006]

• **Theorem:** Generator for constant-depth circuits with few Majority gates

• Richest circuit class for which pseudorandom generator is known

\[
s = n^{0.01} \\
\overbrace{010110} \rightarrow \text{Gen} \rightarrow 100110 \cdots 01100
\]
Outline

• Overview
 Motivation

• Pseudorandom generators
 Examples
 Circuits
 Polynomials

• Future directions
Polynomials

- Polynomials: degree \(d \), \(n \) variables over \(F_2 = \{0,1\} \)

 E.g., \(p = x_1 + x_5 + x_7 \) \(\text{degree } d = 1 \)
 \(p = x_1 \cdot x_2 + x_3 \) \(\text{degree } d = 2 \)

- Test \(T = \) polynomial

- We focus on the degree of polynomial
Previous results

• **Theorem**[Naor Naor ‘90]: Generator for linear polynomials, seed length $s(n) = O(\log n)$

• Myriad applications: matrix multiplication, PCP’s

Expander graphs:
(sparse yet highly connected)

• For degree $d \geq 2$, *no progress* for 15 years
Our results
[Bogdanov V.; FOCS ’07 special issue]

• For degree d:
 Let $L \in \{0,1\}^n$ look random to linear polynomials [NN]
 bit-wise XOR d independent copies of L:

$$\text{Generator} := L^1 + \ldots + L^d$$

• Theorem:
 (I) Unconditionally: Looks random to degree $d=2,3$
 (II) Under “Gowers inverse conjecture”: Any degree
Recent developments after [BV]

- **Th. [Lovett]**: The sum of 2^d generators for degree 1 looks random to degree d, **unconditionally**.
 - [BV] sums d copies

- Progress on “Gowers inverse conjecture”:
 - **Theorem [Green Tao]**:
 True when $|\text{Field}| > \text{degree } d$
 - Proof uses techniques from [BV]

- **Theorem** [Green Tao], [Lovett Meshulam Samorodnitsky]
 False when Field = \{0,1\}, degree = 4
Our latest result
[V. CCC ‘08]

• Theorem:
The sum of d generators for degree 1 looks random to polynomials of degree d. For every d and over any field.

(Despite the Gowers inverse conjecture being false)

• Improves on both [Bogdanov V.] and [Lovett]

• Also simpler proof
Proof idea

• Induction: Assume for degree \(d \), prove for degree-(\(d+1\)) \(p \)

Inductive step: Case-analysis based on
\[
\text{Bias}(p) \; := \; | \text{Prob}_{\text{uniform } X} [p(X)=1] - \text{Prob}_X [p(X)=0] |
\]

• Bias(p) small \(\Rightarrow \) Pseudorandom bias small
 use expander graph given by extra generator

• Bias(p) large \(\Rightarrow \)
 (1) self-correct: \(p \) close to degree-\(d \) polynomial
 This result used in [Green Tao]
 (2) apply induction
What we have seen

- **Pseudorandomness**: Construct objects that “look random” using little or no randomness

- Applications to algorithms, cryptography, P vs NP

- Pseudorandom generators
 - Constant-depth circuits $[N, LVW, V]$
 - Recent developments for polynomials $[BV, L, GT, LMS]$
 - Sum of d generators for degree 1 \Rightarrow degree d $[V]$
Outline

• Overview
 Motivation

• Pseudorandom generators
 Examples
 Circuits
 Polynomials

• Future directions
Future directions (1)

• Pseudorandomness
 Open: Generator for polynomials of degree $\log n$?

• Communication complexity
 Recent progress on long-standing problems
 [V. Wigderson, Sherstov, Lee Shraibman, David Pitassi V.]

• Computer science and economics
 Complexity of Nash Equilibria
 [Daskalakis Goldberg Papadimitriou, …]
 Mechanism design
Future directions (2)

- Finance

- Are markets random?
 Efficient market hypothesis
 [Bachelier 1900, Fama 1960,…]

- Raises algorithmic questions
 E.g. Zero-intelligence traders [Gode Sunder; 1993]

- Work in progress with Andrew Lo