The complexity of distributions

Emanuele Viola

Northeastern University

March 2012
Local functions (a.k.a. Junta, NC0)

- $f : \{0,1\}^n \rightarrow \{0,1\}$ d-local: output depends on d input bits

- **Fact**: $\text{Parity}(x) = 1 \iff \sum x_i = 1 \mod 2$
 is not n-1 local

- **Proof**: Flip any input bit \Rightarrow output flips ♦
Local generation of \((Y, \text{parity}(Y))\)

Theorem [Babai '87; Boppana Lagarias '87]

There is \(f : \{0,1\}^n \rightarrow \{0,1\}^{n+1}\), each bit 2-local

Distribution \(f(X) \equiv (Y, \text{parity}(Y))\) \((X, Y \in \{0,1\}^n\) uniform)
Our message

- Complexity theory of distributions (as opposed to functions)

How hard is it to generate (a.k.a. sample) distribution D given random bits?

E.g., $D = (Y, \text{parity}(Y))$, $D = W_k := \text{uniform n-bit with k 1's}$
Is message new?

- Generate Random Factored Numbers [Bach '85, Kalai]
- Random Generation of Combinatorial Structures from a Uniform Distribution [Jerrum Valiant Vazirani '86]
- The Quantum Communication Complexity of Sampling [Ambainis Schulman Ta-Shma Vazirani Wigderson]
- Our line of work: 1) first negative results (lower bounds) for local, AC^0, Turing machines, etc. 2) new connections
Outline of talk

• Lower bound for sampling $W_k = \text{uniform weight-}k\ \text{string}$

• Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC0)
 - Turing machine
Theorem [V.]

\[f : \{0,1\}^n \rightarrow \{0,1\}^n \quad 0.1 \log n - \text{local} \]

\[\Downarrow \]

\[f(X) \text{ at Statistical Distance } > 1 - n^{-\Omega(1)} \]

from \(W_{n/2} = \text{uniform w/ weight } n/2 \)

• Tight up to \(\Omega() \): \(f(x) = x \)
• Extends to \(W_k, k \neq n/2 \), tight?
• Also open: remove bound on input length
Succinct data structures

- **Problem:**
 Store \(S \subseteq \{1, 2, \ldots, n\} \), \(|S|\) fixed in \(u = \text{optimal} + r \) bits, answer “\(i \in S? \)” probing \(d \) bits.

- **Connection [V.]:**
 Solution \(\Rightarrow \) generate \(W_{|S|} \) \(d\)-local, Stat. Distance \(< 1 - 2^{-r} \)

- **Corollary:** Need \(r > \Omega(\log n) \) if \(d = 0.1 \log n \)
 First lower bound for \(|S| = n/2, n/4, \ldots \)
Theorem: Let $f : \{0,1\}^n \rightarrow \{0,1\}^n : d = 0.1 \log n$-local.

There is $T \subseteq \{0,1\}^n : \left| \Pr[f(x) \in T] - \Pr[W_{n/2} \in T] \right| > 1 - n^{-\Omega(1)}$

Warm-up scenarios:

- $f(x) = 000111$ **Low-entropy** $T := \{000111\}$

 $$\left| \Pr[f(x) \in T] - \Pr[W_{n/2} \in T] \right| = \left| 1 - \frac{|T|}{\binom{n}{n/2}} \right|$$

- $f(x) = x$ **“Anti-concentration”** $T := \{ z : \sum_i z_i = n/2 \}$

 $$\left| \Pr[f(x) \in T] - \Pr[W_{n/2} \in T] \right| = \left| \Theta(1)/\sqrt{n} - 1 \right|$$
Proof

- Partition input bits $X = (X_1, X_2, \ldots, X_s, H)$

- Fix H. Output block B_i depends only on bit X_i

- Many B_i constant ($B_i(0,H) = B_i(1,H)$) \Rightarrow low-entropy

- Many B_i depend on X_i ($B_i(0,H) \neq B_i(1,H)$)

 Idea: Independent \Rightarrow anti-concentration: can't sum to $n/2$
If many $B_i(0,H)$, $B_i(1,H)$ have different sum of bits, use the Anti-concentration Lemma [Littlewood Offord]

For $a_1, a_2, \ldots, a_s \neq 0$, any c, $\Pr_{X \in \{0,1\}^s} \left[\sum_i a_i X_i = c \right] < 1/\sqrt{n}$

Problem: $B_i(0,H) = 100$, $B_i(1,H) = 010$

high entropy but no anti-concentration

Fix: want many blocks 000, so high entropy \Rightarrow different sum
Test $T \subseteq \{0,1\}^n : \Pr[f(X_1,\ldots,X_s,H) \in T] \approx 1$; $\Pr[W_{n/2} \in T] \approx 0$

$z \in T \iff$

$\exists H : \exists X_1,\ldots,X_s$ w/ many blocks B_i fixed : $f(X_1,\ldots,X_s,H) = z$

OR

Few blocks $z|_{B_i}$ are 000

OR

$\sum_i z_i \neq n/2$
Open problem

• Understand complexity of \(W_k = \) uniform weight-\(k \) string for all choices of: \(k \), model (local, decision tree, etc.), statistical distance, randomness complexity

• Similar problems in combinatorics, coding, ergodic theory

• One example

\[\exists 2\text{-local } f : \{0,1\}^{2n} \rightarrow \{0,1\}^n \quad \text{Distance}(f(X), W_{n/4}) \leq 1 - \Theta(1)/\sqrt{n} \]

input length= \(H(1/4)n + o(n) \) \(\Rightarrow \) Distance \(\geq 1 - 2^{-\Omega(n)} \)
Outline of talk

- Lower bound for sampling $W_k = \text{uniform weight-k string}$

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC^0)
 - Turing machine
Randomness extractors

- Want: turn weak randomness (correlation, bias, ...) into close to uniform

- **Extractor** for sources (distributions) S on $\{0,1\}^n$

 Deterministic, efficient map : $\{0,1\}^n \rightarrow \{0,1\}^m$

 $\forall D \in S, \text{ Extractor}(D) \in \epsilon$-close to uniform

- Starting with [Von Neumann '51] major line of research
Sources

- **Independent blocks** [Chor Goldreich 88, Barak Bourgain Impagliazzo Kindler Rao Raz Shaltiel Sudakov Wigderson ...]
- **Some bits fixed, others uniform & indep.** [Chor Friedman Goldreich Hastad Rudich Smolensky '85, Cohen Wigderson, Kamp Zuckerman, ...]
- **One-way, space-bounded algorithm** [Blum '86, Vazirani, Koenig Maurer, Kamp Rao Vadhan Zuckerman]
- **Affine set** [BKSSW, Bourgain, Rao, Ben-Sasson Kopparty, Shaltiel]
- **Our results**: first extractors for circuit sources: local, AC^0 and for Turing-machine sources
• Sources D with min-entropy \(k \) (\(\Pr[D = a] < 2^{-k} \quad \forall \ a \)) sampled by small circuit \(C \): \(\{0,1\}^* \rightarrow \{0,1\}^n \) given random bits.

• \textbf{Extractor} \implies \text{Lower bound for } C
 (even 1 bit from \(k = n-1 \))

• \textbf{Extractor} \iff \text{Time}(2^{O(n)}) \subseteq \mathcal{E\forall\forall\forall\forall\forall} – \text{circuit size } 2^{o(n)}
Extractor \iff Sampling lower bound

(1 bit from $k=n-1$)

$f : \{0,1\}^n \to \{0,1\}$ (balanced) \iff small circuits cannot sample $f^{-1}(0)$ (uniformly, given random bits)

(lower bound we just saw

extract 1 bit, error < 1, from entropy $k=n-1$, $O(1)$-local source)
Outline of talk

• Lower bound for sampling $W_k = \text{uniform weight-k string}$

• Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC^0)
 - Turing machine
Extractors for local functions

- \(f : \{0,1\}^* \rightarrow \{0,1\}^n \) \text{ d-local} : each output bit depends on \(d \) input

- **Theorem[V.]** From d-local n-bit source with min-entropy \(k \):

 Let \(T := k \ poly(k/nd) \)

 Extract \(T \) bits, error \(\exp(-T) \)

- E.g. \(T = k^c \) from \(k = n^{1-c}, \; d = n^c \)

- Note: always need \(k > d \)

- \(d = O(1) \Rightarrow \text{NC}^0 \) source. Independently [De Watson]
High-level proof

- **Theorem** d-local n-bit min-entropy k source $(T := k \text{ poly}(k/nd))$
 Is convex combination of **bit-block source**
 block-size $= dn/k$, entropy T, error $\exp(-T)$

- **Bit-block source** with entropy T:
 \[(0, 1, X_1, 1- X_5, X_3, X_3, 1- X_2, 0, X_7, 1- X_8, 1, X_1)\]

 $X_1, X_2, \ldots, X_T \in \{0,1\}$

 $0 < \text{occurrences of } X_i < \text{block-size } = dn/k$

- **Special case** of low-weight affine sources
 Use [Rao 09]
Proof

- d-local n-bit source min-entropy k: convex combo bit-block

\[\begin{array}{ccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\
 \end{array} \]

w.l.o.g. \[\longrightarrow \] \[\frac{nd}{k} \] \[d \]

\[\begin{array}{cccc}
 y_1 & y_2 & y_3 & y_4 & y_5 \\
 \end{array} \]

n output bits

- Output entropy > k \[\Rightarrow \] \(\exists y_i \) with variance > \(\frac{k}{n} \)

- Isoperimetry \(\Rightarrow \) \(\exists x_j \) with influence > \(\frac{k}{nd} \)

- Set uniformly \(N(N(x_j)) \setminus \{x_j\} \)
 with prob. > \(\frac{k}{nd} \), \(N(x_j) \) non-constant block of size \(\frac{nd}{k} \)

- Repeat \(k / |N(N(x_j))| = \frac{k}{nd^2} \) times, expect \(k \frac{k^2}{n^2d^3} \) blocks
Open problem

• Does previous result hold for decision-tree sources?

• May use isoperimetric inequality for decision trees
 [O'Donnell Saks Schramm Servedio]
Outline of talk

- Lower bound for sampling $W_k = \text{uniform weight-}k\text{ string}$

- Randomness extractors
 - Local sources
 - Bounded-depth circuit (AC^0)
 - Turing machine
Bounded-depth circuits \((AC^0)\)

- **Theorem [V.]**
 From \(AC^0\) n-bit source with min-entropy \(k\):
 Extract \(k \text{ poly}(k / n^{1.001})\) bits, error \(1/n^{\omega(1)}\)
High-level proof

- Apply random restriction [Furst Saxe Sipser, Ajtai, Yao, Hastad]

- Switching lemma: Circuit collapses to $d=n^\epsilon$-local
 apply previous extractor for local sources

- **Problem**: fix $1-o(1)$ input variables, entropy?
The effect of restrictions on entropy

- Theorem $f : \{0,1\}^* \rightarrow \{0,1\}^n : f(X)$ has min-entropy k

 Let R be random restriction with $\Pr[*] = p$

 With high prob., $f \mid_R (X)$ has min-entropy pk

- Parameters: $k = \text{poly}(n)$, $p = 1/\sqrt{k}$

 After restriction both circuit collapsed

 and min-entropy $pk = \sqrt{k}$ still $\text{poly}(n)$
The effect of restrictions on entropy

- **Theorem** \(f : \{0,1\}^* \to \{0,1\}^n : f(X) \text{ has min-entropy } k \)

 Let \(R \) be random restriction with \(\Pr[*] = p \)

 With high prob., \(f |_R (X) \) has min-entropy \(pk \)

- **Proof**: Builds on [Lovett V]
- **Isoperimetric inequality for noise**: \(\forall A \subseteq \{0,1\}^L \) of density \(\alpha \)
 random \(m, m' \) obtained flipping bits w/ probability \(p \) :
 \[
 \alpha^2 \leq \Pr[\text{both } m \in A \text{ and } m' \in A] \leq \alpha^{1+p}
 \]
- **Bound collision probability** \(\Pr[f|_R(X) = f|_R(Y)] \) Qed
Bounded-depth circuits (AC^0)

- Corollary to AC^0 extractor

 Explicit boolean $f : AC^0$ cannot sample $(Y, f(Y))$

 $f :=$ 1-bit affine extractor for min-entropy $k = n^{0.99}$

- Note: For $k > 1/2$, Inner Product 1-bit affine extractor, and AC^0 can sample $(Y, \text{InnerProduct}(Y))$
 [Impagliazzo Naor]

- Explains why affine extractors for $k < 1/2$ more complicated
Open problem

- Theorem[V.] $\mathsf{AC^0}$ can generate $(Y, \text{majority}(Y))$, error $2^{-|Y|}$

- Challenge: error 0?

- Related [Lovett V.] Does every bijection

$$\{0, 1\}^n = \rightarrow = \{x \in \{0, 1\}^{n+1} : \sum x_i \geq n/2 \}$$

have large expected hamming distortion? (n even)
Outline of talk

• Lower bound for sampling $W_k = \text{uniform weight-}k\ \text{string}$

• Randomness extractors
 – Local sources
 – Bounded-depth circuit (AC^0)
 – Turing machine
Turing-machine source

- Machines start on blank (all-zero) tape

 have "coin-toss" state: writes random bit on tape

- When computation is over, first n bits on tape are sample
Extractors

- Theorem [V.] From Turing-machine n-bit source running in time $\leq n^{1.9}$ and with min-entropy $k \geq n^{0.9}$:
 Extract $n^{\Omega(1)}$ bits, error $\exp(-n^{\Omega(1)})$

- Proof: Variant of crossing-sequence technique \Rightarrow
 TM source = convex combo of independent-block source (no error)
 Use e.g. [Kamp Rao Vadhan Zuckerman]
Corollary [V.]: Turing-machine running in time $\leq n^{1.9}$ cannot sample $(X, Y, \text{InnerProduct}(X,Y))$ for $|X| = |Y| = n$

Proof: As before, but use extractor in [Chor Goldreich]
Summary

- Complexity of distributions = uncharted research direction

- New connections to data structures, randomness extractors, and various combinatorial problems

- First sampling lower bounds and extractors for local, decision tree (not in this talk), \(AC^0 \) Turing machines