Lower bounds for succinct data structures

Emanuele Viola

Northeastern University

December 2009
Bits vs. trits

- Store \(n \) “trits” \(t_1, t_2, \ldots, t_n \in \{0,1,2\} \)

- In \(u \) bits \(b_1, b_2, \ldots, b_u \in \{0,1\} \)

- Want:
 - Small space \(u \) (optimal = \(\lceil n \log_2 3 \rceil \))
 - Fast retrieval: Get \(t_i \) by probing few bits (optimal = 2)
Two solutions

- Arithmetic coding:
 Store bits of \((t_1, \ldots, t_n) \in \{0, 1, \ldots, 3^n - 1\}\)

 Optimal space: \(\lceil n \log_2 3 \rceil \approx n \cdot 1.584\)

 Bad retrieval: To get \(t_i\) probe all \(> n\) bits

- Two bits per trit

 Bad space: \(n \cdot 2\)

 Optimal retrieval: Probe 2 bits
Polynomial tradeoff

- Divide n trits $t_1, \ldots, t_n \in \{0,1,2\}$ in blocks of q.
- Arithmetic-code each block.

Space:
$$\left\lceil q \log_2 3 \right\rceil \frac{n}{q} < (q \log_2 3 + 1) \frac{n}{q}$$
$$= n \log_2 3 + \frac{n}{q}$$

Retrieval: Probe $O(q)$ bits.
Polynomial tradeoff

- Divide \(n \) trits \(t_1, \ldots, t_n \in \{0,1,2\} \) in blocks of \(q \)

- Arithmetic-code each block

Space: \(\left\lfloor q \log_2 3 \right\rfloor n/q = (q \log_2 3 + 1/q^{\Theta(1)}) n/q \)

\[= n \log_2 3 + n/q^{\Theta(1)} \]

Retrieval: Probe \(O(q) \) bits

Polynomial tradeoff between redundancy, probes

Logarithmic forms
Exponential tradeoff

- Breakthrough [Pătraşcu '08, later + Thorup]

Space: $n \lg_2 3 + n/2^{\Omega(q)}$

Retrieval: Probe q bits

E.g., optimal space $\lceil n \lg_2 3 \rceil$, probe $O(\lg n)$
Our results

• Theorem [V.]:
 Store \(n \) trits \(t_1, \ldots, t_n \in \{0,1,2\} \)
 in \(u \) bits \(b_1, \ldots, b_u \in \{0,1\} \).

 If get \(t_i \) by probing \(q \) bits
 then space \(u > n \log_2 3 + \frac{n}{2^{O(q)}} \).

• Matches [Pătraşcu Thorup]: space < \(n \log_2 3 + \frac{n}{2^{\Omega(q)}} \)
Outline

- Bits vs. trits
- Proof bits vs. trits
- Bits vs. sets
- Cells vs. prefix sums
Recall our results

- **Theorem:**
 Store \(n \) trits \(t_1, \ldots, t_n \in \{0,1,2\} \) in \(u \) bits \(b_1, \ldots, b_u \in \{0,1\} \).
 If get \(t_i \) by probing \(q \) bits then space \(u > n \log_2 3 + n/2^{O(q)} \).

- For now, assume non-adaptive probes:
 \(t_i = d_i (b_{i1}, b_{i2}, \ldots, b_{iq}) \)
Proof idea

- \(t_i = d_i (b_{i1}, b_{i2}, \ldots, b_{iq}) \)

- Uniform \((t_1, \ldots, t_n) \in \{0,1,2\}^n\)
 Let \((b_1, \ldots, b_u) := \text{Store}(t_1, \ldots, t_n)\)

- Space \(u \approx \text{optimal} \Rightarrow (b_1, \ldots, b_u) \in \{0,1\}^u \approx \text{uniform} \Rightarrow \)

\[
1/3 = \Pr [t_i = 2] = \Pr [d_i (b_{i1}, \ldots, b_{iq}) = 2] \approx \frac{A}{2^q} \neq 1/3
\]

Contradiction, so space \(u >> \text{optimal} \)

Q.e.d.
Information-theory lemma
[Edmonds Rudich Impagliazzo Sgall, Raz, Shaltiel V.]

Lemma: Random \((b_1, \ldots, b_u)\) uniform in \(B \subseteq \{0,1\}^u\)

\[|B| \approx 2^u \Rightarrow \text{there is large set } G \subseteq [u] : \]

for every \(i_1, \ldots, i_q \in G : (b_{i_1}, \ldots, b_{i_q}) \approx \text{uniform in } \{0,1\}^q \)

Proof: \(|B| \approx 2^u \Rightarrow H(b_1, \ldots, b_u) \text{ large} \]

\[\Rightarrow H(b_{i_1} \mid b_1, \ldots, b_{i-1}) \text{ large for many } i (\in G) \]

Closeness\([(b_{i_1}, \ldots, b_{i_q}), \text{ uniform }] \geq H(b_{i_1}, \ldots, b_{i_q}) \]

\[\geq H(b_{i_q} \mid b_1, \ldots, b_{i_q-1}) + \ldots + H(b_{i_1} \mid b_1, \ldots, b_{i_1-1}), \text{ large} \quad \text{Q.e.d.} \]
Proof

• Argument OK if probes in G

• $t_i = d_i (b_{i1}, b_{i2}, ..., b_{iq})$

• Uniform $(t_1, ..., t_n) \in \{0,1,2\}^n$

$$\downarrow$$

uniform $(b_1, ..., b_u) \in B := \{\text{Store}(t) \mid t \in \{0,1,2\}^n\}$

$|B| = 3^n \approx 2^u \Rightarrow (\text{Lemma}) \Rightarrow (b_{i1}, ..., b_{iq}) \approx \text{uniform} \Rightarrow$

$$1/3 = \Pr [t_i = 2] = \Pr [d_i (b_{i1}, ..., b_{iq}) = 2] \approx A / 2^q \neq 1/3$$
• If every t_i probes bits not in G

• Argue as in [Shaltiel V.]:

• Condition on heavy bits := probed by many t_i

• Can find $t_i \approx$ uniform in $\{0, 1, 2\}$, all probes in G
Handling adaptivity

- So far $t_i = d_i (b_{i1}, b_{i2}, \ldots, b_{iq})$

- In general, q adaptively chosen probes = decision tree

 2^q bits
 depth q

\[
1/3 = \Pr [t_i = 2] = \Pr [d_i (b_{i1}, \ldots, b_{i2^q}) = 2] \approx A / 2^q \neq 1/3
\]
Outline

• Bits vs. trits

• Proof bits vs. trits

• Bits vs. sets

• Cells vs. prefix sums
Bits vs. sets

- Store $S \subseteq \{1, 2, \ldots, n\}$ of size $|S| = k$

In u bits $b_1, \ldots, b_u \in \{0, 1\}$

- Want:
 - Small space u (optimal $= \lceil \lg_2 (n \text{ choose } k) \rceil$)
 - Answer “$i \in S$?” by probing few bits (optimal $= 1$)
Previous results

- Store $S \subseteq \{1, 2, \ldots, n\}$, $|S| = k$ in bits, answer “$i \in S$?”

- [Minsky Papert '69] Average-case study

- [Buhrman Miltersen Radhakrishnan Venkatesh; Pagh '00]
 Space $O(\text{optimal})$, probe $O(\lg(n/k))$

 Lower bounds for $k < n^{1-\varepsilon}$

- No lower bound was known for $k = \Omega(n)$
Theorem[V.]:
Store \(S \subseteq \{1, 2, \ldots, n\} \), \(|S| = n/3\)
in \(u \) bits \(b_1, \ldots, b_u \in \{0,1\} \)

If answer "i \(\in \) S?" probing \(q \) bits
then space \(u > \text{optimal} + n/2^{O(q)} \).

First lower bound for \(|S| = \Omega(n)\)
Outline

- Bits vs. trits
- Proof bits vs. trits
- Bits vs. sets
- Cells vs. prefix sums
Cell-probe model

- So far: $q = \text{number of bit probes}$

- Cell model: $q = \text{number of probes in cells of } \lg(n) \text{ bits}$

- Relationship: $q \text{ bit} \subseteq q \text{ cell} \subseteq q \lg(n) \text{ bit}$
Results in cell-probe model

- Cells vs. trits:
 \[q = O(1), \text{optimal space} = \lceil n \lg_2 3 \rceil \]
 \[q = 1 \implies \text{space} > n \lg_2 3 + n/\lg^{O(1)} n \]
 [Pătraşcu Thorup]

- Cells vs. sets:
 \[q \text{ probes, space} = \text{optimal} + n/\lg^{\Omega(q)} n \]
 [Pagh, Pătraşcu]
 Lower bounds?
Outline

• Bits vs. trits

• Proof bits vs. trits

• Bits vs. sets

• Cells vs. prefix sums
Prefix sums

- Store n bits $x_1, x_2, \ldots, x_n \in \{0,1\}$ in memory cells

- Want:
 - Small space
 - Fast answer prefix sum (a.k.a. Rank) queries:

$$
\text{Sum}(i) := \sum_{k \leq i} x_k \in \{0, 1, 2, \ldots, n\}
$$
History

- Fundamental problem: succinct trees, sets, ...

- Trivial
 Space = $n \ lg \ n$
 Time = 1 cell probe

- [Jacobson '89]
 Space = $n + O(n / \ lg \ n)$
 Time = $O(1)$ cell probes

- [Pătrașcu '08]
 Space = $n + n / \ lg^q n$
 Time = $O(q)$ cell probes
Our results

- **Theorem [Pătraşcu V.]:**
 Store \(n \) bits in memory

 If answer \(\text{Sum}(i) := \sum_{k \leq i} x_k \) queries

 by probing \(q \) cells then space \(> n + n/\lg^{\Omega(q)} n \).

- Matches [Pătraşcu]: space \(< n + n/\lg^{\Omega(q)} n \)
Proof idea

• Efficient data structure \Rightarrow Break queries' correlations

• For $i < j$, $A \subseteq \{0,1\}^n$

\[
0 = \Pr_{x \in A} [\text{Sum}(i) > t \text{ AND } \text{Sum}(j) < t]
\]

\[
\approx \Pr_{x \in A} [\text{Sum}(i) > t] \Pr_{x \in A} [\text{Sum}(j) < t]
\]

\[
> \quad (1/10) \quad (1/10) \quad >> 0
\]

• Contradiction, so data structure cannot be efficient
0 = Pr_{x \in A} [\text{Sum}(i) > t \text{ AND } \text{Sum}(j) < t]

\approx Pr_{x \in A} [\text{Sum}(i) > t] \cdot Pr_{x \in A}[\text{Sum}(j) < t] \quad (1)

> \quad (1/10) \cdot (1/10) \quad (2)

• Reasoning:
 Fix heavy cells. Then \exists i, j \text{ s.t. } \text{Sum}(i) \text{ and } \text{Sum}(j):

 (1) depend on disjoint, nearly uniform cells \Rightarrow \text{independent}

 (2) have high entropy
Balanced brackets

- Store \(n \) balanced brackets

- Want:
 - Small space
 - Fast answer match queries:

- **Theorem**[V.]: space > optimal + \(\frac{n}{\lg^{2 \Omega(q)} n} \) for non-adaptive \(q \) probes

- [Pătraşcu]: space < optimal + \(\frac{n}{\lg^{\Omega(q)} n} \) non-adaptive
Summary

- New lower bounds for basic data structures:
 Representing trits, sets, prefix sums, balanced brackets using space = optimal + redundancy

- Sometimes matching [Pătraşcu]

- Open problems: storing sets:
 2 cell probes and optimal space?
 Bit-probe lower bounds for set-size n/4 ? (have n/3)
Future directions

• Lower bounds for generating distributions

• Example: \(f : \{0,1\}^r \rightarrow \{0,1\}^n \)
 each bit \(f_i \) depends on \(\leq q \) input bits
 prove \(f(\text{uniform}) \) far from uniform on sets of size \(n/4 \)

• Known \([V.]\): distance \(\geq 1/2^{O(q)} \)

• Open: distance \(\geq 1 - o(1) \)
 \(\Rightarrow \) Lower bound for storing sets of size \(n/4 \)
• $\Sigma \Pi \sqrt{\land \neg \lor \subset \subseteq \in \downarrow \Rightarrow \uparrow \leftarrow \leftrightarrow \lor \geq \leq \forall \exists \Omega \alpha \beta \varepsilon \gamma \delta \rightarrow$
• \neq