The communication complexity of addition, with applications

August 2014

Emanuele Viola
Northeastern University
2-player addition

Player P_1 gets integer $x_1 \in [-2^n, 2^n]$

$P_2 \quad x_2$

How many communication bits to decide if $x_1 + x_2 > 0$ with error 1%?

Public-coin: A random string is shared
• 2-player addition \((x_1 + x_2 > 0?, \ x_i \in [-2^n, 2^n])\)

[Nisan Safra '93] \(O(\log n)\)

Idea: ?
• 2-player addition \((x_1 + x_2 > 0?, \ x_i \in [-2^n, 2^n])\)

[Nisan Safra '93] \(O(\log n)\)

Idea: Compute \(\max i : (x_1)_i \neq (x_2)_i\)
Binary search on bits, run equality at each step.

Implementation:
Equality with \(O(1)\) communication, error 1%
Binary search with noise; \(O(\log n)\) steps still suffice
• 2-player addition \((x_1 + x_2 > 0?, \ x_i \in [-2^n, 2^n])\)

[Smirnoff '88] \(\Omega(\sqrt{\log n})\)

[Nisan Safra '93] \(O(\log n)\)

This work: \(\Omega(\log n)\)

Corollary: \(\Theta(\log n)\)
2-player addition \((x_1 + x_2 > 0?, \ x_i \in [-2^n, 2^n])\)

Proof of \(\Omega(\log n)\) lower bound:

Hard distributions: \(I \in [n] \) uniform \(Y \in \{0,1\}^n\) uniform

\[G = (G_1, G_2) = (Y_1 Y_2 \ldots Y_n, Y_1 Y_2 \ldots Y_I 0 0 \ldots 0) \]
\[B = (B_1, B_2) = (Y_1 Y_2 \ldots Y_n, Y_1 Y_2 \ldots (1-Y_I) 0 0 \ldots 0) \]

\(G_1 \geq G_2\) always; \(B_1 \geq B_2\) with probability \(\frac{1}{2}\)

Claim: For every rectangle \(R = R_1 \times R_2\) s. t. \(\Pr[G \in R] \geq 1/n\)
We have \(\Pr[B \in R] \geq \Pr[G \in R] - 1/n^{0.3}\)

Proof: Conditioned on \(G_1 \in R_1\), \(H(Y) \geq n - \log n\),
So \(Y_I\) has entropy \(\geq 1 - \log(n)/n\), so \(Y_I \approx \text{uniform} \approx 1-Y_I\)
• 2-player addition \((x_1 + x_2 > 0?, x_i \in [-2^n, 2^n])\)

• [Nisan Safra '93] \(O(\log n)\) + [Newman '91] \(\Rightarrow O(\log n)\) communication, private-coin, not explicit

• This work: \(O(\log n)\) communication, private-coin, explicit

Proof: Use small-bias generator for equality

Use space-bounded generator for binary search
Problem: Two players, each holding a subset x_i of $[n]$. Want ε-uniform element from symmetric difference $x_1 \oplus x_2$

Part of [DPRS] proposal for spreading on dynamic networks

Claim: Explicit, private-coin protocol with $\sim O(\log n/ \varepsilon)$ comm.

Proof:
Detour application I [Dutta Pandurangan Rajaraman Sun V.]

Problem: Two players, each holding a subset x_i of $[n]$. Want ε-uniform element from symmetric difference $x_1 \oplus x_2$

Part of [DPRS\textsc{V}] proposal for spreading on dynamic networks

Claim: Explicit, private-coin protocol with $\sim O(\log n/ \varepsilon)$ comm.

Proof:
Players agree on uniform permutation π. Run Nisan-Safra protocol on $\pi(x_1) \oplus \pi(x_2)$

π: pseudorandom generators for combinatorial rectangles

[Gopalan Meka Reingold Trevisan Vadhan]
Is multiplication harder than addition?

Cobham 1964
• 2-player multiplication

Player P_1 gets integer $x_1 \in [-2^n, 2^n]$
P_2 x_2

How many communication bits to decide if $x_1 \cdot x_2 > 2^{n/2}$ with error 1%?

Do you know how to solve this?
• 2-player multiplication

Player P_1 gets integer $x_1 \in [-2^n, 2^n]$

$P_2 \quad x_2$

How many communication bits to decide if $x_1 \cdot x_2 > 2^{n/2}$ with error 1%?

Corollary [V]: $O(\log n)$ communication

Proof:
Take logs
Results on logarithmic forms by Baker et al. imply that you can truncate after $\text{poly}(n)$ digits.
Run protocol for addition.
Outline

● Results for 2 players

● Results for \(k \) players

● Proof of \(O(\log n) \) bound for \(k \)-player addition
• k-player addition

Player P_i gets $x_i \in [-2^n, 2^n]$, $i=1, \ldots, k$; (number-in-hand)

How much communication to decide $\sum_{i \leq k} x_i > 0$ with error 1%?

• From now on, public-coin model

For simplicity, $k = O(1)$
- k-player addition \((\sum_i x_i > 0?, \ x_i \in [-2^n, 2^n], \ k = O(1)) \)

[Nisan '93] \(O(\log^2 n) \)

This work: \(O(\log n) \)

Corollary: \(\Theta(\log n) \)
Degree-d polynomial-threshold function in n variables

How much communication for number-on-forehead protocols among $k = d+1$ players?

Corollaries to k-player addition:

[Nisan '93] $O(\log^2 n)$

This work: $O(\log n)$
- Application to the complexity of pseudorandom functions
Table 1: Pseudorandom functions $F : \{0, 1\}^n \rightarrow \{0, 1\}$ computable by circuits of size $\text{poly}(n)$ and depth $O(1)$.

<table>
<thead>
<tr>
<th>Complexity class</th>
<th>Security</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC^0</td>
<td>Secure against time $t = t(n)$ under assumptions in [NR04] against times $\text{poly}(n)t(n)$</td>
<td>[NR04, NRR02]</td>
</tr>
<tr>
<td>AC^0 with Mod m gates, any m; CC^0</td>
<td>Secure against time $n^{\lg^c n}$ under assumptions in [NR04] against time $2^{n^{\Omega(1)}}$ (circuit depth depends on c)</td>
<td>Theorem 11</td>
</tr>
<tr>
<td>AC^0 with Mod m gates, prime m</td>
<td>Breakable in time $n^{\lg^c n}$ (c depends on circuit depth)</td>
<td>[RR97, KL01]</td>
</tr>
<tr>
<td>AC^0 with $O(1)$ threshold gates and $O(1)$ symmetric gates (e.g. parity, majority)</td>
<td>Breakable in time $\text{poly}(n)$</td>
<td>Theorem 10</td>
</tr>
<tr>
<td>AC^0</td>
<td>Breakable in time $\text{poly}(n)$</td>
<td>[LMN93]</td>
</tr>
</tbody>
</table>
Claim: AC^0 with 1 threshold gate is breakable in $\text{poly}(n)$ time

Note: Previously quasi-polynomial time was known.

Proof:
Hit AC^0 with a random restriction.

It collapses to a polynomial threshold function of degree $O(1)$

By previous fact, it has $O(\log n)$ communication (error 1%)

This means that the Babai-Nisan-Szegedy “norm” R (see Chung Tetali, Raz, V Wigderson) is \geq ?
Claim: AC^0 with 1 threshold gate is breakable in poly(n) time

Note: Previously quasi-polynomial time was known.

Proof:
Hit AC^0 with a random restriction.

It collapses to a polynomial threshold function of degree $O(1)$

By previous fact, it has $O(\log n)$ communication (error 1%)

This means that the Babai-Nisan-Szegedy “norm” R (see Chung Tetali, Raz, V Wigderson) is $\geq 1/poly(n)$

Whereas for a random function R is negligible

This difference can be detected in polynomial time.
Outline

• Results for 2 players

• Results for k players

• Proof of $O(\log n)$ bound for k-player addition
Recall k-player addition:
P_i gets integer $x_i \in [-2^n, 2^n]$
How much communication to decide $\sum_{i \leq k} x_i > 0$ with error 1%?

Overview of ideas in our $O(\log n)$ protocol

- We give $O(1)$ protocol for k-player sum-equal, improving on Nisan's $O(\log n)$
- Using a recursion [Nisan] this gives $O(\log n \log \log n)$ protocol for k-player addition
- We adapt [Nisan Safra] from $k = 2$ to $k > 2$ to obtain $O(\log n)$
k-player sum-equal

Player P_i gets integer $x_i \in [-2^n, 2^n]$

How much communication to decide $\sum_{i \leq k} x_i = 0$ with error 1%?
• k-player sum-equal \((\sum_{i \leq k} x_i = 0?, \ x_i \in [-2^n, 2^n])\)

• [Nisan] Player \(P_i\) communicates \(\text{hash}(x_i) = x_i \mod p\)
 Correctness by linearity: \(\sum_i (x_i \mod p) = (\sum_i x_i) \mod p\)
 Need \(p = n^{\Omega(1)} \Rightarrow \Omega(\log n)\)-bit hashes

• This work: Use hash function analyzed by
 [Dietzfelbinger Hagerup Katajainen Penttonen]
 \(\text{hash}(x_i) = \text{“O}(1)\text{ middle bits of } R \cdot x_i, \ R \text{ random odd}”\)
 Almost linear: \(\sum_{i \leq k} \text{hash}(x_i) = \text{hash}(\sum_{i \leq k} x_i) +/- k\)
 \(O(1)\)-bit hashes
- [Nisan] Solving addition using **sum-equal**:

- At each node solve $O(1)$ **sum-equal**, to determine if sum of lower halves matters or not.

- Depth of tree = $O(\log n)$

- Naively, for total error 1% need to solve each **sum-equal** with error $\leq \frac{1}{\log n} \rightarrow O(\log n \log \log n)$ protocol
[Nisan Safra] obtain $O(\log n)$ for $k=2$ players using binary search with noise.

Exploits geometry not present for $k > 2$.

We show how to use binary search with noise for any k: write sum-equal questions along a path as single question.
Summary

2-player addition: $\Theta(\log n)$, improves Smirnoff's '88 $\Omega(\sqrt{\log n})$

k-player addition: $\Theta(\log n)$, improves Nisan's '93 $O(\log^2 n)$

Useful for polynomial-threshold functions,
complexity of pseudorandom functions,

[Dutta Pandurangan Rajaraman Sun V.]
multiplication
Open problems

- For large number k of players:

 We show sum-equal $\mod p$ is $\Theta(k \log k)$

 Over integers only know $O(k \log k), \Omega(k)$

- Recall for 2-player addition we gave $O(\log n)$ protocol

 private-coin and explicit

 Not known for $k > 2$ players.

 One approach would be to derandomize the hash function