The communication complexity of addition

January 2013

Emanuele Viola

Northeastern University

• 2-player addition

Player P₁ gets integer
$$x_1 \in [-2^n, 2^n]$$

P₂ x_2

How many communication bits to decide if $x_1 + x_2 > 0$ with error 1%?

Public-coin: A random string is shared

• 2-player addition $(x_1 + x_2 > 0?, x_i \in [-2^n, 2^n])$

- [Smirnoff '88] $\Omega(\sqrt{\log n})$
- [Nisan Safra '93] O(log n)

This work: $\Omega(\log n)$ Corollary: $\Theta(\log n)$

• 2-player addition $(x_1 + x_2 > 0?, x_i \in [-2^n, 2^n])$

- [Nisan Safra '93] O(log n) + [Newman '91]
 - → O(log n) communication, private-coin, not explicit

This work: O(log n) communication, private-coin, explicit
 Used in [Dutta Pandurangan Rajaraman Sun V.]

• k-player addition

Player P_i gets $x_i \in [-2^n, 2^n]$, i=1, ..., k; (number-in-hand)

How much communication to decide $\sum_{i \le k} x_i > 0$ with error 1%?

• From now on, public-coin model

For simplicity, $\mathbf{k} = O(1)$

• k-player addition $(\sum_{i} x_{i} > 0?, x_{i} \in [-2^{n}, 2^{n}], k = O(1))$

[Nisan '93] O(log² n)

This work: O(log n)

Corollary: $\Theta(\log n)$

 Degree-d polynomial-threshold function in n variables How much communication for number-on-forehead protocols among k = d+1 players?

Corollaries to k-player addition:

[Nisan '93] $O(\log^2 n)$

This work: O(log n)

Application to complexity of pseudorandom functions

Outline

• Overview of results

• Proof of O(log n) bound for k-player addition

• Recall k-player addition:

 P_i gets integer $x_i \in [\text{-}2^n \text{ , }2^n \text{]}$

How much communication to decide $\sum_{i \le k} x_i > 0$ with error 1%?

- Overview of ideas in our O(log n) protocol
 - We give O(1) protocol for k-player sum-equal, improving on Nisan's O(log n)
 - Using a recursion [Nisan] this gives
 O(log n log log n) protocol for k-player addition
 - We adapt [Nisan Safra] from k = 2 to k > 2 to obtain O(log n)

• k-player sum-equal

Player P_i gets integer $x_i \in [-2^n, 2^n]$

How much communication to decide $\sum_{i \le k} x_i = 0$ with error 1%?

• k-player sum-equal $(\sum_{i \le k} x_i = 0?, x_i \in [-2^n, 2^n])$

[Nisan] Player P_i communicates hash(x_i) = x_i mod p
 Correctness by linearity: ∑_i (x_i mod p) = (∑_i x_i) mod p
 Need p = n Ω(1) → Ω(log n)-bit hashes

• This work: Use hash function analyzed by [Dietzfelbinger Hagerup Katajainen Penttonen]

 $hash(x_i) = "O(1)$ middle bits of R•x_i, R random odd"

Almost linear: $\sum_{i \le k} hash(x_i) = hash(\sum_{i \le k} x_i) +/- k$ O(1)-bit hashes • [Nisan] Solving addition using sum-equal:

- At each node solve O(1) sum-equal, to determine if sum of lower halves matters or not.
- Depth of tree = O(log n)
- Naively, for total error 1% need to solve each sum-equal with error ≤ 1/log n → O(log n log log n) protocol

- [Nisan Safra] obtain O(log n) for k=2 players using binary search with noise
- Exploits geometry not present for k > 2
- We show how to use binary search with noise for any k: write sum-equal questions along a path as single question

- 2-player addition: $\Theta(\log n)$, improves Smirnoff's '88 $\Omega(\sqrt{\log n})$
- k-player addition: $\Theta(\log n)$, improves Nisan's '93 O($\log^2 n$)
- Useful for polynomal-threshold functions,
 - complexity of pseudorandom functions,
 - [Dutta Pandurangan Rajaraman Sun V.]

Open problems

• For large number k of players:

We show sum-equal mod p is $\Theta(k \log k)$

Over integers only know O(k log k), $\Omega(k)$

 Recall for 2-player addition we gave O(log n) protocol private-coin and explicit

Not known for k > 2 players.

One approach would be to derandomize the hash function