Visitor Yevgeniy Dodis (from NYU)

Spring 2013 Ph.D. cryptography class

Postdoc Chinmoy Dutta

6 Ph.D. students
Theory in the Boston area

Overwhelming number of talks, seminars, classes.

Students from other institutions come to NEU talks, classes.

NEU students go there.
Some recent work done at NEU
Spreading in Dynamic Networks

Goal: Spread tokens to all nodes of network
Spreading in Dynamic Networks

Goal: Spread tokens to all nodes of network

- Dynamic setting: network changes every step
Spreading in Dynamic Networks

[Chinmoy Dutta
Gopal Pandurangan
Rajmohan Rajaraman
Emanuele Viola
Zhifeng Sun

SODA 2013]:

SYMM-DIFF algorithm for mixed token distribution.

Conjecture: works in general
Ideal crypto model: **black-box**

- adversary sees inputs/outputs
- but nothing more
Reality: algorithms run on hardware

- hardware **leaks** information (side-channels)
- power consumption [Kocher-Jaffe-Jun '99],
 timing [Kocher '96], **acoustics** [Asonov-Agrawal '04], …
Leakage model

- **Adversary chooses:** $x, \ L : \{0,1\}^{|\hat{C}|} \rightarrow \{0,1\}^*$
- **Adversary sees:** $C, \ \hat{C}_k(x), \ L(\text{wires of } \hat{C}_k(x))$
- **Security goal:** leakage L “doesn't help”

\exists simulator $S, \ \forall x,k: \ \Delta(L(\text{wires}), L(S(C, x, \hat{C}_k(x)))) \leq \text{negl}$

(Δ over compiler and simulator)
Continual Leakage

[Dodis Haralembiev Lopez Wichs FOCS10]
State-of-the-art leakage resistance, for “one-shot”

- We construct circuits over a group G.
 - wires carry group elements
 - gates: mult. & inversion in G

- Main setting: $G = A_5$
 - elements: even permutations of \{1, ..., 5\}