Pseudorandomness: New Results and Applications

Emanuele Viola
IAS

April 2007
Randomness in Computation

- Useful throughout Computer Science
 - Algorithms
 - Cryptography
 - Complexity Theory

- Question: Is “true” randomness necessary?
Pseudorandomness

• **Goal**: low-entropy distributions that ``look random''

• Why study pseudorandomness?

• Basis for most cryptography [S 49]

• **Algorithmic breakthroughs**:
 Connectivity in logarithmic space [R 04]
 Primality in polynomial time [AKS 02]
Pseudorandom Generator (PRG) \([BM,Y]\)

- Poly(n)-time Computable
- Stretch \(s(n) \geq 1\) (e.g., \(s(n) = 1, s(n) = n^2\))
- Output \"looks random\"
Outline

• Overview of pseudorandomness

• **Cryptographic pseudorandom generators**
 – Complexity vs. stretch

• **Specialized pseudorandom generators**
 – Constant-depth, with application to NP
 – Polynomials
Cryptographic PRG

- "Looks random": \(\forall \) efficient adversary \(A : \{0,1\}^{n+s(n)} \rightarrow \{0,1\} \)

 \[\Pr_U[A(U) = 1] \approx \Pr_X[A(\text{PRG}(X)) = 1] \]

- Cryptography: symmetric encryption \(m := m \oplus G(X) \) [S49]

 need big stretch \(s >> n \)

- PRG \(\leftrightarrow \) One-Way Functions (OWF) [BM,Y,GL,…,HILL]

 - OWF: easy to compute but hard to invert
Standard Constructions w/ big stretch

- **STEP 1:** OWF \(f \overset{}{\Rightarrow} G^f : \{0,1\}^n \rightarrow \{0,1\}^{n+1} \)
 - Think e.g. \(f : \{0,1\}^{n_a} \rightarrow \{0,1\}^{n_b} \)

- **STEP 2:** \(G^f \Rightarrow \) PRG with stretch \(s(n) = \text{poly}(n) \) [GM]

 \begin{equation*}
 \text{Input } X \xrightarrow{G^f} G^f \xrightarrow{G^f} G^f \xrightarrow{G^f} G^f \xrightarrow{G^f} \ldots \quad \text{Output} \quad \ldots \ldots \end{equation*}

- Stretch \(s \Rightarrow s \) adaptive queries to \(f \Rightarrow \) circuit depth \(\geq s \)

- **Question [this work]:** stretch \(s \) vs. adaptivity & depth?
 E.g., can have \(s = n \), circuit depth \(O(\log n) \)?
Previous Results

- [AIK] Log-depth OWF/PRG \Rightarrow $O(1)$-depth PRG (!!!)
 However, any stretch \Rightarrow stretch $s = 1$

- [GT] s vs. *number* q of queries to OWF (Thm: $q \geq s$)
 [This work] s vs. *adaptivity & circuit depth*

- […,IN,NR] $O(1)$-depth PRG from *specific* assumptions
 [This work] *general* assumptions
Our Model of PRG construction

- **Parallel** PRG $G^f : \{0,1\}^n \rightarrow \{0,1\}^{n+s(n)}$ from OWF f
Our Results on PRG Constructions

- **Theorem [V]** Parallel $G^f : \{0,1\}^n \rightarrow \{0,1\}^{n+s(n)}$ from OWF (e.g. $f : \{0,1\}^{n_a} \rightarrow \{0,1\}^{n_b}$) must have:

<table>
<thead>
<tr>
<th></th>
<th>f arbitrary</th>
<th>f one-to-one</th>
<th>f permutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg.</td>
<td>$s(n) \leq o(n)$</td>
<td>$s(n) \leq o(n)$</td>
<td>?</td>
</tr>
<tr>
<td>Pos.</td>
<td>?</td>
<td>$s(n) \geq 1$</td>
<td>$s(n) \geq 1$</td>
</tr>
</tbody>
</table>

- **Proof idea** ($f = permutation \pi, s = 1$)

 \[[GL] G^f(x,r) := \pi(x), r, <x,r> \quad (<x,r> := \sum_i x_i r_i) \]

 Problem: can’t compute $<x,r>$ in constant-depth \([GNR]\)

 Solution: don’t have to! $G^f(x,r) := \pi(x), r', <x,r'>$
Outline

• Overview of pseudorandomness

• Cryptographic pseudorandom generators
 – Complexity vs. stretch

• Specialized pseudorandom generators
 – Constant-depth, with application to NP
 – Polynomials
Specialized PRG

- "looks random": \forall **restricted** $A : \{0,1\}^{n+s(n)} \rightarrow \{0,1\}$

 $$\Pr_U[A(U) = 1] \approx \Pr_X[A(PRG(X)) = 1]$$

- Sometimes known unconditionally!
PRG for Constant-Depth Circuits

- Constant-depth circuit:

- Theorem [N ‘91]: PRG with stretch $s(n) = 2^{n^{\Omega(1)}}$
 output looks random to constant-depth circuits
Application: Avg-Case Hardness of NP

- Study hardness of NP on random instances
 - Natural question, essential for cryptography

- Currently cannot relate to $P \neq NP$ [FF,BT,V]

- Hardness amplification

Definition: $f: \{0,1\}^n \rightarrow \{0,1\}$ is ε-hard if

\[
\forall \text{ efficient algorithm } M : \Pr_x[M(x) \neq f(x)] \geq 1/2 - \varepsilon
\]
Previous Results

• **Yao’s XOR Lemma:** \(f'(x_1, \ldots, x_n) := f(x_1) \oplus \cdots \oplus f(x_n) \)
 \(f' \approx 2^{-n} \)-hard, almost optimal

• **Cannot use XOR in NP:** \(f \in \text{NP} \not\Rightarrow f' \in \text{NP} \)

• **Idea:** \(f'(x_1, \ldots, x_n) = C(f(x_1), \ldots, f(x_n)) \), \(C \) monotone
 – e.g. \(f(x_1) \land (f(x_2) \lor f(x_3)) \). \(f \in \text{NP} \Rightarrow f' \in \text{NP} \)

• **Theorem [O’D]:** There is \(C \) s.t. \(f' \approx (1/n) \)-hard

• **Barrier:** No monotone \(C \) can do better!
Our Result on Hardness Amplification

- **Theorem [HVV]:** Amplification in NP up to $\approx 2^{-n}$
 - Matches the XOR Lemma

- **Technique:** Pseudorandomness!

 Intuitively, $f' := C(f(x_1), \ldots, f(x_n), \ldots \ldots f(x_{2^n}))$

 f' $(1/2^n)$-hard by previous result

Problem: Input length $= 2^n$

Note C is constant-depth

Use PRG: input length $\rightarrow n$, keep hardness
Previous Results

• Recall Theorem [N]:
 PRG with stretch $s(n) = 2^{n^{\Omega(1)}}$

• But constant-depth circuits are weak:
 – Cannot compute $\text{Majority}(x_1, \ldots, x_n) := \sum_i x_i > n/2$?

• Theorem [LVW]:
 PRG with stretch $s(n) = n^{\log n}$

• PRG’s for incomparable classes
Our New PRG

- Constant-depth circuits with few Majority gates

- Theorem $[V]$:
 PRG with $s(n) = n^\log n$

- Improves on $[LVW]$; worse stretch than $[N]$
 Richest class for which PRG is known

- Techniques: Communication complexity + switching lemma $[BNS,HG,H,HM,CH]$
Outline

• Overview of pseudorandomness

• Cryptographic pseudorandom generators
 – Complexity vs. stretch

• Specialized pseudorandom generators
 – Constant-depth, with application to NP
 – Polynomials
F_2 polynomials

- Field \(F_2 = \text{GF}(2) = \{0,1\} \)

- \(F_2 \)-polynomial \(p : F_2^n \rightarrow F_2 \) of degree \(d \)

 E.g., \(p = x_1 + x_5 + x_7 \quad d = 1 \)

 \(p = x_1 \cdot x_2 + x_3 \quad d = 2 \)

- **Theorem** [NN90]: PRG for \(d=1 \) with stretch \(s(n) = 2^{\Omega(n)} \)
 - Applications to algorithm design, PCP’s,…
Hardness for F_2 polynomials

- **Want**: explicit $f : \{0,1\}^n \rightarrow \{0,1\} \ \varepsilon$-hard for degree d:
 \[\forall p \text{ of degree } d : \Pr[f(x) \neq p(x)] \geq \frac{1}{2} - \varepsilon \]
 \[\varepsilon = \varepsilon(n,d) \text{ small} \]

- Implies PRG with $s=1$. $G(X) := X \ f(X)$

- Interesting beyond PRG
 - Coding theory
 - $d = \log n, \ \varepsilon = 1/n^{10} \Rightarrow \text{complexity breakthrough}$
Previous Results

• **Want**: explicit $f : \{0,1\}^n \rightarrow \{0,1\}$ ε-hard for degree d:
 \[\forall p \text{ of degree } d : \Pr[f(x) \neq p(x)] \geq \frac{1}{2} - \varepsilon \]
 $\varepsilon = \varepsilon(n,d)$ small

• [Razborov 1987] Majority: $(1/n)$-hard $(d \leq \text{polylog}(n))$

• [Babai et al. 1992] Explicit f: $\exp(-n/d \cdot 2^d)$-hard

• [Bourgain 2005] Mod 3: $\exp(-n/8^d)$-hard

 – Mod 3 $(x_1,\ldots,x_n) := 1$ iff $3 \mid \sum_i x_i$
Our Results

• New approach based on "Gowers uniformity"

• Theorem \([V,VW]\) :

 Explicit \(f: \exp(-n/2^d) \)-hard (\([BNS]\) \(\exp(-n/d \cdot 2^d) \))

 Mod 3: \(\exp(-n/4^d) \)-hard (\([Bou]\) \(\exp(-n/8^d) \))
 – Also arguably simpler proof

• Theorem \([BV,\text{unpublished}]\) :

 PRG with stretch \(s(n) = 2^{\Omega(n)} \) for \(d = 2,3,\ldots(?) \)
 – Even for \(d=2 \), previous best was \(s(n) = n^{\log n} \) \([LVW]\)
Gowers uniformity

- Idea: Measure closeness to degree-d polynomials by checking if d-th derivative vanishes
 - \([G98]\) combinat., \([A+,J+,…]\) testing

- Derivative \(D_y \ p(x) := p(x+y) + p(x)\)
 - E.g. \(D_y \ (x_1 x_2 + x_3) = (y_1+x_1)(y_2+x_2)+(x_3+y_3)+x_1x_2+x_3\)
 \[= y_1x_2 + x_1y_2 + y_1y_2 + y_3\]
 - \(p\) degree \(d\) \(\Rightarrow\) \(D_y \ p(x)\) degree \(d-1\)
 - Iterate: \(D_{y,y'} \ p(x) := D_y(\ D_{y'} \ p(x))\)

- d-th Gowers uniformity of \(f\):
 \(U_d(f) := E_{x,y^1,...,y^d}[e(D_{y^1,...,y^d} f(x))]\) \(\quad (e(X):=(-1)^X)\)
 - \(U_d(p) = 1\) if \(p\) degree \(d\)
Main lemma

• Lemma [Gow,GT]:
 Hardness of \(f \) for degree-\(d \) polynomials \(\leq U_d(f)^{1/2^d} \)
 – Property of \(f \) only!

• Proof sketch: Let \(p \) have degree \(d \).
 Hardness of \(f \) for \(p \)

\[
= | \Pr[f(x) = p(x)] - \Pr[f(x) \neq p(x)] |
\]

\[
= E_x[e(f(x)+p(x))] = U_0(f+p)
\]

\[
\leq U_1(f+p)^{1/2} \leq \ldots \leq U_d(f+p)^{1/2^d} \quad \text{(Cauchy-Schwartz)}
\]

\[
= U_d(f)^{1/2^d} \quad \text{(d-th derivative of \(p = 1 \))}
\]

Q.E.D.
Establishing hardness

- Consider $f := x_1 \cdots x_{d+1} + x_{d+2} \cdots x_{2d+2} + \cdots$
 - not best parameters, but best to illustrate

- Theorem $[\mathcal{V}]$ f is $\exp(-n/c^d)$-hard for degree d

- Proof:
 Hardness of $f \leq U_d(f)^{1/2^d}$ (by lemma)

 $= U_d(x_1 \cdots x_{d+1} + x_{d+2} \cdots x_{2d+2} + \cdots)^{1/2^d}$

 $= U_d(x_1 \cdots x_{d+1})^{n/(d+1)^2^d}$ (by property of U)

 $= \exp(-n/c^d)$ (by calculation)

Q.E.D.
Conclusion

- Pseudorandom generators (PRG’s): powerful tool

- Cryptographic PRG’s
 - Tradeoff between stretch and parallel complexity [V]

- Specialized PRG’s
 - Application: Hardness Amplification in NP [HVV]
 - PRG for const.-depth circuits with few Maj gates [V]
 - PRG for low-degree polynomials over F_2 using Gowers uniformity [V, VW,BV]
Thank you!