The Complexity of Hardness Amplification and Derandomization

Emanuele Viola
Harvard University
Ph.D. Defense

May 2006
Randomness in Computation

• Useful throughout Computer Science
 – Cryptography
 – Learning Theory
 – Complexity Theory

• Question: Is Randomness necessary?
Derandomization

• **Goal**: remove randomness

• Why study derandomization?

• **Breakthrough** [R ‘04]:
 Connectivity in logarithmic space (SL = L)

• **Breakthrough** [AKS ‘02]:
 Primality in polynomial time (PRIMES ∈ P)
Randomness vs. Time

• Goal:
simulate randomized computation deterministically

• Trivial Derandomization:
If A uses n random bits, enumerate all 2^n possibilities

Probabilistic polynomial-time \subseteq exponential time
\[\text{BPP} \subseteq \text{Time}(2^{\text{poly}(n)}) \]

• Strong Belief: BPP = P (Time(poly(n)))
Complexity Assumptions \Rightarrow BPP = P [BFNW,NW,IW,...]
Outline

• Overview of derandomization

• Derandomization of restricted models
 – Application: Hardness Amplification in NP
 – New derandomization

• Derandomization of general models
 – BPP vs. PH
 – Proof of Lower Bound
Constant-Depth Circuits

- Probabilistic constant-depth circuit (BP AC0)

- Theorem [N ‘91]: BP AC0 \subseteq Time($n^{\text{polylog } n}$)
 - Compare to BP P \subseteq Time($2^{\text{poly}(n)}$)
Application: Avg-Case Hardness of NP

- Study hardness of NP on random instances
 - Natural question, essential for cryptography

- Currently cannot relate to $P \neq NP$ [FF,BT,V]

- Hardness amplification
 Definition: $f : \{0,1\}^n \rightarrow \{0,1\}$ is δ-hard if for every efficient algorithm $M : \Pr_x[M(x) \neq f(x)] \geq \delta$

\[f \rightarrow \text{Hardness Amplification} \rightarrow f' \]
\[.01\text{-hard} \rightarrow (1/2 - \varepsilon)\text{-hard} \]
Previous Results

• Yao’s XOR Lemma: \(f'(x_1, \ldots, x_n) := f(x_1) \oplus \cdots \oplus f(x_n) \)
 \(f' \approx (1/2 - 2^{-n})\)-hard, almost optimal

• Cannot use XOR in NP: \(f \in \text{NP} \not\Rightarrow f' \in \text{NP} \)

• Idea: \(f'(x_1, \ldots, x_n) = C(f(x_1), \ldots, f(x_n)) \), \(C \) monotone
 – e.g. \(f(x_1) \land (f(x_2) \lor f(x_3)) \). \(f \in \text{NP} \Rightarrow f' \in \text{NP} \)

• Theorem [O’D]: There is \(C \) s.t. \(f' \approx (1/2 - 1/n)\)-hard

• Barrier: No monotone \(C \) can do better!
Our Result on Hardness Amplification

• **Theorem [HVV]**: Amplification in NP up to $\approx 1/2 - 2^{-n}$
 – Matches the XOR Lemma

• **Technique**: Derandomize!
 Intuitively, $f' := C(f(x_1), \ldots, f(x_n), \ldots \ldots f(x_{2^n}))$
 f' $(1/2 - 1/2^n)$-hard by previous result

Problem: Input length $= 2^n$

Note C is constant-depth

Derandomize: input length $\rightarrow n$, keep hardness
Outline

• Overview of derandomization

• Derandomization of restricted models
 – Application: Hardness Amplification in NP
 – New derandomization

• Derandomization of general models
 – BPP vs. PH
 – Proof of Lower Bound
Previous Results

• Recall Theorem [N]:
 \(\text{BP AC}^0 \subseteq \text{Time}(n^{\text{polylog } n}) \)

• But \(\text{AC}^0 \) is weak: \(\text{Majority} \not\in \text{AC}^0 \)
 – \(\text{Majority}(x_1, \ldots, x_n) := \sum_i x_i > n/2 \) ?

• Theorem [LVW]:
 \(\text{BP Maj AND} \subseteq \text{Time}(2^{n^\varepsilon}) \)

• Derandomize incomparable classes
Our New Derandomization

- **Theorem** $[\mathcal{V}]$: $\text{BP Maj AC}^0 \subseteq \text{Time}(2^{n^\epsilon})$

 Derandomize constant-depth circuits with few Majority gates =

- Improves on $[\text{LVW}]$. Slower than $[\text{N}]$ but richer richest probabilistic circuit class in $\text{Time}(2^{n^\epsilon})$

- **Techniques**: Communication complexity + switching lemma $[\text{BNS, HG, H, HM, CH}]$
Outline

• Overview of derandomization

• Derandomization of restricted models
 – Application: Hardness Amplification in NP
 – New derandomization

• Derandomization of general models
 – BPP vs. PH
 – Proof of Lower Bound
BPP vs. POLY-TIME HIERARCHY

- Probabilistic Polynomial Time (BPP):
 for every x, $\Pr[M(x) \text{ errs}] \leq 1\%$

- Strong belief: $\text{BPP } = \text{ P }$ [NW,BFNW,IW,…]
 Still open: $\text{BPP } \subseteq \text{ NP }$?

- Theorem [SG,L; ‘83]: $\text{BPP } \subseteq \Sigma_2 \text{ P}$

- Recall
 \[
 \begin{align*}
 \text{NP } &= \Sigma_1 \text{ P } \quad \rightarrow \quad \exists \ y \ M(x,y) \\
 \Sigma_2 \text{ P } \quad &\rightarrow \quad \exists \ y \ \forall \ z \ M(x,y,z)
 \end{align*}
 \]
The Problem we Study

• More precisely [SG,L] give
 \[\text{BPTime}(t) \subseteq \Sigma_2\text{Time}(t^2) \]

• Question[Rest of this Talk]:
 Is quadratic slow-down necessary?

• Motivation: Lower bounds
 Know NTime \neq \text{Time} on some models [P+, F+, …]
 Technique: speed-up computation with quantifiers
 To prove NTime \neq \text{BPTime} cannot afford \Sigma_2\text{Time}(t^2)
Approximate Majority

• Input: \(R = 101111011011101011 \)

• Task: Tell \(\Pr_i[R_i = 1] \geq 99\% \) from \(\Pr_i[R_i = 1] \leq 1\% \)

Do not care if \(\Pr_i[R_i = 1] \sim 50\% \) (approximate)

• Model: Depth-3 circuit

![Depth-3 Circuit Diagram]
The connection [FSS]

\[M(x;u) \in \text{BPTime}(t) \]

Compute \(M(x) \):
- Tell \(\Pr_u[M(x) = 1] \geq 99\% \)
- from \(\Pr_u[M(x) = 1] \leq 1\% \)

\[\text{BPTime}(t) \subseteq \sum_2 \text{Time}(t') \]
\[= \exists \forall \text{Time}(t') \]

Running time \(t' \)
- run \(M \) at most \(t'/t \) times

\[R = 11011011101011 \]
\[|R| = 2^t \]
\[R_i = M(x;i) \]

Compute Appr-Maj

Bottom fan-in \(f = t'/t \)
Our Results

- **Theorem**[V]: Small depth-3 circuits for Approximate Majority on N bits have bottom fan-in $\Omega(\log N)$

- **Corollary**: Quadratic slow-down necessary for relativizing techniques:

 \[
 \text{BPTime}^A(t) \subseteq \Sigma_2 \text{Time}^A(t^{1.99})
 \]

- **Theorem**[DvM,V]: BPTime $^A(t) \subseteq \Sigma_3 \text{Time}^A(t \cdot \log^5 t)$
 - Previous result [A]: BPTime $^A(t) \subseteq \Sigma_{O(1)} \text{Time}^A(t)$

- For time, the level is the third!
Outline

• Overview of derandomization

• Derandomization of restricted models
 – Application: Hardness Amplification in NP
 – New derandomization

• Derandomization of general models
 – BPP vs. PH
 – Proof of Lower Bound
Our Negative Result

- **Theorem [V]:** 2^{N^ϵ}-size depth-3 circuits for Approximate Majority on N bits have bottom fan-in $f = \Omega(\log N)$

- Recall:

 $$R = 101111011011101011 \quad |R| = N$$

 Tells $R \in \text{YES} := \{ R : \Pr_i[R_i = 1] \geq 99\% \}$

 from $R \in \text{NO} := \{ R : \Pr_i[R_i = 1] \leq 1\% \}$
Proof

• Circuit is OR of s depth-2 circuits

• By definition of OR:
 \[R \in \text{YES} \Rightarrow \text{some } C_i (R) = 1 \]
 \[R \in \text{NO} \Rightarrow \text{all } C_i (R) = 0 \]

• By averaging, fix \(C = C_i \) s.t.
 \[
 \Pr_{R \in \text{YES}} [C(x) = 1] \geq \frac{1}{s} \\
 \forall R \in \text{NO} \Rightarrow C(R) = 0
 \]

• **Claim**: Impossible if \(C \) has bottom fan-in \(\leq \varepsilon \log N \)
CNF Claim

- **Depth-2 circuit** ⇒ **CNF**

\[(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_4) \land (x_5 \lor x_3)\]

bottom fan-in ⇒ **clause size**

- **Claim**: All CNF C with clauses of size $\varepsilon \cdot \log N$

 Either $\Pr_{R \in \text{YES}} [C(x) = 1] \leq 1 / 2^{N\varepsilon}$

 or there is $R \in \text{NO} : C(x) = 1$

- **Note**: Claim ⇒ Theorem
Either $\Pr_{R \in \text{YES}} [C(x) = 1] \leq 1/2^{N^\varepsilon}$ or $\exists R \in \text{NO} : C(x) = 1$

Proof Outline

- **Definition:** $S \subseteq \{x_1, x_2, \ldots, x_N\}$ is a covering if every clause has a variable in S

 E.g.: $S = \{x_3, x_4\}$ $C = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_4) \land (x_5 \lor x_3)$

- **Proof idea:** Consider **smallest** covering S

 \[
 \text{Case } |S| \text{ BIG } : \Pr_{R \in \text{YES}} [C(x) = 1] \leq 1/2^{N^\varepsilon}
 \]

 \[
 \text{Case } |S| \text{ tiny } : \text{Fix few variables and repeat}
 \]
Either $\Pr_{R \in \text{YES}} [C(x) = 1] \leq 1/2^{N^{\varepsilon}}$ or $\exists R \in \text{NO} : C(x) = 1$

Case $|S|$ BIG

- $|S| \geq N^{\delta} \Rightarrow$ have $N^{\delta} / (\varepsilon \cdot \log N)$ disjoint clauses Γ_i
 - Can find Γ_i greedily

- $\Pr_{R \in \text{YES}} [C(R) = 1] \leq \Pr \left[\forall i, \Gamma_i(R) = 1 \right]$

 \[
 = \prod_i \Pr[\Gamma_i(R) = 1] \quad \text{(independence)}
 \]

 \[
 \leq \prod_i \left(1 - 1/100^{\varepsilon \log N} \right) = \prod_i \left(1 - 1/N^{O(\varepsilon)} \right)
 \]

 \[
 = \left(1 - 1/N^{O(\varepsilon)} \right)^{|S|} \leq e^{-N^{\Omega(1)}} \quad \checkmark
 \]
Either \(\Pr_R \in \text{YES} [C(x)=1] \leq 1/2^{N^\varepsilon} \) or \(\exists R \in \text{NO} : C(x) = 1 \)

Case \(|S|\) tiny

- \(|S| < N^\delta \) \(\implies\) Fix variables in \(S\)
 - Maximize \(\Pr_R \in \text{YES} [C(x)=1] \)

- Note: \(S\) covering \(\implies\) clauses shrink

Example

\[
(x_1 \vee x_2 \vee x_3) \land (\neg x_3) \land (x_5 \vee \neg x_4)
\]

\[
\begin{align*}
x_3 &\leftarrow 0 \\
x_4 &\leftarrow 1
\end{align*}
\]

\[
(x_1 \vee x_2) \land (x_5)
\]

- Repeat
 Consider smallest covering \(S'\), etc.
Either $\Pr_{R \in \text{YES}} [C(x)=1] \leq 1/2^{N^\varepsilon}$ or $\exists R \in \text{NO} : C(x) = 1$

Finish up

• Recall: Repeat \Rightarrow shrink clauses
 So repeat at most $\varepsilon \cdot \log N$ times

• When you stop:
 Either smallest covering size $\geq N^\delta$
 Or $C = 1$
 Fixed $\leq (\varepsilon \cdot \log N) N^\delta \ll N$ vars.
 Set rest to 0 $\Rightarrow R \in \text{NO} : C(R) = 1$

Q.E.D.
Conclusion

• Derandomization: powerful technique

• Restricted models: Constant-depth circuits (AC⁰)
 – Derandomization of AC⁰ [N]
 – Application: Hardness Amplification in NP [HHV]
 – Derandomization of AC⁰ with few Maj gates [V]

• General models: BPP vs. PH
 – BPTime(t) ⊆ Σ₂Time(t²) [SG,L]
 – BPTime(t) ⊆ Σ₂Time(t^{1.99}) (w.r.t. oracle) [V]
 Lower Bound for Approximate Majority
Thank you!