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Abstract

In this work we discuss selected topics on small-depth computation, presenting a few unpub-
lished proofs along the way. The four chapters contain:

1. A unified treatment of the challenge of exhibiting explicit functions that have small
correlation with low-degree polynomials over {0, 1}.

2. An unpublished proof that small bounded-depth circuits (AC0) have exponentially
small correlation with the parity function. The proof is due to Klivans and Vadhan; it
builds upon and simplifies previous ones.

3. Valiant’s simulation of log-depth linear-size circuits of fan-in 2 by sub-exponential size
circuits of depth 3 and unbounded fan-in. To our knowledge, a proof of this result has
never appeared in full.

4. Applebaum, Ishai, and Kushilevitz’s cryptography in bounded depth.
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0.1 Introduction

The NP-completeness of SAT is a celebrated example of the power of bounded-depth com-
putation: the core of the argument is a depth reduction establishing that any small non-
deterministic circuit – an arbitrary NP computation on an arbitrary input – can be simulated
by a small non-deterministic circuit of depth 2 with unbounded fan-in – a SAT instance.

Many other examples permeate theoretical computer science. In this work we discuss a
selected subset of them, and include a few unpublished proofs.

We start in Chapter 1 with considering low-degree polynomials over the fields with two
elements {0, 1} (a.k.a. GF(2)). Polynomials are a bounded-depth computational model:
they correspond to depth-2 unbounded fan-in circuits whose output gate is a sum (in our
case, modulo 2). Despite the apparent simplicity of the model, a fundamental challenge
has resisted decades of attacks from researchers: exhibit explicit functions that have small
correlation with low-degree polynomials. This chapter is a unified treatment of the state-of-
the-art on this challenge. We discuss long-standing results and recent developments, related
proof techniques, and connections with pseudorandom generators. We also suggest several
research directions. Along the way, we present previously unpublished proofs of certain
correlation bounds.

In Chapter 2 we consider unbounded fan-in circuits of small depth with ∧ (and), ∨ (or),
and ¬ (not) gates, known as AC0. Here we present an unpublished proof of the well-known
result that small AC0 circuits have exponentially small correlation with the parity function.
The proof is due to Klivans and Vadhan; it builds upon and simplifies previous ones.

In Chapter 3 we present a depth-reduction result by Valiant [Val77, Val83] whose proof
to our knowledge has never appeared in full. The result is that log-depth linear-size circuits
of fan-in 2 can be simulated by sub-exponential size circuits of depth 3 and unbounded fan-
in (again, the gates are ∧,∨,¬). Although the parameters are more contrived, this result
is in the same spirit of the NP-completeness of SAT mentioned at the beginning of this
introduction. The latter depth-reduction crucially exploits non-determinism; interestingly,
we have to work harder to prove Valiant’s deterministic simulation.

Finally, in Chapter 4 we present the result by Applebaum, Ishai, and Kushilevitz [AIK06]
that shows that, under standard complexity theoretic assumptions, many cryptographic
primitives can be implemented in very restricted computational models. Specifically, one
can implement those primitives by functions such that each of their output bits only depends
on a constant number of input bits. In particular, each output bit can be computed by a
circuit of constant size and depth.

Of course, many exciting works on small-depth computation are not covered here. Recent
ones include Rossman’s lower bound [Ros08] and the pseudorandom generators for small-
depth circuits by Bazzi, Razborov, and Braverman [Bra09].

Publishing note. Chapter 1 appeared in ACM SIGACT News Volume 40, Issue 1 (March
2009). The other chapters are a polished version of the notes of Lectures 4,5,6,7,10,12,13, and
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14 of the author’s class “Gems of Theoretical Computer Science,” taught at Northeastern
University in Spring 2009 [Vio09a]. I thank the audience of the class, Rajmohan Rajaraman,
and Ravi Sundaram for useful feedback. I am grateful to Aldo Cassola, Dimitrios Kanoulas,
Eric Miles, and Ravi Sundaram for scribing the above lectures.

May 24 2016 update. I have made some very slight changes to take into account [Smo93,
GKV12, Vio13, RV13, BL15].
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Chapter 1

Polynomials over {0, 1}

1.1 Introduction

This chapter is about one of the most basic computational models: low-degree polynomials
over the field {0, 1} = GF(2). For example, the following is a polynomial of degree 2 in 3
variables

p(x1, x2, x3) := x1 · x2 + x2 + x3 + 1,

given by the sum of the 4 monomials x1x2, x2, x3, and 1, of degree 2, 1, 1, and 0, respectively.
This polynomial computes a function from {0, 1}3 to {0, 1}, which we also denote p, by
performing the arithmetic over {0, 1}. Thus the sum “+” is modulo 2 and is the same
as “xor,” while the product “·” is the same as “and.” For instance, p(1, 1, 0) = 1. Being
complexity theorists rather than algebraists, we are only interested in the function computed
by a polynomial, not in the polynomial itself; therefore we need not bother with variables
raised to powers bigger than 1, since for x ∈ {0, 1} one has x = x2 = x3 and so on. In
general, a polynomial p of degree d in n Boolean variables x1, . . . , xn ∈ {0, 1} is a sum of
monomials of degree at most d:

p(x1, . . . , xn) =
∑

M⊆{1,...,n},|M |≤d

cM

∏

i∈M

xi,

where cM ∈ {0, 1} and we let
∏

i∈∅ xi := 1; such a polynomial p computes a function
p : {0, 1}n → {0, 1}, interpreting again the sum modulo 2. We naturally measure the
complexity of a polynomial by its degree d: the maximum number of variables appearing in
any monomial. Since every function f : {0, 1}n → {0, 1} can be computed by a polynomial
of degree n, specifically f(x1, . . . , xn) =

∑

a1,...,a2
f(a1, . . . , an)

∏

1≤i≤n(1 + ai + xi), we are
interested in polynomials of low degree d ≪ n.

Low-degree polynomials constitute a fundamental model of computation that arises in a
variety of contexts, ranging from error-correcting codes to circuit lower bounds. As for any
computational model, a first natural challenge is to exhibit explicit functions that cannot
be computed in the model. This challenge is easily won: the monomial

∏d
i=1 xi requires

degree d. A second, natural challenge has baffled researchers, and is the central topic of
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this chapter. One now asks for functions that not only cannot be computed by low-degree
polynomials, but do not even correlate with them.

1.2 Correlation bounds

We start by defining the correlation between a function f and polynomials of degree d. This
quantity captures how well we can approximate f by polynomials of degree d, and is also
known as the average-case hardness of f against polynomials of degree d.

Definition 1 (Correlation). Let f : {0, 1}∗ → {0, 1} be a function, n an integer, and D a
distribution on {0, 1}n. We define the correlation between f and a polynomial p : {0, 1}n →
{0, 1} with respect to D as

CorD(f, p) :=
∣

∣

∣
Pr

x∼D
[f(x) = p(x)] − Pr

x∼D
[f(x) 6= p(x)]

∣

∣

∣
= 2

∣

∣

∣
1/2 − Pr

x∼D
[f(x) 6= p(x)]

∣

∣

∣
∈ [0, 1].

We define the correlation between f and polynomials of degree d with respect to D as

CorD(f, d) := max
p

CorD(f, p) ∈ [0, 1],

where the maximum is over all polynomials p : {0, 1}n → {0, 1} of degree d.
Unless specified otherwise, D is the uniform distribution and we simply write Cor(f, d).

For more than two decades, researchers have sought to exhibit explicit functions that have
small correlation with high-degree polynomials. We refer to this enterprise as obtaining,
or proving, “correlation bounds.” A dream setting of parameters would be to exhibit a
function f ∈ P such that for every n, and for D the uniform distribution over {0, 1}n,
CorD(f, ǫ · n) ≤ exp(−ǫ · n), where ǫ > 0 is an absolute constant, and exp(x) := 2x. For
context, we mention that a random function satisfies such strong correlation bounds, with
high probability.

The original motivation for seeking correlation bounds comes from circuit complexity, be-
cause functions with small correlation with polynomials require large constant-depth circuits
of certain types, see e.g. [Raz87, Smo87, HMP+93, Bei93]. An additional motivation comes
from pseudorandomness: as we will see, sufficiently strong correlation bounds can be used to
construct pseudorandom generators [Nis91, NW94], which in turn have myriad applications.
But as this article also aims to put forth, today the challenge of proving correlation bounds
is interesting per se, and its status is a fundamental benchmark for our understanding of
complexity theory: it is not known how to achieve the dream setting of parameters men-
tioned above, and in fact nobody can even achieve the following strikingly weaker setting of
parameters.

Open question 1. Is there a function f ∈ NP such that for arbitrarily large n there is a
distribution D on {0, 1}n with respect to which CorD(f, log2 n) ≤ 1/n?

Before discussing known results in the next sections, we add to the above concise motiva-
tion for tackling correlation bounds the following discussion of their relationship with other
open problems.
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Correlation bounds’ place in the hierarchy of open problems. We refer the reader to
[Vio13] for a map of open problems in complexity theory and their relationship to correlation
bounds. Here we make a few main points.

We point out that a negative answer to Question 1 implies that NP has circuits of
quasipolynomial size s = nO(log n). This relatively standard fact can be proved via boosting
[Fre95, Section 2.2] or min-max/linear-programming duality [GHR92, Section 5]. Thus,
an affirmative answer to Question 1 is necessary to prove that NP does not have circuits
of quasipolynomial size, a leading goal of theoretical computer science. Of course, this
connection can be strengthened in various ways, for example noting that the circuits for NP
given by a negative answer to Question 1 can be written on inputs of length n as a majority
of nO(1) polynomials of degree log2 n; thus, an affirmative answer to Question 1 is necessary
even to prove that NP does not have circuits of the latter type. On the other hand, Question
1 cannot easily be related to polynomial-size lower bounds such as NP 6⊆ P/poly, because a
polynomial of degree log n may have a quasipolynomial number of monomials.

While there are many other open questions in complexity theory, arguably Question 1
is among those having remarkable yet not dramatic consequences, and therefore should be
attacked first. To illustrate, let us consider some of the major open problems in the area of
unbounded-fan-in constant-depth circuits AC0. One such problem is to exhibit an explicit
function that requires AC0 circuits of depth d and size s ≥ exp(nǫ) for some ǫ ≫ 1/d (current
lower bounds give ǫ = O(1/d), see [H̊as87]). However, via a guess-and-verify construction
usually credited to [Nep70], one can show that any function f ∈ NL has AC0 circuits of
depth d and size exp

(

nc/d
)

where c depends only on f . This means that a strong enough
progress on this problem would separate NP from NL. Furthermore, a result by Valiant
we present in Chapter 3 entails that improving the known lower bounds for AC0 circuits of
depth 3 to size s = exp(Ω(n)) would result in a super-linear size lower bound for (fan-in 2)
circuits of logarithmic depth. On the other hand, even an answer to Question 1 with strong
parameters is not known to have such daunting consequences, nor, if that is of concern, is
known to require “radically new” ideas [BGS75, RR97, AW08].

Progress on Question 1 is also necessary for progress on number-on-forehead communica-
tion complexity lower bounds. Specifically, a long-standing open question in communication
complexity is to exhibit an explicit function f : ({0, 1}n)k → {0, 1} that cannot be com-
puted by number-on-forehead k-party protocols exchanging O(k) bits, for some k ≥ log2 n
[KN97, Problem 6.21]. As pointed out in [Vio13], a communication lower bound for a certain
k = poly log n would also answer Question 1; but the converse is not known.

Bhowmick and Lovett [BL15] show that certain long-standing correlation bounds, such
as those for the mod3 function in the next subsections, are false for a generalization of
polynomials known as non-classical polynomials. This means that any proof of those corre-
lation bounds should not apply to non-classical polynomials. They also discuss which of the
available proof techniques apply to non-classical polynomials.

We also note that polynomials over {0, 1} constitute a simple model of algebraic compu-
tation, and so Question 1 can also be considered a basic question in algebraic complexity. In
fact, an interesting special case – to which we will return in §1.2.2, §1.2.4 – is whether one
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can take f in Question 1 to be an explicit low-degree polynomial over {0, 1}.
Instead of polynomials modulo 2 one can consider polynomials over the reals where a

non-boolean output is always counted as a mistake. Proving correlation bounds for such real
polynomials is obviously no harder than for polynomials over the field {0, 1}, but presents
the same challenges, see [RV13].

After this high-level discussion, we now move to presenting the known correlation bounds.
It is a remarkable state of affairs that, while we are currently unable to make the correlation
small and the degree large simultaneously, as required by Question 1, we can make the
correlation small and the degree large separately. And in fact we can even achieve this for
the same explicit function f = mod3. We examine these two types of results in turn.

1.2.1 Large degree d ≫ log n but noticeable correlation ǫ ≫ 1/n

Razborov [Raz87] (also in [CK02, Section 2.7.1]) proves the existence of a symmetric function
f : {0, 1}n → {0, 1} that has correlation at most 1 − 1/nO(1) with polynomials of degree
Ω(

√
n) (a function is symmetric when its value only depends on the number of input bits

that are ‘1’).
Smolensky [Smo87] obtains a refined bound for the explicit function mod3 : {0, 1}n →

{0, 1} which evaluates to 1 if and only if the number of input bits that are ‘1’ is of the form
3k + 1 for some integer k, i.e., it is congruent to 1 modulo 3:

mod3(x1, . . . , xn) = 1 ⇔
∑

i

xi = 1(mod 3).

For example, mod3(1, 0, 0) = mod3(0, 1, 0) = 1 6= mod3(1, 0, 1).

Theorem 2 ([Smo87]). For any n that is divisible by 3, and for U the uniform distribution
over {0, 1}n, CorU(mod3, ǫ

√
n) ≤ 2/3, where ǫ > 0 is an absolute constant.

In [Smo93] Smolensky proves similar results for the Majority function.
While the proof of Smolensky’s result has appeared several times, e.g. [Smo87, BS90,

Bei93, AB09], we are unaware of a source that directly proves Theorem 2, and thus we
include next a proof for completeness (the aforementioned sources either focus on polyno-
mials over the field with three elements, or prove the bound for one of the three functions
modi,3(x1, . . . , xn) = 1 ⇔

∑

i xi = i(mod 3) for i = 0, 1, 2).

Proof. The idea is to consider the set of inputs X ⊆ {0, 1}n where the polynomial computes
the mod3 function correctly, and use the polynomial to represent any function defined on
X by a polynomial of degree n/2 + d. This means that the number of functions defined on
X should be smaller than the number of polynomials of degree n/2 + d, which leads to the
desired tradeoff between |X| and d. To carry through this argument, one works over a field
F that extends {0, 1}.

We start by noting that, since n is divisible by 3, one has
∑

i

xi = 2(mod 3) ⇔
∑

i

1 − xi = 1(mod 3) ⇔ mod3(1 + x1, . . . , 1 + xn) = 1, (1.1)
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where the sums 1 + xi in the input to mod3 are modulo 2. Let F be the field of size 4 that
extends {0, 1}, which we can think of as F = {0, 1}[t]/(t2 + t + 1): the set of polynomials
over {0, 1} modulo the irreducible polynomial t2 + t + 1. Note that t ∈ F has order 3, since
t2 = t + 1 6= 1, while t3 = t2 + t = 1. Let h : {1, t} → {0, 1} be the “change of domain”
linear map h(α) := (α + 1)/(t + 1); this satisfies h(1) = 0 and h(t) = 1.

Observe that for every y ∈ {1, t}n we have, using Equation (1.1):

y1 · · · yn = 1+(t+1) ·mod3(h(y1), . . . , h(yn))+(t2 +1) ·mod3(1+h(y1), . . . , 1+h(yn)). (1.2)

Now fix any polynomial p : {0, 1}n → {0, 1} and let

Pr
x∈{0,1}n

[p(x) 6= mod3(x)] =: δ,

which we aim to bound from below. Let p′ : {1, t}n → F be the polynomial

p′(y1, . . . , yn) := 1 + (t + 1) · p(h(y1), . . . , h(yn)) + (t2 + 1) · p(1 + h(y1), . . . , 1 + h(yn));

note p′ has the same degree d of p. By the definition of p′ and δ, a union bound, and Equation
(1.2) we see that

Pr
y∈{1,t}n

[y1 · · · yn = p′(y1, . . . , yn)] ≥ 1 − 2δ. (1.3)

Now let S ⊆ {1, t}n be the set of y ∈ {1, t}n such that y1 · · · yn = p′(y1, . . . , yn); we
have just shown that |S| ≥ 2n(1 − 2δ). Any function f : S → F can be written as a
polynomial over F where no variable is raised to powers bigger than 1: f(y1, . . . , yn) =
∑

a1,...,an
f(a1, . . . , an)

∏

1≤i≤n(1 + h(yi) + h(ai)). In any such polynomial we can replace any
monomial M of degree |M | > n/2 by a polynomial of degree at most n/2 + d as follows,
without affecting the value on any input y ∈ S:

∏

i∈M

yi = y1 · · · yn

∏

i6∈M

(yi(t + 1) + t) = p′(y1, . . . , yn)
∏

i6∈M

(yi(t + 1) + t),

where the first equality is not hard to verify. Doing this for every monomial we can write
f : S → F as a polynomial over F of degree ⌊n/2 + d⌋.

The number of functions from S to F is |F ||S|, while the number of polynomials over F

of degree ⌊n/2 + d⌋ is |F |
∑⌊n/2+d⌋

i=0 (n
i). Thus

log|F | #functions = |S| = 2n(1 − 2δ) ≤
⌊n/2+d⌋
∑

i=0

(

n

i

)

= log|F | #polynomials.

Since d = ǫ
√

n, we have

⌊n/2+d⌋
∑

i=0

(

n

i

)

≤ 2n/2 + d ·
(

n

⌊n/2⌋

)

≤ 2n/2 + ǫ
√

n · Θ
(

2n

√
n

)

= (1/2 + Θ(ǫ))2n,

where the second inequality follows from standard estimates on binomial coefficients. The
standard estimate for even n is for example in [CT06, Lemma 17.5.1]; for odd n = 2k + 1
one can first note

(

n
⌊n/2⌋

)

=
(

2k+1
k

)

<
(

2k+2
k+1

)

=
(

n+1
(n+1)/2

)

and then again apply [CT06, Lemma

17.5.1]. Therefore 1 − 2δ ≤ 1/2 + Θ(ǫ) and the theorem is proved.
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The limitation of the argument. There are two reasons why we get a poor correlation
bound in the above proof of Theorem 2. The first is the union bound in (1.3), which
immediately puts us in a regime where we cannot obtain subconstant correlation. This
regime is unavoidable as the polynomial p = 0 of degree 0 has constant correlation with
mod3 with respect to the uniform distribution. (Later we will see a different distribution
with respect to which mod3 has vanishing, exponentially small correlation with polynomials
of degree ≪ log n.) Nevertheless, let us pretend that the union bound in (1.3) is not there.
This is not pointless because this step is indeed not present in related correlation bounds,
which do however suffer from the second limitation we are about to discuss. The related
correlation bounds are those between the parity function

parity(x1, . . . , xn) := x1 + · · ·+ xn parity : {0, 1}n → {0, 1}
and polynomials over the field with three elements, see e.g. [BS90, AB09], or between the
parity function and the sign of polynomials over the integers [ABFR94]. If we assume that

the union bound in (1.3) is missing, then we get 2n(1 − δ) ≤
∑⌊n/2+d⌋

i=0

(

n
i

)

. Even if d = 1,
this only gives 1 − δ ≤ 1/2 + Θ(1/

√
n), which means that the correlation is O(1/

√
n): this

argument does not give a correlation bound of the form o(1/
√

n). More generally, to our
knowledge Question 1 is also open when replacing 1/n with 1/

√
n.

Xor lemma. A striking feature of the above results ([Raz87] and Theorem 2) is that they
prove non-trivial correlation bounds for polynomials of very high degree d = nΩ(1). In this
sense these results address the computational model which is the subject of Question 1, they
“just” fail to provide a strong enough bound on the correlation. For other important compu-
tational models this would not be a problem: the extensive study of hardness amplification
has developed many techniques to improve correlation bounds in the following sense: given
an explicit function f : {0, 1}n → {0, 1} that has correlation ǫ with some class Cn of functions
on n bits, construct another explicit function f ′ : {0, 1}n′ → {0, 1}, where n′ ≈ n, that has
correlation ǫ′ ≪ ǫ with a closely related class Cn′ of functions on n′ bits (see [SV10] for a
comprehensive list of references to research in hardness amplification). While the following
discussion holds for any hardness amplification, for concreteness we focus on the foremost:
Yao’s xor lemma. Here f ′ : ({0, 1}n)k → {0, 1} is defined as the xor (or parity, or sum
modulo 2) of k independent outputs of f :

f ′(x1, . . . , xk) := f(x1) + · · ·+ f(xk) ∈ {0, 1}, xi ∈ {0, 1}n.

The compelling intuition is that, since functions from Cn have correlation at most ǫ with f ,
and f ′ is the xor of k independent evaluations of f , the correlation should decay exponentially
with k: ǫ′ ≈ ǫk. This is indeed the case if one tries to compute f ′(x1, . . . , xk) as g1(x

1) +
· · · + gk(x

k) where gi : {0, 1}n → {0, 1}, gi ∈ Cn, 1 ≤ i ≤ k, but in general a function
g : ({0, 1}n)k → {0, 1}, g ∈ Cn′ , need not have this structure, making proofs of Yao’s xor
lemma more subtle. If we could prove this intuition true for low-degree polynomials, we
could combine this with Theorem 2 to answer affirmatively Question 1 via the function

f(x1, . . . , xk) := mod3(x
1) + · · · + mod3(x

k) (1.4)
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for k = n. Of course the obstacle is that nobody knows whether Yao’s xor lemma holds
for polynomials.

Open question 2. Does Yao’s xor lemma hold for polynomials of degree d ≥ log2 n? For
example, let f : {0, 1}n → {0, 1} satisfy Cor(f, n1/3) ≤ 1/3, and for n′ := n2 define f ′ :
{0, 1}n′ → {0, 1} as f ′(x1, . . . , xn) := f(x1) + · · ·+ f(xn). Is Cor(f ′, log2 n′) ≤ 1/n′?

We now discuss why, despite the many alternative proofs of Yao’s xor lemma that are
available (e.g., [GNW95]), we cannot apply any of them to the computational model of low-
degree polynomials. To prove that f ′ has correlation at most ǫ′ with some class of functions,
all known proofs of the lemma need (a slight modification of) the functions in the class
to compute the majority function on about 1/ǫ′ bits. However, the majority function on
1/ǫ′ bits requires polynomials of degree Ω(1/ǫ′). This means that known proofs can only
establish correlation bounds ǫ′ ≫ 1/n, failing to answer Question 2. More generally, the
works [Vio06a, SV10] show that computing the majority function on 1/ǫ′ bits is necessary
for a central class of hardness amplification proofs.

An xor lemma is however known for polynomials of small degree d ≪ log n [VW08] (this
and the other results on polynomials in [VW08] appeared also in [Vio06b]). In general, the
picture for polynomials of small degree is different, as we now describe.

1.2.2 Negligible correlation ǫ ≪ 1/n but small degree d ≪ log n

It is easy to prove exponentially small correlation bounds for polynomials of degree 1, for
example the inner product function IP : {0, 1}n → {0, 1}, defined for even n as

IP(x1, . . . , xn) := x1 · x2 + x3 · x4 + · · · + xn−1 · xn, (1.5)

satisfies Cor(IP, 1) = 2−n/2. Already obtaining exponentially small bounds for polynomials
of constant degree appears to be a challenge. The first such bounds come from the famed
work by Babai, Nisan, and Szegedy [BNS92] proving exponentially small correlation bounds
between polynomials of degree d := ǫ log n and, for k := d + 1, the generalized inner product
function GIPk : {0, 1}n → {0, 1},

GIPk(x1, . . . , xn) :=

k
∏

i=1

xi +

2k
∏

i=k+1

xi + · · ·+
n
∏

i=n−k+1

xi,

assuming for simplicity that n is a multiple of k. The intuition for this correlation bound
is precisely that behind Yao’s xor lemma (cf. §1.2.1): (i) any polynomial of degree d has
correlation that is bounded away from 1 with any monomial of degree k = d + 1 in the
definition of GIP, and (ii) since the monomials in the definition of GIP are on disjoint sets
of variables, the correlation decays exponentially. (i) is not hard to establish formally. With
some work, (ii) can also be established to obtain the following theorem.

Theorem 3 ([BNS92]). For every n, d, Cor(GIPd+1, d) ≤ exp
(

−Ω(n/4d · d)
)

.
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When k ≫ log n, GIP is almost always 0 on a uniform input, and thus GIP is not a can-
didate for having small correlation with respect to the uniform distribution with polynomials
of degree d ≫ log n.

Our exposition of the results in [BNS92] differs in multiple ways from the original. First,
[BNS92] does not discuss polynomials but rather number-on-forehead multiparty protocols.
The results for polynomials are obtained via the observation of H̊astad and Goldmann [HG91,
Proof of Lemma 4] mentioned in the subsection “Correlation bounds’ place in the hierarchy
of open problems” of §1.2. Second, [BNS92] presents the proof with a different language.
Alternative languages have been put forth in a series of papers [CT93, Raz00, VW08], with
the last one stressing the above intuition and the connections between multiparty protocols
and polynomials.

Bourgain [Bou05] later proves bounds similar to those in Theorem 3 but for the mod3

function. A minor mistake in his proof is corrected by F. Green, Roy, and Straubing [GRS05].

Theorem 4 ([Bou05, GRS05]). For every n, d there is a distribution D on {0, 1}n such that
CorD(mod3, d) ≤ exp

(

−n/cd
)

, where c is an absolute constant.

A random sample from the distribution D in Theorem 4 is obtained as follows: toss a
fair coin, if “heads” then output a uniform x ∈ {0, 1}n such that mod3(x) = 1, if “tails” then
output a uniform x ∈ {0, 1}n such that mod3(x) = 0. The value c = 8 in [Bou05, GRS05]
is later improved to c = 4 in [VW08, Cha07]. [VW08] also presents the proof in a different
language.

Theorem 4 appears more than a decade after Theorem 3. However, Noam Nisan (personal
communication) observes that in fact the first easily follows from the latter.

Sketch of Nisan’s proof of Theorem 4. Grolmusz’s [Gro95] extends the results in [BNS92]
and shows that there is a distribution D′ on {0, 1}n such that for k := d + 1 the func-
tion

mod3 ∧k (x1, . . . , xn) := mod3

(

k
∏

i=1

xi,
2k
∏

i=k+1

xi, . . . ,
n
∏

i=n−k+1

xi

)

has correlation exp(−n/cd) with polynomials of degree d, for an absolute constant c. A
proof of this can also be found in [VW08, §3.3]. An inspection of the proof reveals that, with
respect to another distribution D′′ on {0, 1}n, the same bound applies to the function

mod3mod2(x1, . . . , xn) := mod3(x1 + · · · + xk, xk+1 + · · ·+ x2k, . . . , xn−k+1 + · · · + xn)

where we replace “and” with “parity” (the sums in the input to mod3 are modulo 2).
Now consider the distribution D on {0, 1}n/k that D′′ induces on the input to mod3 of

length n/k. (To sample from D one can sample from D′′, perform the n/k sums modulo 2,
and return the string of length n/k.) Suppose that a polynomial p(y1, . . . , yn/k) of degree d
has correlation ǫ with the mod3 function with respect to D. Then the polynomial

p′(x1, . . . , xn) := p(x1 + · · · + xk, xk+1 + · · ·+ x2k, . . . , xn−k+1 + · · · + xn)
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has degree d and correlation ǫ with the mod3mod2 function with respect to the distribution
D′′ on {0, 1}n. Therefore ǫ ≤ exp(−n/cd).

The modm functions have recently got even more attention because as shown in [GT07,
LMS08] they constitute a counterexample to a conjecture independently made in [GT08] and
[Sam07]. The main technical step in the counterarguments in [GT07, LMS08] is to show an
upper bound on the correlation between polynomials of degree 3 and the function

mod{4,5,6,7},8(x1, . . . , xn) := 1 ⇔
∑

i

xi ∈ {4, 5, 6, 7}(mod 8).

The strongest bound is given by Lovett, Meshulam, and Samorodnitsky [LMS08] who prove
the following theorem.

Theorem 5 ([LMS08]). For every n, Cor(mod{4,5,6,7},8, 3) ≤ exp(−ǫ · n), where ǫ > 0 is an
absolute constant.

In fact, to disprove the conjecture in [GT08, Sam07] any bound of the form

Cor(mod{4,5,6,7},8, 3) ≤ o(1)

is sufficient. Such a bound was implicit in the clever 2001 work by Alon and Beigel [AB01].
With an unexpected use of Ramsey’s theorem for hypergraphs, they were the first to establish
that the parity function has vanishing correlation with constant-degree polynomials over
{0, 1, 2}. A slight modification of their proof gives Cor(mod{4,5,6,7},8, 3) ≤ o(1), and can
be found in the paper by B. Green and Tao [GT07]. This modification was discovered by
this author and independently by B. Green and Tao after a more complicated proof was
announced by B. Green and Tao.

It is interesting to note that the function mod{4,5,6,7},8 is in fact a polynomial of degree 4
over {0, 1}, the so-called elementary symmetric polynomial of degree 4

s4(x1, . . . , xn) :=
∑

1≤i1<i2<i3<i4≤n

xi1 · xi2 · xi3 · xi4 .

For suitable input lengths, elementary symmetric polynomials of higher degree d are
candidates for having small correlation with polynomials of degree less than d. To our
knowledge, even d = nΩ(1) is a possibility.

The “squaring trick.” Many of the results in this section, and all those that apply to
degree d ≈ log n (Theorems 3 and 4) use a common technique which we now discuss also to
highlight its limitation. The idea is to reduce the challenge of proving a correlation bound
for a polynomial of degree d to that of proving related correlation bounds for polynomials
of degree d − 1, by squaring. To illustrate, let f : {0, 1}n → {0, 1} be any function and p :
{0, 1}n → {0, 1} a polynomial of degree d. Using the extremely convenient notation e[z] :=
(−1)z, we write the correlation between f and p with respect to the uniform distribution as

Cor(f, p) =

∣

∣

∣

∣

Pr
x∈{0,1}n

[f(x) = p(x)] − Pr
x∈{0,1}n

[f(x) 6= p(x)]

∣

∣

∣

∣

=
∣

∣Ex∈{0,1}ne[f(x) + p(x)]
∣

∣ .
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If we square this quantity, and use that EZ [g(Z)]2 = EZ,Z′[g(Z) · g(Z ′)], we obtain

Cor(f, p)2 = Ex,y∈{0,1}ne[f(x) + f(y) + p(x) + p(y)].

Letting now y = x + h we can rewrite this as

Cor(f, p)2 = Ex,h∈{0,1}ne[f(x) + f(x + h) + p(x) + p(x + h)].

The crucial observation is now that, for every fixed h, the polynomial p(x) + p(x + h) has
degree d−1 in x, even though p(x) has degree d. For example, if d = 2 and p(x) = x1x2 +x3,
we have p(x)+p(x+h) = x1x2 +x3 +(x1 +h1)(x2 +h2)+(x3 +h3) = x1h2 +h1x2 +h1h2 +h3,
which indeed has degree d − 1 = 1 in x. Thus we managed to reduce our task of bounding
from above Cor(f, p) to that of bounding from above a related quantity which involves
polynomials of degree d − 1, specifically the average over h of the correlation between the
function f(x) + f(x + h) and polynomials of degree d − 1. To iterate, we apply the same
trick, this time coupled with the Cauchy-Schwarz inequality E[Z]2 ≤ E[Z2]:

Cor(f, p)4 = Ex,he[f(x) + f(x + h) + p(x) + p(x + h)]2

≤ Eh

[

Exe[f(x) + f(x + h) + p(x) + p(x + h)]2
]

.

We can now repeat the argument in the inner expectation, further reducing the degree of
the polynomial. After d repetitions, the polynomial p becomes a constant. After one more,
a total of d + 1 repetitions, the polynomial p “disappears” and we are left with a certain
expectation involving f , known as the “Gowers norm” of f and introduced independently in
[Gow98, Gow01] and in [AKK+03]:

Cor(f, p)2d+1 ≤ Ex,h1,h2,...,hd+1
e





∑

S⊆[d+1]

f

(

x +
∑

i∈S

hi

)



 . (1.6)

For interesting functions f , the expectation in the right-hand side of (1.6) can be easily
shown to be small, sometimes exponentially in n, yielding correlation bounds. For example,
applying this method to the generalized inner product function gives Theorem 3, while a
complex-valued generalization of the method can be applied to the mod3 function to obtain
Theorem 4. This concludes the exposition of this technique; see, e.g., [VW08] for more
details.

This “squaring trick” for reducing the analysis of a polynomial of degree d to that of an
expression involving polynomials of lower degree d − 1 dates back at least to the work by
Weyl at the beginning of the 20th century; for an exposition of the relevant proof by Weyl,
as well as pointers to his work, the reader may consult [GR07]. This method was introduced
in computer science by Babai, Nisan, and Szegedy [BNS92], and employed later by various
researchers [Gow98, Gow01, Bou05, GT08, VW08] in different contexts.

The obvious limitation of this technique is that, to bound the correlation with polynomials
of degree d, it squares the correlation d times; this means that the bound on the correlation
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will be exp(−n/2d) at best: nothing for degree d = log2 n. This bound is almost achieved
by [BNS92] which gives an explicit function f such that Cor(f, d) ≤ exp(−Ω(n/2d · d)).
The extra factor of d in the exponent arises because of the different context of multiparty
protocols in [BNS92], but a similar argument, given in [VW08], establishes the following
stronger bound.

Theorem 6 ([BNS92, VW08]). There is an explicit f ∈ P such that for every n and d, and
U the uniform distribution over {0, 1}n, CorU(f, d) ≤ exp(−Ω(n/2d)).

The function f : {0, 1}n → {0, 1} in Theorem 6 takes as input an index i ∈ {0, 1}ǫn and
a seed s ∈ {0, 1}(1−ǫ)n, and outputs the i-th output bit of a certain pseudorandom generator
on seed s [NN93] (Theorem 10 in §1.3). The natural question of whether these functions
have small correlation with polynomials of degree d ≫ log2 n has been answered negatively
in [VW08] building on the results in [Raz87, GV04, HV06, Hea08]: it can be shown that,
for a specific implementation of the generator, the associated function f : {0, 1}n → {0, 1}
satisfies Cor(f, logc n) ≥ 1 − o(1) for an absolute constant c. Determining how small c can
be is an open problem whose solution might be informative, given that such functions are of
great importance, as we will also see in §1.3.

1.2.3 Symmetric functions correlate well with degree O(
√

n)

Many of the correlation bounds discussed in §1.2.1 and §1.2.2 are given by functions that
are symmetric: their value depends only on the number of input bits that are ‘1.’ In this
section we show that any symmetric function f : {0, 1}n → {0, 1} correlates well with
polynomials of degree O(

√
n), matching the degree obtained in Theorem 2 up to constant

factors, and excluding symmetric functions from the candidates to the dream setting of
parameters Cor(f, ǫ ·n) ≤ exp(−ǫ ·n). While there is a shortage of such candidates, we point
out that techniques in hardness amplification such as [IW97] may be relevant. It also seems
worthwhile to investigate whether the result in this section extends to other distributions.

Theorem 7. For every n, every symmetric function f : {0, 1}n → {0, 1} satisfies Cor(f, c
√

n) ≥
99/100, where c is an absolute constant.

We present below a proof of Theorem 7 that was communicated to us by Avi Wigderson
and simplifies an independent argument of ours. It relies on a result by Bhatnagar, Gopalan,
and Lipton, stated next, which in turn follows from well-known facts about the divisibility
of binomial coefficients by 2, such as Lucas’ theorem.

Lemma 8 (Corollary 2.7 in [BGL06]). Let f : {0, 1}n → {0, 1} be a function such that f(x)
depends only on the Hamming weight of x modulo 2ℓ. Then f is computable by a polynomial
of degree d < 2ℓ

In §1.2.2 we saw an example of Lemma 8 when we noticed that the function mod{4,5,6,7},8
is computable by a polynomial of degree 4 < 23 = 8. This polynomial was symmetric, and
more generally the polynomials in Lemma 8 and Theorem 7 can be taken to be symmetric.

14



Proof of Theorem 7. The idea is to exhibit a polynomial of degree O(
√

n) that computes
f on every input of Hamming weight between n/2 − a

√
n and n/2 + a

√
n; for a suitable

constant a this gives correlation 99/100 by a Chernoff bound.
Let a be a sufficiently large universal constant to be determined later, and let 2ℓ be the

smallest power of 2 bigger than 2a
√

n + 1, thus 2ℓ ≤ c
√

n for a constant c that depends
only on a. Now take any function f ′ : {0, 1}n → {0, 1} such that (i) f ′ agrees with f on
every input of Hamming weight between n/2 − a

√
n and n/2 + a

√
n, and (ii) the value of

f ′(x) depends only on the Hamming weight of x modulo 2ℓ. Such an f ′ exists because f is
symmetric and we ensured that 2ℓ > 2a

√
n + 1.

Applying first Lemma 8 and then a Chernoff bound (e.g., [DP09, Theorem 1.1]) for a
sufficiently large constant a, we have for d < 2ℓ ≤ c

√
n

Cor(f, d) ≥ Cor(f, f ′) ≥ 99/100,

which concludes the proof of the theorem.

1.2.4 Other works

There are many papers on correlation bounds we have not discussed. F. Green [Gre04,
Theorem 3.10] manages to compute exactly the correlation between the parity function

and quadratic (d = 2) polynomials over {0, 1, 2}, which is (3/4)⌈n/4⌉−1. [Gre04] further
discusses the difficulties currently preventing an extension of the result to degree d > 2
or to polynomials over fields different from {0, 1, 2}, while [GR10] studies the structure of
quadratic polynomials over {0, 1, 2} that correlate with the parity function best.

A natural question, also asked in [AB01], is whether the symmetric polynomials mod m,
for odd m, that correlate best with parity are symmetric. [Gre04] answers this negatively
for degree 2. The work [GKV12] gives a negative answer for more degrees, including degrees
that are relevant to Question 1. The same work also reports results of a computer search
to determine the polynomials over {0, 1} that correlate best with mod3. Interestingly, the
polynomials that can be computed are symmetric. It would be very interesting to extend
this search and see if for larger degrees non-symmetric polynomials do better.

The work [Vio07] gives an explicit function that, with respect to the uniform distribution
over {0, 1}n, has correlation 1/nω(1) with polynomials of arbitrary degree but with at most
nα·log n monomials, for a small absolute constant α > 0. This is obtained by combining a
switching lemma with Theorem 3, a technique from [RW93]. The result does not answer
Question 1 because a polynomial of degree log2 n can have

(

n
log2 n

)

≫ nα·log n monomials, and

in fact the function in [Vio07] is a polynomial of degree (0.3) log2 n. For polynomials over
{0, 1, 2}, the same correlation bounds hold for the parity function [Han06].

Other special classes of polynomials, for example symmetric polynomials, are studied
in [CGT96, GT06, BEHL08]. We finally mention that many of the works we discussed,
such as Theorems 2, 4, and 7 can be sometimes extended to polynomials modulo m 6= 2.
For example, Theorem 4 extends to polynomials modulo m vs. the modq function for any
relatively prime m and q, while Theorem 2 extends to polynomials modulo m vs. the modq
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function for any prime m and q not a power of m. We chose to focus on m = 2 because it
is clean.

1.3 Pseudorandom generators vs. correlation bounds

In this section we discuss pseudorandom generators for polynomials and their connections to
correlation bounds. Pseudorandom generators are fascinating algorithms that stretch short
input seeds into much longer sequences that “look random;” naturally, here we interpret
“look random” as “look random to polynomials,” made formal in the next definition.

Definition 9 (Generator). A generator G that fools polynomials of degree d = d(n) with
error ǫ = ǫ(n) and seed length s = s(n) is a an algorithm running in time polynomial in its
output length such that for every n: (i) G maps strings of length s(n) to strings of length n,
and (ii) for any polynomial p : {0, 1}n → {0, 1} of degree d we have

∣

∣

∣

∣

Pr
S∈{0,1}s

[p(G(S)) = 1] − Pr
U∈{0,1}n

[p(U) = 1]

∣

∣

∣

∣

≤ ǫ. (1.7)

For brevity, we write G : {0, 1}s → {0, 1}n for a generator with seed length s(n).

Ideally, we would like generators that fool polynomials of large degree d with small error
ǫ and small seed length s. We discuss below various connections between obtaining such
generators and correlation bounds, but first we point out a notable difference: while for
correlation bounds we do have results for large degree d ≫ log n (e.g., Theorem 2), we know
of no generator that fools polynomials of degree d ≥ log2 n, even with constant error ǫ.

Open question 3. Is there a generator G : {0, 1}n/2 → {0, 1}n that fools polynomials of
degree log2 n with error 1/3?

While the smaller the error ǫ the better, generators for constant error are already of
great interest; for example, a constant-error generator that fools small circuits is enough to
derandomize BPP. However, we currently seem to be no better at constructing generators
that fool polynomials with constant error than generators with shrinking error, such as 1/n.

We now discuss the relationship between generators and correlation bounds, and then
present the known generators.

From pseudorandomness to correlation. It is easy to see and well-known [NW94]
that a generator implies a worst-case lower bound, i.e., an explicit function that cannot be
computed by (essentially) the class of functions fooled by the generator. The following simple
observation, which does not seem to have appeared before [Vio09b, §3], shows that in fact
a generator implies even a correlation bound. We will use it later to obtain new candidates
for answering Question 1.

Observation 1. Suppose that there is a generator G : {0, 1}n−log n−1 → {0, 1}n that fools
polynomials of degree log2 n with error 0.5/n. Then the answer to Question 1 is affirmative.
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Proof sketch. Let D be the distribution on {0, 1}n where a random x ∈ D is obtained as
follows: toss a fair coin, if “heads” then let x be uniformly distributed over {0, 1}n, if
“tails” then let x := G(S) for a uniformly chosen S ∈ {0, 1}n−log n−1. Define the function
f : {0, 1}n → {0, 1} as f(x) = 1 if and only if there is s ∈ {0, 1}n−log n−1 such that G(s) = x;
f is easily seen to be in NP. It is now a routine calculation to verify that any function t :
{0, 1}n → {0, 1} that satisfies CorD(f, t) ≥ 1/n has advantage at least 0.5/n in distinguishing
the output of the generator from random. Letting t range over polynomials of degree log2 n
concludes the proof.

From correlation to pseudorandomness. The celebrated construction by Nisan and
Wigderson [Nis91, NW94] shows that a sufficiently strong correlation bound with respect to
the uniform distribution can be used to obtain a generator that fools polynomials. However,
to obtain a generator G : {0, 1}s → {0, 1}n against polynomials of degree d, [NW94] in
particular needs a function f on m ≤ n input bits that has correlation at most 1/n with
polynomials of degree d. Thus, the current correlation bounds are not strong enough to
obtain generators for polynomials of degree d ≥ log2 n. It is a pressing open problem to
determine whether alternative constructions of generators are possible, ideally based on con-
stant correlation bounds such as Theorem 2. Here, an uncharted direction is to understand
which distributions D enable one to construct generators starting from correlation bounds
with respect to D.

The Nisan-Wigderson construction is however sharp enough to give non-trivial generators
based on the current correlation bounds such as Theorem 3. Specifically, Luby, Veličković,
and Wigderson [LVW93, Theorem 2] obtain generators for polynomials that have arbitrary
degree but at most nα·log n terms for a small absolute constant α > 0; a different proof of
this result appears in the paper [Vio07] which we already mentioned in §1.2.4. Albeit falling
short of answering Question 3 (cf. §1.2.4), this generator [LVW93, Theorem 2] does fool
polynomials of constant degree. However, its seed length, satisfying n = sO(log s), has been
superseded in this case by recent developments, which we now discuss.

Generators for degree d ≪ log n. Naor and Naor [NN93] construct a generator that
fools polynomials of degree 1 (i.e., linear) with a seed length that is optimal up to constant
factors – a result with a surprising range of applications (cf. references in [BSVW03]).

Theorem 10 ([NN93]). There is a generator G : {0, 1}O(log n) → {0, 1}n that fools polyno-
mials of degree 1 with error 1/n.

Later, Alon et al. [AGHP92] give three alternative constructions. A nice one is G(a, b)i :=
〈ai, b〉 where 〈·, ·〉 denotes inner product modulo 2, a, b ∈ {0, 1}ℓ for ℓ = O(log n), and ai

denotes the result of considering a as an element of the field with 2ℓ elements, and raising it
to the power i.

Recent progress by Bogdanov, Lovett, and the author [BV10, Lov08, Vio09b] has given
generators for higher degree. The high-level idea in these works is simple: to fool polynomials
of degree d, just sum together d generators for polynomials of degree 1.
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Theorem 11 ([Vio09b]). Let G : {0, 1}s → {0, 1}n be a generator that fools polynomials of
degree 1 with error ǫ. Then Gd : ({0, 1}s)d → {0, 1}n defined as

Gd(x
1, x2, . . . , xd) := G(x1) + G(x2) + · · ·+ G(xd)

fools polynomials of degree d with error ǫd := 16 · ǫ1/2d−1

, where ‘+’ denotes bit-wise xor.

In particular, the combination of Theorems 10 and 11 yields generators G : {0, 1}s →
{0, 1}n that fool polynomials of degree d with error ǫd = 1/n and seed length s = O(d · 2d ·
log(n)).

Proof sketch of Theorem 11. This proof uses the notation e[z] := (−1)z and some of the tech-
niques presented at the end of §1.2.2. First, let us rewrite Inequality (1.7) in the Definition
9 of a generator as

∣

∣ES∈{0,1}se[p(Gd(S))] − EU∈{0,1}ne[p(U)]
∣

∣ ≤ ǫd/2. (1.8)

To prove Inequality (1.8), we proceed by induction on the degree d of the polynomial p :
{0, 1}n → {0, 1} to be fooled. The inductive step is structured as a case analysis based on
the value τ := CorU(p, 0) = |EU∈{0,1}ne[p(U)]|.

If τ is large then p correlates with a constant, which is a polynomial of degree lower than
d, and by induction one can prove the intuitive fact that Gd−1 fools p. This concludes the
overview of the proof in this case.

If τ is small we reason as follows. Let us denote by W the output of Gd−1 and by Y an
independent output of G, so that the output of Gd is W + Y . We start by an application of
the Cauchy-Schwarz inequality:

EW,Y e [p(W + Y )]2 ≤ EW

[

EY e [p(W + Y )]2
]

= EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] , (1.9)

where Y ′ is independent from and identically distributed to Y . Now we observe that for
every fixed Y and Y ’, the polynomial p(U + Y ) + p(U + Y ′) has degree d − 1 in U , though
p has degree d. Since by induction W fools polynomials of degree d − 1 with error ǫd−1, we
can replace W with the uniform distribution U ∈ {0, 1}n:

EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] ≤ EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] + ǫd−1. (1.10)

At this point, a standard argument shows that

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] ≤ EU,U ′ e [p(U) + p(U ′)] + ǫ2 = τ 2 + ǫ2. (1.11)

Therefore, chaining Equations (1.9), (1.10), and (1.11), we have that

|EW,Y e [p(W + Y )] − EU e [p(U)]| ≤ |EW,Y e [p(W + Y )]| + τ ≤
√

τ 2 + ǫ2 + ǫd−1 + τ.

This proves Inequality (1.8) for a suitable choice of ǫd, concluding the proof in this remaining
case.
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Observe that Theorem 11 gives nothing for polynomials of degree d = log2 n. The reason
is that its proof again relies on the “squaring trick” discussed in §1.2.2. But it is still not
known whether the construction in Theorem 11 fools polynomials of degree d ≥ log2 n.

Open question 4. Does the sum of d ≫ log n copies of a generator G : {0, 1}s → {0, 1}n

that fools polynomials of degree 1 with error 1/n fools polynomials of degree d with error 1/3?

Finally, note that Observation 1 combined with the construction in Theorem 11 gives
a new candidate function for an affirmative answer to Question 1: the function that on
input x ∈ {0, 1}n evaluates to 1 if and only if x is the bit-wise xor of d ≫ log n outputs of
generators that fool polynomials of degree 1.

1.4 Conclusion

We have discussed the challenge of proving correlation bounds for polynomials. We have
seen that winning this challenge is necessary for proving lower bounds such as “NP does
not have quasipolynomial-size circuits,” that a great deal is known for various settings of
parameters, and that there are many interesting research directions. The clock is ticking...
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19



Chapter 2

The correlation of parity with

small-depth circuits

2.1 Introduction

In this chapter we prove that the parity function has exponentially small correlation with
small bounded-depth circuits. To formally state the result, let us make its main players more
concrete. First, the parity function Parity : {0, 1}n → {0, 1} is the degree-1 polynomial over
{0, 1} defined as

Parityn(x1, x2, . . . , xn) :=
∑

i

xi mod 2.

Second, the circuits we consider consist of input, ∧ (and), ∨ (or), and ¬ (not) gates, where
the input gates are labeled with variables (e.g., xi), and ∧ and ∨ gates have unbounded fan-
in. The size w of the circuit is the number of edges, and its depth d is the longest path from
an input gate to the output gate. With a moderate blow-up, it is possible to “push down”
all the ¬ gates so that the circuit takes as input both the variables and their negations,
but consists only of alternating layers of ∧ and ∨ gates, hence the name alternating circuit
(AC0). We do so in Chapter 3, but in this one we find it more convenient to allow for ¬
gates everywhere in the circuit.

Finally, we use the following definition of correlation

Cor (f, C) := |Exe[f(x) + C(x)]| ,

where e[z] := (−1)z, cf. Page 13.
We can now state the main theorem of this chapter.

Theorem 12 ([H̊as87]). Every circuit C : {0, 1}n → {0, 1} of depth d and size w :=
exp

(

nα/d
)

satisfies Cor (Parityn, C) ≤ 1/w, where α is an absolute constant.

The theorem is a significant strengthening of preceding results establishing that small
bounded-depth circuits cannot compute parity [Ajt83, FSS84, Yao85], see also [Cai89]. The
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motivation for studying correlation bounds we mentioned in Chapter 1 for polynomials ex-
tends to circuits. First, correlation bounds imply lower bounds for richer classes of circuits.
Second, correlation bounds yield pseudorandom generators: Nisan [Nis91] uses Theorem 12
to construct unconditional pseudorandom generators for small bounded-depth circuits, a
result that has had a large number of applications and anticipated the celebrated Nisan-
Wigderson paradigm to construct generators from lower bounds [NW94].

Theorem 12 was first established by H̊astad [H̊as87] using switching-lemma techniques.
We present a simpler proof of Theorem 12 which has two stages. Stage 1 shows that the parity
function cannot be computed by a special, richer class of circuits we call output-majority.
These are small, bounded-depth circuits whose output gate computes the majority function
(whereas the other gates are ∧,∨, and ¬ as usual). This result is due to Aspnes, Beigel,
Furst, and Rudich [ABFR94] and here we present its proof mostly unaltered. Stage 2 proves
Theorem 12 from Stage 1. This two-stage approach was first proposed by Klivans [Kli01]
who implemented Stage 2 using hardness amplification techniques. We present a simpler
proof of Stage 2 that is due to Klivans and Vadhan. This proof appears here for the first
time with their kind permission.

Since it is the newest part of the argument, we begin in the next §2.2 with Stage 2:
we define output-majority circuits, state the result from [ABFR94] which is the outcome
of Stage 1, and show how this implies Theorem 12. For completeness, in §2.3 we give the
details of Stage 1.

2.2 Stage 2: From output-majority circuits to Theo-

rem 12

We start by defining output-majority circuits.

Definition 13 (Output-majority circuits). An output-majority circuit on n bits is a circuit
of the following form:

where x1, . . . , xn are the inputs, the output gate is a Majority gate, and each intermediate
C1, . . . , Ct is a circuit on n bits with only ∧,∨, and ¬ gates.
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Adding the majority gate gives extra power, as computing majority requires exponential
size for bounded-depth circuits with ∧,∨, and ¬ gates. This in fact follows from the results
in this chapter, see also [H̊as87].

The class of output-majority circuits is more robust than what might be apparent at first
sight. Beigel [Bei94] shows that a circuit of size w and depth d with m majority gates can
always be simulated by an output-majority circuit (i.e., a circuit with exactly 1 majority

gate as the output gate) of depth d′ = d + O(1) and size w′ = exp
(

m · logO(d) w
)

. For fixed

d and m = poly log w, this is a quasi-polynomial blow-up in the size of the circuit which
is negligible compared to the exponential lower bounds we prove in this chapter and state
next:

Theorem 14 ([ABFR94]). Let C be an output-majority circuit of depth d and size w which
computes Parity on n bits. Then, w ≥ exp

(

nα/d
)

for a universal constant α.

In the rest of this section we prove the main Theorem 12 of this chapter assuming the
above Theorem 14.

Intuition for the proof of Theorem 12 assuming Theorem 14. Imagine that you
are given a coin that is biased, but you do not know on which side. That is, when tossing the
coin, either the coin has probability 51% of landing heads up or probability 51% of landing
tails up. Your job is to guess the side towards which the coin is biased. You would like your
guess to be correct with high probability ≈ 100%. A solution to this problem, analyzable via
standard probability theory, is to toss the coin a large number of times and decide according
to the majority of the outcomes.

This is essentially what we will do. Assuming for the sake of contradiction that we
have a circuit C that correlates well with parity, we proceed as follows. For a given, fixed
parity instance x we construct a distribution on circuits Ca(x) whose output distribution
is biased towards Parity(x); this is the aforementioned “biased coin.” Taking the majority
of a number of independent copies of Ca(x) gives an output-majority circuit that computes
Parity(x) correctly with overwhelming probability, using which we contradict Theorem 14.

To construct Ca(x) from C we take advantage of the efficient random self-reducibility of
parity, the ability to efficiently reduce the computation of Parity(x) for any given input x to
the computation of Parity(a) for a randomly selected input a.

2.2.1 Proof of Theorem 12 assuming Theorem 14

Let C be a circuit of depth d and size w such that
∣

∣Ex∈{0,1}ne [C(x) + Parity(x)]
∣

∣ ≥ 1/w.
Without loss of generality we drop the absolute value signs to have

Ex∈{0,1}ne [C(x) + Parity(x)] ≥ 1/w

(if Exe [C(x) + Parity(x)] ≤ −1/w we can complement C at a negligible cost).
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We now make use of the random self-reducibility of Parity. For a ∈ {0, 1}n, consider the
circuit Ca defined by

Ca(x) := C(a + x) + Parity(a).

First of all, notice that for any fixed a, Ca has depth d+O(1) and size w+O(1)+O(n) = O(w)
(we use here that w ≥ n, for else some input bit does not have wires coming out of it, and
the theorem is immediate). This is because XOR’ing the output with the bit Parity(a) can
be done with a constant number of extra gates and wires, while XOR’ing the input by a
takes constant depth and O(n) gates. Now observe that for any fixed x ∈ {0, 1}n,

Eae [Ca(x) + Parity(x)] = Eae [C(a + x) + Parity(a) + Parity(x)]

= Eae [C(a + x) + Parity(a + x)]

= Eae [C(a) + Parity(a)] ≥ 1/w.

It is convenient to rewrite the above conclusion as: for any fixed x ∈ {0, 1}n,

Pr
a

[Ca(x) = Parity(x)] ≥ 1

2
+

1

2w
.

Now pick t independent a1, a2, . . . , at for a parameter t to be determined below, and
define the output-majority circuit

C̄a1,...,at(x) := Majority (Ca1
(x), . . . , Cat(x)) .

Note that C̄a1,...,at has depth d + O(1) and size O(t · w), for every choice of a1, . . . , at. The
next standard, concentration-of-measure lemma gives a bound on t that is poly(w).

Lemma 15. For t := 2w2n, for any x ∈ {0, 1}n, Pra1,...,at

[

C̄a1,...,at(x) 6= Parity(x)
]

< 2−n.

Deferring the proof of the lemma for a moment, let us finish the proof of the theorem. A
union bound gives us that

Pr
a1,...,at

[

∃x : C̄a1,...,at(x) 6= Parity(x)
]

< 2n · 2−n = 1.

Another way of stating this is that Pra1,...,at

[

∀x : C̄a1,...,at(x) = Parity(x)
]

> 0. Thus, there
is some fixed choice of a1, . . . , at which results in an output-majority circuit of depth d+O(1)
and size O(t · w) = poly(w) · n = poly(w) that computes Parity on every n-bit input (again
we use w > n).

It only remains to prove Lemma 15.

Proof of Lemma 15. Fix an input x ∈ {0, 1}n. Define t indicator random variables Y1, Y2, . . . , Yt,
where Yi := 1 if and only if Cai

(x) = Parity(x). Let ǫ ∈ [1/(2w), 1/2] be the “advantage”
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that each Cai
has, so that Prai

[Yi = 1] = 1/2 + ǫ. We have:

Pr
a1,...,at

[

C̄a1,...,at(x) 6= Parity(x)
]

= Pr [Majority(Y1, . . . , Yt) 6= 1]

=
∑

I⊆[t],|I|≥t/2

Pr [Yi = 0 ∀i ∈ I] · Pr [Yi = 1 ∀i 6∈ I]

=
∑

I⊆[t],|I|≥t/2

(1/2 − ǫ)|I| · (1/2 + ǫ)t−|I|

≤
∑

I⊆[t],|I|≥t/2

(1/2 − ǫ)t/2 · (1/2 + ǫ)t/2 (multiply by
(

1
2
− ǫ
)t/2−|I| (1

2
+ ǫ
)|I|−t/2 ≥ 1)

≤ 2t ·
(

1/4 − ǫ2
)t/2 ≤

(

1 − 1/w2
)t/2 ≤ e−t/(2·w2).

The latter quantity if less than 2−n for t = 2w2 · n, concluding the proof of the lemma.

2.3 Stage 1: Output-majority circuits cannot compute

parity

In this section we prove Theorem 14, i.e., that small output-majority circuits cannot compute
parity. The proof involves a suitable approximation of output majority circuits by low-degree
polynomials. Rather than working with polynomials over {0, 1} as in Chapter 1, we now
work with real-valued polynomials, whose output are arbitrary real numbers. An example
of such a polynomial is

17x1 − 3x2x3 + 4,

which on input x1 = x2 = x3 = 1 has value 18.
Whereas polynomials over {0, 1} also approximate bounded-depth circuits [Raz87], the

approximation of output-majority circuits requires polynomials over the reals.

The proof of Theorem 14 can be broken up in three steps.

1. First, we show that any output-majority circuit C of depth d and size w can be sign-
approximated by a real-valued polynomial p : {0, 1}n → R of degree logO(d) w, in the
sense that for almost all inputs x ∈ {0, 1}n, sign(p(x)) = e(C(x)). Here sign(x) = 1/−1
if x is positive/negative, and is undefined if x = 0. Also, e(z) = e[z] = (−1)z.

2. Then we show that from p one can construct another real-valued polynomial p′ that
weakly computes C, in the sense that whenever p′(x) 6= 0 we have sign(p′(x)) = e(C(x))
but p′ is not always 0. Here the degree will blow up to close to, but less than n.
Specifically, the degree of p′ will be n − Ω(

√
n) + logO(d) w.

3. Finally, we show that to weakly compute the parity function on n bits, degree n is
required (which is tight, since every function on n bits is computable by a polynomial
of degree n).
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2.3.1 Step 1: Sign-approximating output-majority circuits

In this section we prove the following result that output-majority circuits can be sign-
approximated by low-degree polynomials

Theorem 16 (Sign-approximating output-majority circuits). Let C be an output-majority
circuit with n inputs, depth d, and size w. Then, for every ǫ > 0 there exists a polynomial
p : {0, 1}n → R of degree logO(d)(w/ǫ) such that

Pr
x∈{0,1}n

[sign(p(x)) = e(C(x))] ≥ 1 − ǫ.

A typical setting of parameters is w = poly(n), ǫ = 0.01, d = O(1), in which case we get
degree(p) = polylog(n).

The proof of Theorem 16 goes by first exhibiting a stronger type of polynomial approxima-
tion for the sub-circuits of C without the majority gate, and then summing the polynomials
to obtain a sign approximation of C. The stronger type of approximation simply asks for a
polynomial that computes the output of the circuit for most inputs (as opposed to a poly-
nomial that evaluates to a number whose sign matches the output of the circuit for most
inputs).

Theorem 17 (Approximating circuits). Let C : {0, 1}n → {0, 1} be a circuit of size w ≥ n
and depth d. Then, for every ǫ > 0 there exists a polynomial p : {0, 1}n → R of degree
logO(d) (w/ǫ) such that

Pr
x∈{0,1}n

[p(x) = C(x)] ≥ 1 − ǫ.

Proof of Theorem 16 assuming Theorem 17. Let C be an output-majority circuit of size w
and depth d. Denote its subcircuits that feed into the output majority gate by C1, . . . , Ct,
where t ≤ w. Apply Theorem 17 with ǫ′ := ǫ/t to get polynomials p1, . . . , pt such that for
every i ≤ t we have Prx [pi(x) = Ci(x)] ≥ 1 − ǫ′. The degree of each pi is ≤ logO(d)(w/ǫ′),
since each circuit Ci has size ≤ w and depth ≤ d. Then, define

p(x) :=
∑

i≤t

pi(x) − t

2
.

Note that the degree of p is equal to the maximum degree of any pi, which is logO(d)(w/ǫ′) =
logO(d)(w/ǫ) (because t ≤ w). Also note that, whenever we have pi(x) = Ci(x) for all i,
then sign(p(x)) = Majority(C1(x), . . . , Ct(x)) = C(x). By a union bound, this happens with
probability at least 1 − t · ǫ′ = 1 − ǫ.

We now turn to the proof of Theorem 17. The plan is to replace each gate by a (ran-
domized) polynomial and obtain the final polynomial by composing all the polynomials
according to the circuit. The degree of the polynomial corresponding to each gate will
be logO(1)(w/ǫ). Since composing polynomials multiplies degrees, the final degree will be
(the degree at each gate)d.
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We now show how to build a polynomial for every gate in the circuit. It is convenient
to work over the basis ∨,¬, which can be accomplished using De Morgan’s law

∧

i xi =
¬∨i ¬xi. Using this law changes our circuit slightly. This change is irrelevant for the type
of quantitative bounds in this chapter. Moreover, it will be evident from the proofs that
the number of ¬ gates does not count towards the bounds, so this change in fact costs us
nothing.

We start with the ¬ gate.

Lemma 18. There is a polynomial p : {0, 1} → R of degree 1 such that p(b) = ¬b for every
b ∈ {0, 1}.
Proof. p(b) := 1 − b.

The next more challenging lemma deals with ∨ gates. Whereas for ¬ gates we exhibited
a low-degree polynomial that computes the gate correctly on every input, now for ∨ gates
we will only show that for any distribution D there is a low-degree polynomial computing
the gate correctly with high probability over the choice of an input from D. We state the
lemma now and then we make some comments.

Lemma 19. For all distributions D on {0, 1}m, for all ǫ > 0, there exists a polynomial
p : {0, 1}m → R of degree O (log m · log (1/ǫ)) such that

Pr
x∼D

[∨ (x) = p (x)] ≥ 1 − ǫ.

We stress that the lemma holds for any distribution D. This is crucial because we need
to apply the lemma to internal gates of the circuit that, over the choice of a uniform n-bit
input to the circuit, may be fed inputs of length m = poly(n) drawn from a distribution we
do not have a grasp of. Before proving the lemma, let us see how to prove Theorem 17 by
applying the above lemmas to every gate in the circuit.

Proof of Theorem 17. Given ǫ, invoke Lemma 19 for every ∨ gate in the circuit with error
ǫ/w and with respect to the distribution Dg that the choice of a uniform input x ∈ {0, 1}n

for the circuit induces on the inputs of that gate. Also invoke Lemma 18 for every ¬ gate in
the circuit. Thus, for every gate g we have a polynomial pg of degree O(log(w) · log w/ǫ) =

logO(1)(w/ǫ) that computes g correctly with probability 1 − ǫ/w with respect to the choice
of an input from Dg.

Now we compose the polynomials for every gate into a single polynomial p. This compo-
sition is done according to the circuit: treat input variables to the circuit as degree-1 polyno-
mials x1, . . . , xn. Then, level by level towards the output gate, for any gate g with input gates
g1, . . . , gm substitute to the variables of pg the polynomials pg1

, . . . , pgm. When composing

polynomials degrees multiply; hence the degree of p is
(

logO(1)(w/ǫ)
)O(d)

= logO(d)(w/ǫ).

Finally, by a union bound we have

Pr
x∈{0,1}n

[p(x) 6= C(x)] ≤
∑

g

Pr
y∼Dg

[pg(y) 6= g(y)] ≤ w · ǫ/w = ǫ.
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To finish this section it only remains to prove Lemma 19. For certain distributions D
the lemma is easily proved. For example if D is the uniform distribution then the constant
polynomial p = 1 proves the lemma. In general however the arbitrariness of D in the
statement of the lemma makes it somewhat challenging to establish. To handle arbitrary
distributions D, the proof employs a relatively standard trick. We exhibit a distribution P
on polynomials that computes the ∨ gate correctly with high probability on any fixed input.
This in particular means that P also computes the ∨ gate correctly with high probability
when the input to the gate is drawn from D. At the end, we fix the choice of the polynomial.

2.3.2 Proof of Lemma 19

We assume without loss of generality that m, the length of the input to the ∨ gate, is a
power of 2. For any i = 0, . . . , log m, consider the random set Si ⊆ {1, . . . , m} obtained
by including each element of {1, . . . , m} independently with probability 2−i; in particular,
S0 := {1, . . . , m}.

Consider the associated random degree-1 polynomials

Pi (x) :=
∑

i∈Si

xi

for i = 0, . . . , log m.
First, we claim that every polynomial always computes ∨ correctly when the input is 0m.

The proof of this claim is obvious.

Claim 20. If x = 0m then Pi(x) = 0 always and for all i.

Second, we claim that on any input that is not 0m, with high probability there is some
polynomial that computes ∨ correctly.

Claim 21. For all x ∈ {0, 1}m, x 6= 0m, with probability at least 1/6 over P0, . . . , Plog m there
is i such that Pi (x) = 1.

Proof. Let w :=
∑

xi, 1 ≤ w ≤ m, be the weight of x. Let i, 0 ≤ i ≤ log m, be such that

2i−1 < w ≤ 2i. (2.1)

We have

Pr[Pi(x) = 1] = Pr

[

∑

i∈Si

xi = 1

]

= w · 2−i(1 − 2−i)w−1

≥ 1

2
· (1 − 2−i)2i−1 (Using 2.1)

≥ 1

2e
≥ 1/6.
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We now combine the above polynomials into a single one P ′ as follows:

P ′(x) := 1 −
log m
∏

i=0

(1 − Pi(x)) .

If x = 0m, then P ′ (x) = 0. If x 6= 0m then Pr[P ′ (x) = 1] ≥ 1/6 by Claim 21. Also, the
degree of P ′ is O(log m).

We can reduce the error in P ′ by using the same trick. Let

Pǫ (x) := 1 −
4 log 1/ǫ
∏

i=0

(1 − P ′
i (x))

where P ′
i (x) are independent copies of P ′ above. If x = 0 then Pǫ (x) = 0. If x 6= 0,

Pr[Pǫ(x) = 1] ≥ Pr[∃i : P ′
i (x) = 1] = 1 − Pr[∀i, P ′

i (x) 6= 1]

= 1 − Pr[P ′(x) 6= 1]4 log 1/ǫ ≥ 1 − (5/6)4 log 1/ǫ ≥ 1 − ǫ.

Also, the degree of Pǫ is O(log m · log 1/ǫ).
To conclude, note that we have constructed Pǫ such that for every x,

Pr
Pǫ

[Pǫ (x) 6= ∨ (x)] ≤ ǫ.

In particular,
Pr

x∼D,Pǫ

[Pǫ (x) 6= ∨ (x)] ≤ ǫ.

This implies that there exists a choice p̂ for Pǫ such that

Pr
x∼D

[p̂ (x) 6= ∨ (x)] ≤ ǫ.

Again, the degree of p̂ is O(log m · log 1/ǫ); this concludes the proof.

2.3.3 Step 2: From sign-approximating to weakly computing

In this section we show how to turn any polynomial p that sign-approximates a function f
on all but an ǫ fraction of inputs, i.e. Prx[sign(p(x)) 6= e(f(x))] ≤ ǫ, into another one p′ that
weakly computes f , i.e. p′ is not the zero polynomial and for every x such that p′(x) 6= 0 we
have sign(p′(x)) = e(f(x)).

Lemma 22. Let p : {0, 1}n → R be a polynomial of degree d and f : {0, 1}n → {0, 1}
a function such that Prx[sign(p(x)) 6= e(f(x))] ≤ ǫ < 1/2. Then, there exists a non-zero
polynomial p′ : {0, 1}n → R such that for every x where p′(x) 6= 0 we have sign(p′(x)) =
e(f(x)), and the degree of p′ is ≤ n− ǫ′

√
n + d, for a constant ǫ′ > 0 which depends only on

ǫ.
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The idea is to construct a non-zero polynomial q that is 0 on the ǫ fraction of points on
which sign(p(x)) 6= e(f(x)), and then define

p′(x) := p(x) · q2(x).

Since q is 0 on any x on which sign(p(x)) 6= e(f(x)), and we square it, p′ weakly computes
f : on any input where p′(x) 6= 0 we have sign(p′(x)) = sign(p(x)) = e(f(x)).

To zero-out an ǫ fraction of the points, the degree of q will need to be n/2− ǫ′
√

n. Hence
the degree of q2 will be n− 2ǫ′

√
n and that of p′ will be n− 2ǫ′

√
n plus the degree of p. In a

typical setting of parameters, the degree of p is polylogarithmic in n which makes the degree
of p′ strictly less than n, which is sufficient for our purposes.

Proof of Lemma 22. Let S ⊆ {0, 1}n be the set of inputs x such that sign(p(x)) 6= e(f(x)).
By assumption, |S| ≤ ǫ2n. We define a non-zero polynomial q such that q(x) = 0 for every
x ∈ S. Let M be the set of products of at most n/2 − ǫ′

√
n variables, for a parameter ǫ′

to be chosen later. In other words, M is the set of monic, multilinear monomials of degree
≤ n/2 − ǫ′

√
n:

M :=

{

∏

i∈I

xi : I ⊆ [n], |I| ≤ n/2 − ǫ′
√

n

}

.

Then, let q(x) :=
∑

m∈M am · m(x) be the weighted sum of these monomials, for a set of
weights, or coefficients, {am}m∈M . We want to choose the coefficients in order to make q a
non-zero polynomial that vanishes on S. This is equivalent to finding a non-trivial solution
to a certain system of equations. Denote S = {s1, . . . , s|S|} and M = {m1, . . . , m|M |}. Then,
the system of equations we would like to solve is











m1(s1) m2(s1) · · · m|M |(s1)
m1(s2) m2(s2) · · · m|M |(s2)

...
...

. . .
...

m1(s|S|) m2(s|S|) · · · m|M |(s|S|)





















a1

a2
...

a|M |











=











0
0
...
0











.

From linear algebra, we know that this system has a non-trivial solution if there are more
variables (the |M | coefficients ai) than equations (the |S| rows in the matrix). Therefore, we
need to show |M | > |S|. Using bounds similar to those used in the proof of Theorem 2 in
§1.2.1, we have:

|M | =

⌊n/2−ǫ′
√

n⌋
∑

i=0

(

n

i

)

=

⌈n/2⌉
∑

i=0

(

n

i

)

−
⌈n/2⌉
∑

i=⌊n/2−ǫ′
√

n⌋+1

(

n

i

)

≥ 2n−1 − O(ǫ′
√

n)

(

n

⌊n/2⌋

)

≥ 2n−1 − O(ǫ′ · 2n).

By choosing ǫ′ sufficiently small compared to ǫ < 1/2, we have

|M | > 2n (1/2 − O(ǫ′)) > 2n · ǫ = |S|.

29



This shows the existence of the desired polynomial q.
Finally, let

p′(x) := p(x) · q(x)2.

Since q vanishes on S and q2 is always positive, sign(p′(x)) = e(f(x)) whenever p′(x) 6= 0.
Furthermore, p′ is not the zero polynomial, since neither p nor q are, and the degree of p′ is
the degree of p plus twice the degree of q: d + 2(n/2 − ǫ′

√
n) = d + n − 2ǫ′

√
n.

2.3.4 Step 3

In this section we show that degree at least n is required to weakly compute the parity
function.

Lemma 23. Let p : {0, 1}n → R be a non-zero polynomial such that whenever p(x) 6= 0 we
have sign(p(x)) = e(

∑

i xi). Then p has degree at least n.

Proof. Suppose for the sake of contradiction that p has degree n − 1. Then, for some
coefficients {cI}I⊆[n], we can write

p(x) =
∑

I⊆[n],|I|≤n−1

cI

∏

i∈I

xi.

Let us consider

Ex∈{0,1}n

[

p(x) · e
(

∑

i

xi

)]

.

On the one hand, Ex∈{0,1}n [p(x) · e(∑i xi)] > 0, since the polynomial is not identically 0
and when it is not zero its sign is e(

∑

i xi).
On the other hand, by linearity of expectation,

Ex∈{0,1}n

[

p(x) · e
(

∑

i

xi

)]

=
∑

I⊆[n],|I|≤n−1

cI · Ex∈{0,1}n

[

∏

i∈I

xi · e
(

∑

i

xi

)]

=
∑

I⊆[n],|I|≤n−1

cI · Ex∈{0,1}n

[

∏

i∈I

xi · e
(

∑

i∈I

xi

)]

· Ex∈{0,1}n

[

e

(

∑

i6∈I

xi

)]

= 0,

where the last equality holds because |I| < n, and so the sum
∑

i6∈I contains at least one
variable, which over the choice of a uniform x will be equally likely to be 0 or 1, making

e
(

∑

i6∈I xi

)

equally likely to be +1 and −1, for an expected value of 0.
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2.3.5 Putting the three steps together

We now put the preceding three steps together to prove that small output-majority circuits
cannot compute parity, i.e., Theorem 14.

Theorem 14 ([ABFR94]). (Restated.) Let C be an output-majority circuit of depth d and
size w which computes Parity on n bits. Then, w ≥ exp

(

nα/d
)

for a universal constant α.

Proof of Theorem 14. Let C be an output-majority circuit computing Parity : {0, 1}n →
{0, 1}, and let C have size w and depth d. Apply Theorem 16 with ǫ := 1/3 to obtain a
polynomial p : {0, 1}n → R of degree logO(d) w such that

Pr
x∈{0,1}n

[sign(p(x)) = e(C(x)) = e(Parity(x))] ≥ 2/3.

Apply Lemma 22 to obtain a non-zero polynomial p′ of degree ≤ n − Ω(
√

n) + logO(d) w
such that, for any x for which p′(x) 6= 0, we have sign(p′(x)) = e(Parity(x)).

By Lemma 23, the degree of p′ must be at least n. Therefore:

n − Ω(
√

n) + logO(d) w ≥ n

⇔ logO(d) w ≥ Ω(
√

n),

concluding our proof.
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Chapter 3

Logarithmic depth vs. depth 3

As is well known, researchers in complexity theory cannot yet prove strong lower bounds on
the size of general circuits computing explicit functions, the best ones being of the form c ·n
for n-bit functions, where c is a constant (see, e.g., [IM02] and the references therein). Of
particular importance for this chapter is the fact that this inability to prove a superlinear
lower bound holds even if the circuit is restricted to have depth O(logn) (and fan-in 2).

On the other hand, researchers have been able to prove stronger, superpolynomial lower
bounds on the size of circuits of bounded depth (and unbounded fan-in), some of which
we saw in Chapter 2. Still, progress on these lower bounds appears slow: the size bounds
obtained in the 80’s essentially remain state-of-the art (see, e.g., [H̊as87] and the references
therein).

As anticipated in §1.2, there are links between these two fronts that indicate they are
hitting the same wall. In this chapter we prove a fine such link by Valiant [Val77, Val83].
For a clean formulation, it is convenient to work with the following model of bounded-
depth circuits: we allow for input gates both the variables x1, x2, . . . and their negations
¬x1,¬x2, . . ., but we require that every other gate is either ∧ or ∨ (this is slightly different
from the model considered in Chapter 2, cf. the discussion there). With this convention,
Valiant’s result is that any circuit of linear size and logarithmic depth (with fan-in 2) can be
simulated by a sub-exponential size circuit of depth 3 (with unbounded fan-in). Therefore, a
2Ω(n) bound for these depth-3 circuits implies a superlinear lower bound for log-depth circuits
(with fan-in 2).

3.1 Exponential lower bounds for depth 2

To get comfortable with our circuit model and provide some motivation, we start in this
section with a lower bound for depth-2 circuits of unbounded fan-in. Recall that our circuits
take both variables and their negations as inputs, so a depth-2 circuit is either a DNF such
as

(x1 ∧ ¬x2 ∧ x5) ∨ (¬x5 ∧ x7),

or a CNF (swap ∧ with ∨). The size of a circuit is again its number of edges.
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Claim 24. Any DNF for Parity : {0, 1}n → {0, 1} has size ≥ 2n−1.

For comparison, it is easy to see that any function f : {0, 1}n → {0, 1} can be computed
by a DNF of size n · 2n.

Proof. First we show that every ∧ gate (a.k.a. term) is connected to at least one of xi and
¬xi for every i. To see this, suppose for contradiction that some ∧ gate does not depend on
xi for some i. Fix an input that makes this ∧ gate output 1 (there is such an input without
loss of generality). By definition of ∨, this input also makes the whole circuit output 1. If
we flip the i-th bit of this input, the value of the circuit stays the same, but the value of
parity flips. This contradicts the fact that the DNF computes Parity.

Hence, every ∧ gate is connected to at least one of xi and ¬xi for every i. This implies
there is only one input that makes the gate output 1 (namely, the input on which every one
of the in-wires carries 1.) On the other hand, there exist 2n−1 inputs that give a parity of 1.
Therefore, we need 2n−1 ∧ gates.

The above claim shows a function (parity) that requires ∨ ∧ circuits of size ≥ 2n−1.
Challenge: Prove a bound of the form 20.001n for ∨ ∧ ∨ circuits. Just one more layer! The
results in the next section show this would also prove a superlinear lower bound for log-depth
circuits of fan-in 2.

3.2 From logarithmic depth to depth 3

We now state the main result of this chapter, that any fan-in 2 circuit of linear size and
logarithmic depth can be simulated by unbounded fan-in circuits of sub-exponential size and
depth 3.

Theorem 25 ([Val77, Val83]). Let C : {0, 1}n → {0, 1} be a circuit of size c · n, depth
c · log n and fan-in 2. The function computed by C can also be computed by an unbounded
fan-in circuit of size 2c′·n/ log log n and depth 3 with inputs x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n, where
c′ depends only on c.

A statement of this result for monotone circuits appears at the end of [Val83]. The proof
of this result uses graph-theoretic techniques developed in [Val77, §5]. We are unaware of a
source where the proof of the result appears in full, though it is relatively straightforward to
obtain it from [Val77, Val83].

The idea of the simulation is to identify ǫ · n = o(n) wires to remove from C so that the
resulting circuit becomes very disconnected in the sense that each of its connected compo-
nents has depth ≤ ǫ · log n. Since the circuit has fan-in 2, the output of each component can
depend on at most nǫ input bits, and so, given the assignment to the removed edges, the
output can be computed in brute-force by a depth-2 circuit of sub-exponential size. Trying
all 2ǫ·n = 2o(n) assignments to the removed edges and collapsing some gates completes the
simulation. We now proceed with a formal proof and we refer to Figure 1 for an example.
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A circuit can be viewed as an acyclic directed graph with nodes representing gates and
directed edges representing the flow of computed values from the output of one gate to the
input of the next. The graph corresponding to C in Theorem 25 is connected, but we also
work with disconnected graphs.

For the depth reduction in the proof, it is convenient to think of depth as a function from
nodes to integers. The next definition and simple claim formalize this.

Definition 26 (Depth). Let G = (V, E) be a directed acyclic graph. The depth of a node
in G is the number of nodes in a longest directed path terminating at that node. The depth
of G is the depth of a deepest node in G.

A depth function D for G is a map D : V → {1, 2, . . . , 2k} such that if (a, b) ∈ E then
D(a) < D(b).

Claim 27. A directed acyclic graph G = (V, E) has depth at most 2k if and only if there is
a depth function D : V → {1, 2, . . . , 2k} for G.

Proof. ⇒: if the depth is at most 2k then setting D to be the function that maps each node
to its depth is a depth function.

⇐: suppose G has a node of depth > 2k. Then there is a directed path with > 2k nodes
in G. No depth function with range {1, 2, . . . , 2k} can assign values to all nodes on that
path.

The following is the key lemma which allows us to reduce the depth of a graph by
removing few edges.

Lemma 28. Let G = (V, E) be a directed acyclic graph with w edges and depth 2k. It is
possible to remove ≤ w/k edges so that the depth of the resulting graph is ≤ 2k−1.

Proof. Let D : V → {1, 2, . . . , 2k} be a depth function for G. Consider the set of edges Ei

for 1 ≤ i ≤ k:

Ei := {(a, b) ∈ E| the most significant bit position where D(a) and D(b) differ is the i-th}.

Note that E1, E2, . . . , Ek is a partition of E. And since |E| = w, there exists an index
i, 1 ≤ i ≤ k, such that |Ei| ≤ w/k. Fix this i and remove Ei. We need to show that
the depth of the resulting graph is at most 2k−1. To do so we exhibit a depth function
D′ : V → {0, 1}k−1. Specifically, let D′ be D without the i-th output bit. We claim that D′

is a valid depth function for the graph G′ := (V, E \ Ei). For this, we need to show that if
(a, b) ∈ E \ Ei then D′(a) < D′(b). Indeed, let (a, b) ∈ E \ Ei. Since (a, b) ∈ E, we have
D(a) < D(b). Now, consider the most significant bit position j where D(a) and D(b) differ.
There are three cases to consider:

• j is more significant than i: In this case, since the j-th bit is retained, the relationship
is also maintained, i.e., D′(a) < D′(b);
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Figure 3.1: The removal of edges a, b, c, and d reduces the depth. The circuit evaluates to 1
if and only if there are a, b, c, d ∈ {0, 1} satisfying the corresponding equations.
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• j = i: This case cannot occur because it would mean that the edge (a, b) ∈ Ei;

• j is less significant than i: In this case, the i-th bit of D(a) and D(b) is the same and
so removing it maintains the relationship, i.e., D′(a) < D′(b).

Now we prove the main theorem.

Proof of Theorem 25. For simplicity, we assume that both c and log n are powers of two.
Let 2ℓ := c · log n.

Applying the above lemma we can reduce the depth by a factor 1/2, i.e. from 2ℓ to 2ℓ−1,
by removing ≤ c · n/ℓ edges. Applying the lemma again we reduce the depth to 2ℓ−2 by
removing ≤ c · n/(ℓ − 1) edges. If we repeatedly apply the lemma log(2c) times the depth
reduces to

c log n

2log(2c)
=

log n

2
,

and the total number of edges removed is at most

c · n

(

1

ℓ
+

1

ℓ − 1
+ . . . +

1

ℓ − log(2c) + 1

)

≤ c · n · log(2c)

ℓ − log(2c) + 1
= c · n · log(2c)

log log n
.

For slight convenience we also remove the output edge eoutput of the circuit; this way
we can represent the output of the circuit in terms of the value of eoutput. For a constant
c′ that depends only on c we remove at most

r := c′ · n/ log log n

edges.
We define the depth of an edge e = g → g′ as the depth of g, and the value of e on an

input x as the value of the gate g on x.

For every input x ∈ {0, 1}n there exists a unique assignment h to the removed edges that
corresponds to the computation of C(x). Given an arbitrary assignment h and an input x
we can check if h is the correct assignment by verifying if the value of every removed edge
e = g → g′ is correctly computed from (1) the values of the removed edges whose depth is
less than that of e, and (2) the values of the input bits g is connected to. Since the depth
of the component is ≤ (log n)/2 and the circuit has fan-in 2, at most

√
n input bits are

connected to g; we denote them by x|e. Thus, for a fixed assignment h to the removed edges,
the check for e can be implemented by a function f e

h : {0, 1}
√

n → {0, 1} (when fed the ≤ √
n

values of the input bits connected to g, i.e. x|e).
Induction on depth shows:

C(x) = 1 ⇔∃ assignment h to removed edges such that h(eoutput) = 1

and ∀ removed edge e we have f e
h(x|e) = 1.
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We now claim that the above expression for the computation C(x) can be implemented
with the desired resources. Since we removed r = c′ · n/ log log n edges, the existential
quantification over all assignments to these edges can be implemented with an ∨ (OR) gate
with fan-in 2r. Each function f e

h(x|e) can be implemented via brute-force by a CNF, i.e. a
depth-2 ∧∨ circuit, of size

√
n · 2

√
n. For any fixed assignment h, we can combine the output

∧ gates of these CNF to implement the check

∀ removed edge e : f e
h(x|e) = 1

by a CNF of size at most
r ·

√
n · 2

√
n.

Finally, accounting for the existential quantification over the values of the r removed
edges, we get a circuit of depth 3 and size

2r · r ·
√

n · 2
√

n = 2O(c′·n/ log log n).

We note that both the bounds in Chapter 2 and in Claim 24 are for the parity function.
It is not hard to see that parity has depth-3 circuits of size 2O(

√
n) (improving the bound one

obtains by noting that parity has linear-size log-depth circuits and then applying Theorem
25). So to prove stronger bounds one needs to work with a different function.

In this chapter we have seen that proving an exponential lower bound for depth-3 circuits
has significant consequences for log-depth circuits. We note that a similar result can be
proved for arithmetic circuits: proving a sufficiently strong, exponential lower bound for
depth-4 arithmetic circuits implies a lower bound on arithmetic circuits of unrestricted depth,
see [AV08] and the references therein.

Acknowledgments. We are grateful to Leslie Valiant for useful discussions.
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Chapter 4

Cryptography in bounded depth

Functions that are easy to compute but hard to invert, known as one-way functions, are
fundamental building blocks of cryptography. These functions are the computational ana-
logue of physical actions that are easy to perform yet hard to reverse, such as breaking a
glass. In this chapter we present a breakthrough result by Applebaum, Ishai, and Kushilevitz
[AIK06] which shows how to “compile” many one-way functions (for example the one based
on the hardness of factoring) into one-way functions that have the notable property of being
4-local : each output bit depends on at most 4 input bits, and in particular can be computed
by a circuit of constant size (and depth). Specifically, the result shows that if there are
one-way functions that are computable by small branching programs, a class that includes
many popular candidates, then there exist 4-local one-way functions. This result reveals a
surprising power of local computation: from the point of view of one-way functions, local
computation is as powerful as branching programs.

4.1 Definitions and main result

We start with a short discussion of one-way functions. The reader is referred to Goldreich’s
monograph [Gol01] for a more in-depth treatment. To begin, let us define “hard to invert.”

Definition 29 (Hard to invert). A function f : {0, 1}n → {0, 1}ℓ is w-hard to invert if
every circuit C : {0, 1}ℓ → {0, 1}n of size w fails to invert f(x) except for a 1/w fraction of
inputs:

Pr
x∈{0,1}n

[

C(f(x)) ∈ f−1(f(x))
]

≤ 1/w.

Typically, a “one-way function” is a function f : {0, 1}n → {0, 1}ℓ=poly(n) that is poly(n)-
time computable and also nω(1)-hard to invert for randomized algorithms (equivalently, uni-
form randomized circuits). To follow the style of previous chapters, we focus here on non-
uniform models of computation. This also simplifies the exposition somewhat while retaining
all the main ideas.

There are a number of candidate one-way functions based on various hardness assump-
tions such as the hardness of factoring integers. The following is a simple candidate related
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to the NP-complete problem subset sum, which in turn is a special case of the NP-complete
problem knapsack. For more on this candidate the reader may consult [IN96].

Example 30 (Candidate one-way functionbased on the hardness of subset sum). The func-
tion Sn : {0, 1}n=k2+k → {0, 1}poly(k) is defined as

Sn(x1, x2, . . . , xk, y) :=

(

x1, x2, . . . , xk,
∑

i:yi=1

xi

)

,

where |x1| = |x2| = . . . = |xk| = |y| = k and yi denotes the i-th bit of y. The function Sn is
computable in time poly(n) but may be w-hard to invert for some w = nω(1).

As is the case for the function Sn in Example 30, the computation of many candidate one-
way functions only involves basic arithmetic. Therefore, such candidates can be implemented
in restricted computational models, such as log-depth circuits with fan-in 2 (cf. [BCH86]).
On the other hand, Sn cannot be computed by the more restricted constant-depth circuits
with unbounded fan-in. This is because it is easy to see that computing it requires computing
parity, which those circuits cannot do as proved in Chapter 2.

A first surprise comes from the work of Impagliazzo and Naor [IN96] who show that,
although small constant-depth circuits with unbounded fan-in cannot compute Sn, they can
generate random outputs of the function Sn. This is enough to obtain that, if Sn is one-
way, then there is a closely related one-way function computable by such constant-depth
circuits. This technique from [IN96] is used later in [Vio05] for depth-efficient constructions
of pseudorandom generators from one-to-one one-way functions.

It is natural at this point to ask what is the minimal technology required to compute one-
way functions. Among the many formalizations of this question, we specifically ask whether
there are one-way functions such that each of their output bits depends only on a constant
number of input bits (hence, it is computable by a circuit of constant size and depth):

Definition 31. A function f : {0, 1}n → {0, 1}ℓ is c-local if each output bit of f depends
on c input bits.

Historically, there have been proposals for O(1)-local one-way functions [Gol00], but these
were based on hardness assumptions that have received less attention than more popular ones
such as the hardness of factoring or of solving subset sum. Indeed, the property of being
O(1)-local appears very restrictive. The function Sn in Example 30 is not O(1)-local, and
it also seems hard to implement the technique by Impagliazzo and Naor mentioned above
using bounded locality. Nevertheless, a corollary of the main result of this chapter is that if
Sn is one-way, then there is a 4-local one-way function!

Our plan is to construct one-way functions that are local starting from one-way functions
that are computable by the more powerful model of small branching programs. This model
corresponds to log-space computation, conveniently abstracting from such details as pointers
to the input. It is at least as powerful (and believed to be more powerful than) log-depth
fan-in 2 computation.
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Definition 32 (Branching program). A branching program G : {0, 1}n → {0, 1} of size s is
a directed acyclic graph with s nodes. Exactly one node is labeled Start and has in-degree 0.
There is at least one sink node (out-degree 0). Exactly one sink node is labeled Accept. Each
non-sink node is labeled by a variable xi ∈ {x1, . . . , xn} and has two outgoing edges labeled 0
and 1 respectively.

We say that a function f : {0, 1}n → {0, 1} is computable by a branching program of size
s if there is a branching program of size s such that, for every x ∈ {0, 1}n, f(x) = 1 if and
only if x induces in the branching program a chain of transitions that lead the start node to
the node Accept.

We say that a non-boolean function f : {0, 1}n → {0, 1}ℓ is computable by a branching
program of size s if for i = 1, . . . , ℓ the i-th output bit of f is computable by a branching
program of size si, and

∑

si ≤ s.

For circuits we measured size by counting edges, but for branching programs we find it
more convenient to count nodes because the out-degree is bounded. We note that, like for
circuits, the size of a branching program is also an upper bound on the output length of the
function computed by it; we use this later.

Whereas the results in [AIK06] apply to more general types of branching programs, for
simplicity here we focus on the above type.

We now state the main theorem of this chapter, which one would typically apply with
s = poly(n).

Theorem 33 (Branching program one-way functions ⇔ local one-way functions; [AIK06]).
Suppose f : {0, 1}n → {0, 1}ℓ is computable by a branching program of size s ≥ n and f is
w-hard to invert. Then there is f ′ : {0, 1}n′ → {0, 1}ℓ′ such that f ′ is 4-local, n′ ≤ sc, ℓ′ ≤ sc,
and f ′ is w′-hard to invert for w′ ≥ w − sc, where c is a universal constant.

The above theorem shows how we can construct a 4-local function f ′ from f with only a
polynomial loss in security.

The proof of Theorem 33 relies on a powerful intuition: the property of being hard to
invert is not too tied to the specific map x → f(x), but is inherited by suitable “encodings”
of f , which in turn may be computable with far less resources than those a direct implemen-
tation of f requires. Formally, we use the following notion of randomized encoding, that was
introduced and studied in earlier work, cf. [AIK06].

Definition 34 (Randomized encoding). A randomized encoding of f : {0, 1}n → {0, 1}ℓ

with blow-up t is a function f ′ : {0, 1}n × {0, 1}t → {0, 1}u, such that:

1. For every x, x′, r, r′, if f(x) 6= f(x′) then f ′(x, r) 6= f ′(x′, r′), and

2. there exists a distribution D on circuits C of size t such that, for every x, the distri-
bution C(f(x)) for C ∈ D is equal to the distribution of f ′(x, r) for uniform r (and so
in particular, t ≥ u).
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Whereas f ′(x, r) := f(x) satisfies both properties in the above Definition 34, for our
application we need a randomized encoding f ′ that is much easier to compute than f . This
can be trivially obtained for each of the two properties alone, respectively using the functions
f ′(x, r) := x and f ′(x, r) := 0. Their combination however is not trivial to satisfy. Intuitively,
it asks for a simple function f ′ that spreads each output f(x) of f into a distribution f ′(x, r)
that depends on f(x) and only on that.

The proof of Theorem 33 goes by showing that functions f computable by small branching
programs have randomized encodings f ′ with small blow-up and the surprising feature that
they are 4-local: every output bit is a function of at most 4 input bits.

Theorem 35 (Local randomized encoding for branching programs). Let f : {0, 1}n →
{0, 1}ℓ be computable by a branching program with s ≥ n nodes. Then there exists a 4-local
randomized encoding f ′ : {0, 1}n × {0, 1}t → {0, 1}u of f with blow-up t = sc, where c is a
universal constant.

It is instructive to prove Theorem 33 assuming the above theorem.

Proof of Theorem 33 assuming Theorem 35. The function in the conclusion of the theorem
is the randomized encoding f ′ of f , seen as a 1-argument function. By our assumption,
f ′ is 4-local, has input length n′ = n + t = n + poly(s) = poly(s), and output length
ℓ′ = u ≤ t = poly(s). We need to prove that f ′ is hard to invert. To prove this, assume for
contradiction that A′ : {0, 1}ℓ′ → {0, 1}n′

is a circuit of size at most w′ := w − t that inverts
f ′ with probability ≥ 1/w (no loss in the inversion probability):

Pr
x,r

[

A′(f ′(x, r)) ∈ f ′−1(f ′(x, r))
]

≥ 1/w. (4.1)

Define a distribution on circuits A : {0, 1}ℓ → {0, 1}n:

On input z: A(z) := A′(C(z)) |n∈ {0, 1}n, where C is random from D.

Note that the size of A is ≤ w′ + t = w. Also, we have the derivation

Pr
x,A

[A(f(x)) ∈ f−1(f(x))] = Pr
x,C

[A′(C(f(x))) |n∈ f−1(f(x))]

= Pr
x,r

[A′(f ′(x, r)) |n∈ f−1(f(x))]

≥ Pr
x,r

[A′(f ′(x, r)) ∈ f ′−1(f ′(x, r))]

≥ 1/w.

The first equality is by definition. The second is Property 2 of Definition 34. The next
inequality is (the counterpositive of) Property 1 of Definition 34: whenever the output
A′(f ′(x, r)) =: (x′, r′) satisfies f ′(x, r) = f ′(x′, r′) then also f(x) = f(x′). The final inequality
is our assumption (4.1).

The above derivation shows that A inverts f with probability ≥ 1/w. Fixing the choice
of C ∈ D in the definition of A we contradict the assumption that f is w-hard to invert.
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Thus, to prove Theorem 33 we may prove Theorem 35, i.e., construct appropriate ran-
domized encodings. We begin in the next section with some preliminaries and then proceed
with the main construction.

4.1.1 Preliminaries on randomized encodings

In this section we state and prove a couple of lemmas that allow us break the construction
of our randomized encoding in stages. Their proofs are straightforward from the definitions.

The first lemma lets us focus on boolean functions: we can construct a randomized
encoding for f : {0, 1}n → {0, 1}ℓ by concatenating randomized encodings for each output
bit of f .

Lemma 36 (Concatenation of randomized encodings). For i = 1, . . . , ℓ, let fi : {0, 1}n →
{0, 1} be the boolean function computing the i-th bit of f : {0, 1}n → {0, 1}ℓ. Suppose
f ′

i : {0, 1}n × {0, 1}t → {0, 1}u is a randomized encoding of fi with blow-up t, for every i.
Then f ′ : {0, 1}n × {0, 1}ℓ·t → {0, 1}ℓ·u defined as

f ′(x, (r1, . . . , rℓ)) := (f1(x, r1), f2(x, r2), . . . , fℓ(x, rℓ))

is a randomized encoding of f with blow-up ℓ · t.

Proof. Property 1: If f(x) 6= f(x′) then there is some i ≤ ℓ such that fi(x) 6= fi(x
′).

Hence for any ri, r
′
i we have f ′

i(x, ri) 6= f ′
i(x, r′i) and so for any r, r′ ∈ {0, 1}ℓ·t we have

f ′(x, r) 6= f ′(x, r′).
Property 2: For 1 ≤ i ≤ ℓ, let Di be a distribution on circuits Ci of size t such that

for any x the distribution of Ci(fi(x)) for random Ci ∈ Di is the same as that of f ′
i(x, ri)

for random ri. Define D to be the distribution on circuits C that on input z ∈ {0, 1}ℓ

output (C1(z1), C2(z2), . . . , Cℓ(zℓ)) where the circuits Ci are independently chosen from the
respective distributions Di. By the properties of Di and the definition of f ′, C(f(x)) is
distributed like f ′(x, r) for random r. To conclude, note that the circuits C have size ≤
ℓ · t.

The next lemma lets us compose randomized encodings. Jumping ahead, we will first
show that small branching programs have randomized encodings where each output bit is a
polynomial over {0, 1} of degree 3. We will then push further this already striking encoding
by showing that every such degree-3 polynomial has a 4-local randomized encoding.

Lemma 37 (Composition of randomized encodings). Let f : {0, 1}n → {0, 1} be a function
with a randomized encoding f1 : {0, 1}n × {0, 1}t1 → {0, 1}u1 with blow-up t1. Let f2 :
{0, 1}n+t1 × {0, 1}t2 → {0, 1}u2 be a randomized encoding of f1, seen as a one-argument
function, with blow-up t2. Then f ′ : {0, 1}n × {0, 1}t1+t2 → {0, 1}u2 defined as

f ′(x, (r1, r2)) := f2((x, r1), r2)

is a randomized encoding of f with blow-up t1 + t2.
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Actually, “composition” may be a bit of a misnomer, as f ′ is just f2, not the composition
of f1 and f2. The proof however does compose the circuits associated with f1 and f2.

Proof. Property 1: Suppose f(x) 6= f(x′). Then for every r1, f1(x, r1) 6= f1(x
′, r1). And so

for every r2, f2((x, r1), r2) 6= f2((x
′, r1), r2).

Property 2: Let Ci ∈ Di be random circuits corresponding to Property 2 of fi, i =
1, 2. Recall that for every x, C1(f(x)) is distributed like f1(x, r1) for uniform r1. Hence,
C2(C1(f(x)) is distributed like C2(f1(x, r1)), and the latter is in turn distributed like f2((x, r1), r2) =
f ′(x, (r1, r2)) for uniform r1, r2. Therefore C2(C1(·)) is a distribution of circuits satisfying
Property 2. Noting that these circuits have size t1 + t2 completes the proof.

In the next two sections we construct randomized encodings. As mentioned before, in
light of Lemma 36 we focus on boolean functions. And in light of Lemma 36 we do this in
two steps, first we encode branching programs using degree-3 polynomials over {0, 1}, then
we encode the latter by 4-local functions.

4.1.2 Encoding branching programs by degree-3 polynomials

Let f : {0, 1}n → {0, 1} be a function computable by a branching program of size s, and
recall that this program corresponds to a directed acyclic graph on s nodes, denoted as G,
with the following properties: there is a distinguished Start node with in-degree 0 and a
distinguished Accept node with in-degree 0, and each non-sink node is labeled with “xi,” for
some i ∈ [n], and has two outgoing edges labeled “0” and “1.”

We fix a topological ordering of the s nodes such that Start is the first and Accept the
last (i.e., the s-th). Given any string x ∈ {0, 1}n, define Gx to be the adjacency matrix of
the graph induced by x on G’s nodes. Specifically, any node labeled xi has only the outgoing
edge labeled with the ith bit of x. Then, we can see that f(x) = 1 if and only if the accept
node is reachable from the start node in the graph associated to Gx.

Consider the matrix M(x) := Gx + I, the sum of Gx and the identity matrix. With the
nodes of Gx ordered according to the fixed topological order mentioned above, M(x) is an
upper-triangular matrix, with 1s along the diagonal, and at most one additional 1 per row
(to the right of the diagonal). For example, M(x) = Gx + I may look like



























1 0 0 · · · 1 · · · 0
0 1 0 1 · · · 0 0
0 0 1 0 · · · 1 0

...
. . .

...

1 0
0 0 · · · 0 1



























.
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Then, we define L(x) to be M(x) with the first column and last row removed. In the above
example, L(x) is the (s − 1) × (s − 1) matrix























0 0 · · · 1 · · · 0
1 0 1 · · · 0 0
0 1 0 · · · 1 0

...
. . .

...

0 · · · 1 0























.

We let
m := s − 1

and note that L(x) is an m × m matrix.
Observe that the column number in the first row of L(x) tells us to which node we arrive

after taking one step from the node Start. Loosely speaking, we will now see how to continue
taking steps in the branching program, by multiplying L(x) by appropriate matrices. This
will have the effect of moving the 1s in the matrix (on or above the diagonal) more and more
towards the right, ultimately transforming L(x) into a matrix which contains f(x) in the
upper right corner and is 0 everywhere else (except for a shifted diagonal of 1s which does
not depend on x). This transformed L(x) contains no information about x except for f(x),
and thus is intuitively suitable for a randomized encoding (cf. discussion after Definition 34).

We start by defining two families of matrices we use to transform L(x). All the matrices
are over {0, 1}, with addition being bit XOR.

Definition 38. R1 is the family of upper triangular matrices with 1s along the diagonal:















1 ∗ · · · ∗
1

. . . ∗
. . .

...
0 1 ∗

1















,

where each occurrence of ∗ stands for an element of {0, 1}.

Multiplying a matrix M on the left with a matrix in R1 corresponds to summing to each
row of M a linear combination of the rows below it. For example,





1 a b
0 1 c
0 0 1









x1 y1 z1

x2 y2 z2

x3 y3 z3



 =





x1 + ax2 + bx3 y1 + ay2 + by3 z1 + az2 + bz3

x2 + cx3 y2 + cy3 z2 + cz3

x3 y3 z3



 .
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Definition 39. R2 is the family of matrices with 1s along the diagonal, and any other 1s in
the last column:















1 0 · · · 0 ∗
1

. . . ∗
. . . 0

...
0 1 ∗

1















.

Multiplying a matrix M on the right with a matrix in R2 corresponds to summing to the
last column of M a linear combination of the other columns. For example,





x1 y1 z1

x2 y2 z2

x3 y3 z3









1 0 a
0 1 b
0 0 1



 =





x1 y1 ax1 + by1 + z1

x2 y2 ax2 + by2 + z2

x3 y3 ax3 + by3 + z3



 .

It is important to note that both R1 and R2 are algebraic groups, which is not difficult
to see given what operations multiplying by the matrices corresponds to.

Fact 40. Both R1 and R2 form groups under matrix multiplication.

We now show the promised transformation of L(x) using these matrices.

Lemma 41. For all x ∈ {0, 1}n, there exist matrices r1 ∈ R1 and r2 ∈ R2 such that

r1 · L(x) · r2 =











0 · · · 0 f(x)

1
. . . 0

. . .
...

0 1 0











.

Proof. Let c be the column number of the 1 in the first row of L(x) (numbering the columns
1 through m). Recall that this means c is the number of the node immediately following the
start node in Gx. We will “push” this 1 to the right by repeatedly summing the lower rows
to the first. To start, we sum row c+1 to row 1, which has two effects: (i) the entry at (1, c)
is zeroed, because we are working over GF(2) and row c + 1 has a 1 in column c; (ii) the
entry at (1, d) is set to 1, where d is the node to which c points. We then sum row d + 1 to
row 1, and continue in this manner, ending when one of the following conditions holds:

• there is a 1 in entry (1, m). This indicates that there is a path from the start node to
the accept node in Gx, and thus that f(x) = 1. Or,

• the first row consists of all 0s. This indicates that a non-accepting sink was reached,
and thus that f(x) = 0.
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A key observation here is that, in either case, the upper right corner has the value f(x).
Also, note that this process will always terminate because Gx is acyclic.

We repeat the process for each lower row i, pushing any 1 at position (i, j ≥ i) to the
right until the portion of the row at positions (i, j ≥ i) is zeroed out, except possibly for the
rightmost column. When we have done this for every row, we have a matrix in the following
form:















0 · · · 0 f(x)

1
. . . ∗

. . .
...

0 ∗
1 0















.

Each operation performed so far has been summing a row of L(x) to a row above it; as
previously mentioned, these operations can be performed by multiplying on the left by
a matrix from R1. Composing the multiplications then, we have shown that for every
x ∈ {0, 1}n there is r1 ∈ R1 such that r1 · L(x) has the above form.

To complete the lemma we just need to zero out the last column except for the top
position (1, m). For this, we choose r2 ∈ R2 to be the matrix which, when multiplied on the
right, causes the first m − 1 columns of r1 · L(x) to be summed to the last column so as to
zero out all entries below the top. Then, r1 ·L(x) · r2 has the form given in the statement of
the lemma.

This construction leads naturally to a randomized encoding. In its definition, for slight
convenience, we identify an m × m matrix with its representation as an m2-bit string. This
is somewhat wasteful, because the matrices r1 ∈ R1, r2 ∈ R2, and r1 · L(x) · r2 can each be
specified using less than m2 bits (for example, m(m − 1)/2 bits and m − 1 bits are needed
to represent matrices in R1 and R2, respectively). But this difference is negligible in our
context.

Theorem 42 (Randomized encoding of branching programs by degree-3 polynomials). Let
f : {0, 1}n → {0, 1} be computable by a branching program with m + 1 nodes. Then, the

function f ′ : {0, 1}n ×
(

{0, 1}m2 × {0, 1}m2

)

→ {0, 1}m2

defined by

f ′(x, (r1, r2)) := r1 · L(x) · r2

is a randomized encoding of f with blow-up poly(m) such that each output bit of f ′ is com-
putable by a degree-3 polynomial over {0, 1}.

Proof. First, the fact that each output bit of f ′ is computable by a degree-3 polynomial
follows immediately from the definition of f ′ and of matrix multiplication. To verify the two
properties of randomized encodings, it is convenient to define Z(x), for an input x, to be the
m × m identity matrix with the diagonal shifted “southwest” and f(x) in the upper right
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corner:

Z(x) :=











0 · · · 0 f(x)

1
. . . 0

. . .
...

0 1 0











.

This is the same matrix on the right side of the equation in the statement of Lemma 41.
We verify next the two properties.

1. We need to show that if f(x) 6= f(x′) then f ′(x, (r1, r2)) 6= f ′(x′, (r′1, r
′
2)) for every

r1, r2, r
′
1, r

′
2.

Fix any input x, and let r̂1, r̂2 be the matrices guaranteed by Lemma 41 such that
r̂1 · L(x) · r̂2 = Z(x). Observe that the rank of Z(x), denoted Rank(Z(x)), equals
m − 1 + f(x). Also notice that each matrix from R1 or R2 has full rank, and recall
that multiplying by a full-rank matrix does not change rank. So we see that, for every
r1, r2:

Rank(r1 · L(x) · r2) = Rank(r̂1 · L(x) · r̂2)

= Rank(Z(x))

= m − 1 + f(x).

Therefore, if f(x) 6= f(x′) then for every r1, r
′
1, r2, r

′
2 we have Rank(r1 · L(x) · r2) 6=

Rank(r′1 · L(x′) · r′2) and hence f ′(x, (r1, r2)) 6= f ′(x′, (r′1, r
′
2)).

2. We need to show a distribution D on circuits of size poly(m) such that for any x
the distribution of C(f(x)) for random C ∈ D is equal to that of f ′(x, (r1, r2)) for
uniformly chosen r1, r2.

For randomly chosen r1, r2, define Cr1,r2
(f(x)) to be the circuit which outputs r1 ·

Z(x) · r2. A simple implementation of matrix multiplication shows that Cr1,r2
has size

poly(m). It only remains to show that, for any fixed x, the distribution of r1·Z(x)·r2 for
uniform r1, r2 is the same as that of r1 ·L(x) · r2. Let r̂1, r̂2 be the matrices guaranteed
by Lemma 41 such that r̂1 · L(x) · r̂2 = Z(x). Note that since R1 is a group, the
distribution of r1 is the same as that of r1 · r̂1 for uniform r1, and similarly for r2.
Therefore, for uniform r1, r2, the distribution

r1 · L(x) · r2

is the same as
r1 · r̂1 · L(x) · r̂2 · r2

which is the same as
r1 · Z(x) · r2.
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4.1.3 Encoding polynomials locally

We now show how to transform the randomized encoding from the previous section into one
which is 4-local. Each bit of the randomized encoding from Theorem 42 is computable by a
degree-3 polynomial. So, applying the next theorem to each bit of Theorem 42’s randomized
encoding gives the desired result.

Theorem 43. Any degree-3 polynomial f : {0, 1}n → {0, 1} over {0, 1} has a 4-local ran-
domized encoding with blow-up poly(n).

Proof. We write f as the sum of its degree-3 monomials:

f(x) = T1(x) + · · · + Tk(x),

for some parameter k crudely bound as k ≤ poly(n). Let r, r′ be randomly-chosen bit
strings with |r| = k, |r′| = k − 1. We define a randomized encoding f ′ : {0, 1}n ×
(

{0, 1}k × {0, 1}k−1
)

→ {0, 1}2k as

f ′(x, (r, r′)) := (T1(x) + r1, T2(x) + r2, . . . , Tk−1(x) + rk−1, Tk(x) + rk,
r1 + r′1, r′1 + r2 + r′2, . . . , r′k−2 + rk−1 + r′k−1, r′k−1 + rk).

Note that f ′ is 4-local because each Ti(x) is a degree-3 monomial. We now move to verifying
the two properties of randomized encodings.

For the first, observe that if we sum all the bits of f ′(x, (r, r′)), each bit of r and r′ appears
exactly twice, and each Ti(x) appears exactly once. Therefore, because we are working over
{0, 1} (i.e., sum is XOR), the bits of f ′(x, (r, r′)) sum to f(x) for any r, r′; so the first property
of a randomized encoding holds.

For the second property, note that for any fixed x, the first 2k− 1 bits of f ′(x, (r, r′)) are
uniformly distributed (for uniform r, r′) while the last bit is the one which makes the parity
of the entire output equal to f(x).

It may be worthwhile to visualize this through the following equivalences, holding for
every fixed x, where we use the symbol “≡” for “have the same distribution for random
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r, r′:”

f ′(x, (r, r′))

=(T1(x) + r1, T2(x) + r2, . . . , Tk−1(x) + rk−1, Tk(x) + rk,

r1 + r′1, r
′
1 + r2 + r′2, . . . , r

′
k−2 + rk−1 + r′k−1, r

′
k−1 + rk)

≡(r1, r2, . . . , rk−1, rk,

r1 + T1(x) + r′1, r
′
1 + r2 + T2(x) + r′2, . . . , r

′
k−2 + rk−1 + Tk−1(x) + r′k−1, r

′
k−1 + rk + Tk(x))

≡(r1, r2, . . . , rk−1, rk,

r′1, r
′
1 + r1 + r2 + T1(x) + T2(x) + r′2, . . . , r

′
k−2 + rk−1 + Tk−1(x) + r′k−1, r

′
k−1 + rk + Tk(x))

. . .

≡(r1, r2, . . . , rk−1, rk, r
′
1, r

′
2, . . . , r

′
k−2, r

′
k−1,

∑

i≤k

ri +
∑

i≤k−1

r′i +
∑

i≤k

Ti(x))

≡(r1, r2, . . . , rk−1, rk, r
′
1, r

′
2, . . . , r

′
k−2, r

′
k−1,

∑

i≤k

ri +
∑

i≤k−1

r′i + f(x)).

Thus, our distribution is over circuits C which output 2k − 1 bits at random, and then
one final bit to ensure the parity is equal to f(x):

Cr,r′(f(x)) :=

(

r, r′,
∑

i≤k

ri +
∑

i≤k−1

r′i + f(x)

)

.

This computation can be easily implemented in size O(k) = poly(n).

4.1.4 Putting the encodings together

For completeness in this section we point out how to combine the randomized encodings seen
before into one.

Theorem 35 (Local randomized encoding for branching programs). (Restated.) Let f :
{0, 1}n → {0, 1}ℓ be computable by a branching program with s ≥ n nodes. Then there exists
a 4-local randomized encoding f ′ : {0, 1}n×{0, 1}t → {0, 1}u of f with blow-up t = sc, where
c is a universal constant.

Proof. We show for every i ≤ ℓ a 4-local randomized encoding of the i-th bit of f with
blow-up t = poly(s); the result then follows from Lemma 36 (note that ℓ ≤ s by Definition
32 of branching program).

Fix any i ≤ ℓ and for convenience let g := fi : {0, 1}n → {0, 1} be the function computing
the i-th output bit of f . By Theorem 42 g has a randomized encoding g′ : {0, 1}n ×
{0, 1}t′ → {0, 1}u′

with blow-up t′ = poly(s) such that each output bit of g′ is computable
by a polynomial of degree 3. In turn, by Theorem 43 each of the u′ = poly(s) output bits
g′

j of g′, seen as a 1-argument function, has a 4-local randomized encoding g′′
j : {0, 1}n+t′ ×

{0, 1}t′′j → {0, 1}u′′
j with blow-up t′′j = poly(n + t′) = poly(s). (Note that u′ = poly(s) for,
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as noted earlier, the output length of a randomized encoding is always less than the blow-
up parameter, since by definition the latter is also an upper bound on the size of circuits
computing outputs of the randomized encoding.)

Therefore, by Lemma 36, g′ has a randomized encoding g′′ with blow-up t′′ = u′·poly(s) =
poly(s). Thanks to Lemma 37 we can now compose the randomized encodings g′ and g′′ to
get a 4-local randomized encoding for g = fi with blow-up t′ + t′′ = poly(s).

Finally, we note that the minimal locality of one-way functions is likely to be 3: 2-local
one-way functions do not exist (inverses can be found solving 2-satisfiability problems), while
3-local one-way functions can be based on the intractability of decoding random linear binary
codes, see [AIK06].

Acknowledgments. We thank Yuval Ishai for helpful comments.

50



Bibliography

[AB01] Noga Alon and Richard Beigel. Lower bounds for approximations by low degree
polynomials over Zm. In IEEE Conf. on Computational Complexity (CCC), pages
184–187, 2001.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity. Cambridge Univer-
sity Press, 2009. A modern approach.

[ABFR94] James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive
power of voting polynomials. Combinatorica. An Journal on Combinatorics and
the Theory of Computing, 14(2):135–148, 1994.

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construc-
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