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Abstract
We report on some initial results of a brute-force search for determining the maxi-

mum correlation between degree-d polynomials modulo p and the n-bit mod q function.
For various settings of the parameters n, d, p, and q, our results indicate that symmet-
ric polynomials yield the maximum correlation. This contrasts with the previously-
analyzed settings of parameters, where non-symmetric polynomials yield the maximum
correlation.

We also prove new properties of maximum-correlation polynomials, and use those
to obtain a new setting of parameters where those polynomials are not symmetric.

1 Introduction

Brute-force search is frequently used in cryptography and combinatorics, for two up-to-date
accounts see for example [BK10] and [Rad09]. It is also occasionally used in theoretical
computer science, for example Williams [Wil07, Chapter 5] uses it to search over certain
proofs of time-space lower bounds for SAT. But overall, brute-force search seems to be used
little in theoretical computer science. We wish to reverse this trend. We believe that the
combination of computational resources that are easily available and the apparent lack of
progress on fundamental lower-bound questions make for a suitable territory.

For starters, we report on initial results on obtaining correlation bounds for polynomials.
This challenge is surveyed in [Vio09, Chapter 1]. The more specific challenge we tackle is that
of obtaining upper bounds on the “maximum correlation” between multivariate polynomials
of degree d in n variables modulo p, and the mod q function [Smo87, AB01, Gre04, Bou05,
GRS05, DMRS06, Vio06, VW09, Cha07, GR10]. The quantity of interest is the following
(cf. [Gre04]):

C(n, d, p, q) :=
1

2n
max

f

∣∣∣∣∣∣
∑

x∈{0,1}n

ωf(x)
p · ω

∑
i xi

q

∣∣∣∣∣∣ ,
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where the maximum is over n-variable degree-d polynomials f with coefficients in {0, 1, . . . , p−
1}, and ωk = e2π·i/k is the k-th complex principal root of unity.

It seems natural to conjecture that for p and q fixed and coprime, C(n, d, p, q) is expo-
nentially small in n, even for some d = nΩ(1). But current proofs only establish this for
d < log n, see [Vio09, Chapter 1].

We follow the lead of Green who settles the correlation between quadratic polynomials
mod 3 and the mod 2 (a.k.a. parity) function:

Theorem 1.1 ([Gre04]). For all n: C(n, d = 2, p = 3, q = 2) =
(√

3
2

)dn/2e
.

Moreover, Green and Roy [GR10] determine all polynomials yielding the maximum value
of C (listed in §2.2). We call such polynomials optimal. A surprising fact is that these
polynomials are never symmetric – they are not invariant under permutation of the variables.

Later, Dueñez, Miller, Roy, and Straubing determine C(n, d = 2, p, q = 2) for other values
of p, but only up to n = 10 variables [DMRS06]. The corresponding optimal polynomials
have exactly the same structure as those in 1.1, and in particular are not symmetric.

2 Our results

We perform brute-force search to obtain new correlation bounds for uncharted settings of pa-
rameters (described below). The code is available at http://www.ccs.neu.edu/home/viola.

We often find that symmetric polynomials yield the maximum correlation. This contrasts
with the previous results mentioned in §1, which obtained non-symmetric polynomials, and
gives hope that a general proof technique may be within reach. If one could prove that for the
relevant setting of parameters some optimal polynomial is symmetric, then the conjecture
mentioned in §1 would be proved, because it can be shown that for symmetric polynomials
C is exponentially small in n for degree as high as nα for some α ∈ (0, 1) depending on p
and q only [CGT96].

The next definition is useful to state our results succinctly.

Definition 2.1. Let s(n,d) be the homogeneous elementary symmetric polynomial over n
variables and degree d.

2.1 Polynomials mod p = 2 vs. the mod q = 3 function

We report below on our results for polynomials mod p = 2 vs. the mod q = 3 function. For
concreteness, we mention this means that we are computing

C(n, d, 2, 3) :=
1

2n
max

f

∣∣∣∣∣∣
∑

x∈{0,1}n

(−1)f(x) · ω
∑

i xi

3

∣∣∣∣∣∣ .
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Each entry in the next tables contains the optimal polynomials and the associated value
for C(n, d, p, q). We set the constant term to 0. Its value does not affect C.

d = 2 d = 3 d = 4 d = 5
n = 2 s(2, 1)

√
9/22

≈ 0.7500
n = 3 s(3, 1) s(3, 3) + s(3, 1)

s(3, 2) s(3, 3) + s(3, 2)

√
27/23

√
31/23

≈ 0.6495 ≈ 0.6960
n = 4 s(4, 2) s(4, 3) + s(4, 2) s(4, 3) + s(4, 2)

s(4, 2) + s(4, 1)

√
97/24

√
121/24

√
121/24

≈ 0.6156 ≈ 0.6875 ≈ 0.6875
n = 5 s(5, 2) + s(5, 1) s(5, 3) s(5, 4) + s(5, 3) + s(5, 1) s(5, 5) + s(5, 4) + s(5, 2) + s(5, 1)

s(5, 3) + s(5, 2) s(5, 5) + s(5, 3) + s(5, 2)

√
363/25

√
381/25

√
441/25

√
463/25

≈ 0.5954 ≈ 0.6100 ≈ 0.6563 ≈ 0.6724
n = 6 s(6, 2) s(6, 3)

s(6, 2) + s(6, 1)

√
1351/26

√
1521/26

≈ 0.5743 ≈ 0.6094
n = 7 s(7, 2)

√
5043/27

≈ 0.5548
n = 8 s(8, 2)

s(8, 2) + s(8, 1)

√
18817/28

≈ 0.5358

2.2 Polynomials mod p = 3 vs. the mod q = 2 function

We report below on our results for polynomials mod p = 3 vs. the mod q = 2 function. In
order to make it easier to compare our results with the previous ones in the literature, in this
setting we actually think of the variables as ranging over {−1, 1} as opposed to {0, 1}. One
can always switch between the two with a linear transformation, so this does not change C,
but it does change the polynomials. For concreteness, we mention this means that we are
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computing

C(n, d, 3, 2) :=
1

2n
max

f

∣∣∣∣∣∣
∑

x∈{−1,1}n

ω
f(x)
3 ·

∏
i

xi

∣∣∣∣∣∣ .
The results are listed up to multiplying a variable by −1, and up to adding a constant

term – two operations that it is easy to see do not affect C.
d = 3 d = 4

n = 3 s(3, 3)

√
48/23

≈ 0.8660
n = 4 s(4, 3) + s(4, 2) + s(4, 1) s(4, 4)

s(4, 3)− s(4, 2) + s(4, 1)

√
171/24

√
192/24

≈ 0.8173 ≈ 0.8660
n = 5 s(5, 3) + s(5, 1)

√
675/25

≈ 0.8119

For context, we mention that for any n and d = 2 the optimal polynomials are char-
acterized [GR10]. Up to a constant term and permutation of the variables, the optimal
polynomials are of the form

±x1x2 ± x3x4 ± · · · ± xn−1xn

if n is even, and
±x1x2 ± x3x4 ± · · · ± xn−2xn−1 + xn

if n is odd.

3 A property of optimal polynomials for parity

In this section we prove the following result:

Theorem 3.1. For every even n, even d, and any odd p: C(n− 1, d, p, 2) = C(n, d, p, 2).

Using this result we can show that for degree 4 there are cases in which symmetric poly-
nomials are not optimal. Indeed, when restricted to symmetric polynomials, the values for
(8, 4, 3, 2) and (7, 4, 3, 2) are respectively

√
36972/28 ≈ 0.7510 and

√
9747/27 ≈ 0.7713 (de-

tails of the simple computation omitted). These two values are different, hence incompatible
with the above theorem.

We now proceed with the proof. We rely on two Lemmas below which are similar to
Lemmas 3.4 and 3.5 in [Gre04].
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Let

S(t, n) =
1

2n

∑
x∈{1,−1}n

(
n∏

i=1

xi

)
ωt(x)

m ,

where t is a polynomial in Zm[x1, . . . , xn] and ωm = e2πi/m.

Lemma 3.2. If n is even, there exists a polynomial e′ ∈ Zm[x1, ..., xn] such that all of the
monomials of e′ are of even degree and,

|S(t, n)| ≤ |S(e′, n)|.

Proof. Let t(x) = e(x) + k(x) where e, k ∈ Zm[x1, . . . , xn] are polynomials such that all of
the monomials of e are of even degree and the monomials of k are of odd degree. Then

S(t, n) =
1

2n

∑
x∈{1,−1}n

(
n∏

i=1

xi

)
ωt(x)

m

=
1

2n

∑
x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)+k(x)

m

=
1

2n

∑
x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)−k(x)

m

=
1

2
· 1

2n

∑
x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)

m (ωk(x)
m + ω−k(x)

m )

=
1

2
· 1

2n

∑
x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)

m (ωx1k(x)
m + ω−x1k(x)

m ),

where in the third equality we made the substitution xi 7→ −xi, and in the last we used the
fact that ω

k(x)
m +ω

−k(x)
m = ω

x1k(x)
m +ω

−x1k(x)
m for x1 ∈ {1,−1}. Now by the triangle inequality,

|S(t, n)| ≤ 1

2
· 1

2n

∣∣∣∣∣∣
∑

x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)

m (ωx1k(x)
m + ω−x1k(x)

m )

∣∣∣∣∣∣
≤ 1

2
· 1

2n

∣∣∣∣∣∣
∑

x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)+x1k(x)

m

∣∣∣∣∣∣+ 1

2
· 1

2n

∣∣∣∣∣∣
∑

x∈{1,−1}n

(
n∏

i=1

xi

)
ωe(x)−x1k(x)

m

∣∣∣∣∣∣
Note that both e+x1k and e−x1k contain only even degree monomials. Let e′ be the e+x1k
or e− x1k that gives the larger sum. Then, |S(t, n)| ≤ |S(e′, n)|.

Observe that if deg(t) = d where d is even, then deg(x1k) ≤ d. Hence the theorem
above implies that if d is even and n is even, there are polynomials e′ with deg(e′) = deg(t)
consisting of only even-degree terms such that |S(e′, n)| is an upper bound on |S(t, n)|. The
next Lemma implies furthermore that there are such e′ where |S(e′, n)| is actually equal to
the maximal value for n− 1.
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Lemma 3.3. Let n be even, and let a polynomial t ∈ Zm[x1, ..., xn] be given consisting only
of terms of even degree. Then there is a polynomial t′ ∈ Zm[x2, ..., xn] of only even degree
terms, and a polynomial k ∈ Zm[x2, ..., xn] of only odd degree terms such that,

S(t, n) = S(t′ + k, n− 1).

Conversely, given any polynomial t′ ∈ Zm[x2, ..., xn] of only even degree terms and a k ∈
Zm[x2, ..., xn] of only odd degree terms, there is a polynomial t ∈ Zm[x1, x2, ..., xn] of only
even degree terms such that the above equality holds.

Proof. Let t(x) = t′2(x) + x1k2(x), where t′2 ∈ Zm[x2, . . . , xn] and k2 ∈ Zm[x2, . . . , xn] only
depend on x2, . . . , xn. Then, performing the sum over x1,

S(t, n) =
1

2n

∑
x∈{1,−1}n

(∏
i

xi

)
ωt′2(x)+x1k2(x)

m

=
1

2n

∑
x∈{1,−1}n−1

(
n∏

i=2

xi

)
ωt′2(x)

m (ωk2(x)
m − ω−k2(x)

m )

=
1

2n−1

∑
x∈{1,−1}n−1

(
n∏

i=2

xi

)
ωt′2(x)+k2(x)

m ,

where in the third equality we used the transformation xi 7→ −xi. This establishes both
implications, since we can work forwards or backwards in the chain of equalities, and t2 and
k2 are completely general polynomials of n− 1 variables (consisting of even and odd degree
monomials, respectively).

This shows that for n even, as we range over all possible sums S(t′2 + k2, n− 1) we also
range over all possible sums S(t, n) where t has only even monomials. In particular, all
optimal values for the sum for n − 1 are in 1-1 correspondence with all optimal values for
the sum for n, in the case that d is even (since when d is odd, the proof of the first theorem
increases the degree). Furthermore, this tells us that as n increases, the optimal value must
decrease in “steps,” not for all values of n.
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[DMRS06] Eduardo Dueñez, Steven J. Miller, Amitabha Roy, and Howard Straubing. In-
complete quadratic exponential sums in several variables. J. Number Theory,
116(1):168–199, 2006.

[GR10] Frederic Green and Amitabha Roy. Uniqueness of optimal mod 3 circuits for
parity. Journal of Number Theory, 130:961 – 975, 2010.

[Gre04] Frederic Green. The correlation between parity and quadratic polynomials mod
3. J. Comput. System Sci., 69(1):28–44, 2004.

[GRS05] Frederic Green, Amitabha Roy, and Howard Straubing. Bounds on an exponen-
tial sum arising in Boolean circuit complexity. C. R. Math. Acad. Sci. Paris,
341(5):279–282, 2005.

[Rad09] Stanislaw Radziszowski. Small ramsey numbers, 2009. Dynamic Survey.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In 19th Symposium on the Theory of Computing (STOC),
pages 77–82. ACM, 1987.

[Vio06] Emanuele Viola. New correlation bounds for GF(2) polynomials using Gow-
ers uniformity. Electronic Colloquium on Computational Complexity, Technical
Report TR06-097, 2006. www.eccc.uni-trier.de/.

[Vio09] Emanuele Viola. On the power of small-depth computation. Foundations and
Trends in Theoretical Computer Science, 5(1):1–72, 2009.

[VW09] Emanuele Viola and Avi Wigderson. One-way multiparty communication lower
bound for pointer jumping with applications. Combinatorica, 29(6):719–743,
2009.

[Wil07] Ryan Williams. Algorithms and Resource Requirements for Fundamental Prob-
lems. PhD thesis, Carnegie Mellon University, 2007.

7


