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0.1 Conventions, choices, and caveats

https://xkcd.com/163/

I write this section before the work is complete, so some of it may change.
This book covers basic results in complexity theory and can be used for a course on the

subject. At the same time, it is perhaps sui generis in that it contains material that, it
seems, is not easy to �nd, possibly is even new at times, and makes somewhat unorthodox
choices about topics and exposition. The book also tells a story of the quest for impossibility
results, and includes some personal re�ections. Some of this is discussed next.

To test your understanding of the material... this book is interspersed with mistakes,
some subtle, some blatant, some not even mistakes but worrying glimpses into the author's
mind. Please send all bug reports and comments to (my �ve-letter last name)@ccs.neu.edu
to be included in the list of heroes.

Randomness and circuits. While randomness and circuits are everywhere in current
research, and seem to be on everyone's mind, they are sometimes still relegated to later
chapters, almost as an afterthought. This book starts with them right away, and attempts
to weave them through the narrative.

Data structures Their study, especially negative results, squarely belongs to complexity
theory. Yet data structures are strangely omitted in common textbooks. Results on data
structures even tend to miss main venues for complexity theory to land instead on more
algorithmic venues! We hope this book helps to revert this trend.

Algorithms & Complexity ...are of course two sides of the same coin. The rule of thumb
I follow is to present algorithms that are surprising, challenge our intuition of computation,
and showcase wealth of ideas, even though they may not be immediately deployed.
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The c notation. The mathematical symbol c has a special meaning in this text. Every
occurrence of c denotes a real number > 0. There exist choices for these numbers such that
the claims in this book are (or are meant to be) correct. This replaces, is more compact
than, and is less prone to abuse than the big-Oh notation (sloppiness hides inside brackets).

Example 0.1. �For all su�ciently large n� can be written as n ≥ c.
�For every ε and all su�ciently large n� can be written as n ≥ cε.
The following are correct statements:
�It is an open problem to show that some function in NP requires circuits of size cn.�

At the moment of this writing, one can replace this occurrence with 5. Note such a claim
will remain true if someone proves a 6n lower bounds. One just needs to �recompile� the
constants in this book.

�c > 1 + c�, e.g. assign 2 to the �rst occurrence, 1 to the second.
�100n15 < nc�, for all large enough n. Assign c = 16.
The following are not true:
�c < 1/n for every n�. No matter what we assign c to, we can pick a large enough n.

Note the assignment to c is absolute, independent of n.

More generally, when subscripted this notation indicates a function of the subscript.
There exist choices for these functions such that the claims in this book are (or are meant
to be) correct. Again, each occurrence can indicate a di�erent function.

For the reader who prefers the big-Oh notation a quick an dirty �x is to replace every
occurrence of c in this book with O(1).

The alphabet of TMs. I de�ne TMs with a �xed alphabet. This choice slightly simpli�es
the exposition (one parameter vs. two), while being more in line with common experience
(it is more common experience to increase the length of a program than its alphabet). This
choice a�ects the proof of Theorem 3.4; but the details don't seem any worse.

Partial vs. total functions (a.k.a. on promise problems).

Recall that promise problems o�er the most direct way of formulating natural
computational problems. [...] In spite of the foregoing opinions, we adopt the
convention of focusing on standard decision and search problems. [65]

I de�ne complexity w.r.t. partial functions whereas most texts consider total functions, i.e. we
consider computing functions with arbitrary domains rather than any possible string. This
is sometimes called �promise problems.� This a�ects many things, for example the hierarchy
for BPTime (Exercise 3.4).

References and names. I decided to keep references in the main text to a minimum, just
to avoid having a long list later with items �Result X is due to Y,� but relegate discussion
to bibliographic notes. Update 2024: After consideration, I decided to remover references
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in the main text altogether, to avoid equity issues with my previous plan. The new plan is
being implemented.

I have also decided to not spell out names of authors, which is increasingly awkward.
Central results, such as the PCP theorem, are co-authored by �ve or more people. But I
don't mean to deprive the reader entirely of the thrill of name-splashing. So names appear
in select portions which bend to the historical. Update 2024: Considering this: Names
also appear in the index, so one can look up �Markov's inequality� there.

For who got what award for what see [126].

Polynomial. It is customary in complexity theory to bound quantities by a polynomial,
as in polynomial time, when in fact only one monomial matters. It seems to me this makes
some statements cumbersome, and lends itself to confusion since polynomials with many
terms are useful for many other things. I use power instead of polynomial, as in power time.
One issue is that �power� is not an adjective. However, terminology such as �power law� is
commonplace, and quite apt.

Random-access machines. �Random access� also leads to strange expressions like �ran-
domized random-access� [14].

Reductions. Are presented as an implication. Clashing with most texts, this a�ects sev-
eral things, for example the de�nition of NP-intermediate problems, see Exercise 5.3.

Exercises, problems, and questions. Exercises are interspersed within the narrative
and serve as �concept check.� They are not meant to be di�cult or new, though some are.
Problems are collected at the end and tend to be harder and more original, though some are
not. Questions are meant as research questions, or open problems, or challenges.

On presenting proofs. I try to present them in a �top down� fashion rather than �bot-
tom up,� starting with the main high-level ideas and then progressively opening up details.
Both styles can be abused, but it seems to me abuse of the latter is more widespread and
problematic.
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Summary of some terminological and not choices

Some other sources this book acronym

O(1), Ω(1) c
Turing machine tape machine TM

random-access machine rapid-access machine RAM
polynomial time power time P
superpolynomial superpower

mapping reduction (sometimes) A reduces to B in P means B ∈ P⇒ A ∈ P
Extended Church-Turing thesis Power-time computability thesis

pairwise independent pairwise uniform
FP, promise-P P

TM with any alphabet TM with �xed alphabet
classes have total functions classes have partial functions

AC0 AC
TC0 TC

P/poly PCkt
{0, 1} [2]

The {0, 1} notation is cumbersome for people and compilers. What I really would like is
use 2 = {0, 1} as in f : 2n → 2, but I fear it's pushing it a little
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Unindexed mathematical notation and abbreviations

[i..j] {i, i+ 1, i+ 2, . . . , j}
[i] [0..i− 1] = {0, 1, 2, . . . , i− 1}

a.k.a. also known as
e.g. as an example (exempli gratia)
i.e. that is (id est)
i� if and only if
lhs left-hand side
prob. probability
rhs right-hand side
r.v. random variable
s.t. such that

w.h.p. with high prob.
w.l.o.g. without loss of generaliy

Copyright by Emanuele Viola
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Chapter 1

A teaser

Consider a computer with three bits of memory. There's also a clock, beating 1, 2, 3, . . . In
one clock cycle the computer can read one bit of the input and update its memory, or stop
and return a value. These actions depend only on the clock, the three memory bits, and the
length of the input.

Let's give a few examples of what such computer can do.
First, it can compute the And function on n bits:

Computing And of (x1,x2,. . .,xn)

For i = 1, 2, . . . until n
Read xi
If xi = 0 return 0

Return 1

We didn't really use the memory. Let's consider a slightly more complicated example.
A word is palindrome if it reads the same both ways, like racecar, non, anna, and so on.
Similarly, example of palindrome bit strings are 11, 0110, and so on.

Let's show that the computer can decide if a given string is palindrome quickly, in n steps

Deciding if (x1, x2, . . . , xn) is palindrome:

For i = 1, 2, . . . until i > n/2
Read xi and write it in memory bit m
If m 6= xn−i return 0

Return 1

That was easy. Now consider the Majority function on n bits, which is 1 i� the sum of
the input bits is > n/2 and 0 otherwise. Majority, like any other function on n bits, can
be computed on such a computer in time exponential in n. To do that, you do a pass on
the input and check if it's all zero, using the program for And given above. If it is, return
0. If it is not, you do another pass now checking if it's all zero except the last bit is 1. If
it is, return 0. You continue this way until you exhausted all the 2n/2 possible inputs with
Majority equals to 0. If you never returned 0 you can now safely return 1.

12



As we said, this works for any function, but it's terribly ine�cient. Can we do better for
Majority? Can we compute it in time which is just a power of n?

Exercise 1.1. Convince yourself that this is impossible. Hint: If you start counting bits,
you'll soon run out of memory.

If you solved the exercise, you are not alone.
And yet, we will see the following shocking result:

Theorem 1.1. Majority can be computed on such a computer in time nc.

And this is not a trick tailored to majority. Many other problems, apparently much more
complicated, can also be solved in the same time.

But, there's something possibly even more shocking.

Shocking situation:
It is consistent with our state of knowledge that every �textbook algorithm� can be solved
in time nc on such a computer! Nobody can disprove that. (Textbook algorithms include
sorting, max�ow, dynamic programming algorithms like longest common subsequence etc.,
graph problems, numerical problems, etc.)

The Shocking theorem gives some explanation for the Shocking situation. It will be
hard to rule out e�cient programs on this model, since they are so powerful and counterin-
tuitive. In fact, we will see later that this can be formalized. Basically, we will show that the
model is so strong that it can compute functions that provably escape the reach of current
mathematics... if you believe certain things, like that it's hard to factor numbers. This now
enters some of the mysticism that surrounds complexity theory, where di�erent beliefs and
conjectures are pitted against each other in a battle for ground truth.

13



Chapter 2

The alphabet of Time

https://xkcd.com/163/

The details of the model of computation are not too important if you don't care about
power di�erences in running times, such as the di�erence between solving a problem on an
input of length n in time cn vs. time cn2. But they matter if you do.

The fundamentals features of computation are two:

• Locality. Computation proceeds in small, local steps. Each step only depends on
and a�ects a small amount of �data.� For example, in the grade-school algorithm for
addition, each step only involves a constant number of digits.

• Generality. The computational process is general in that it applies to many di�erent
problems. At one extreme, we can think of a single algorithm which applies to an
in�nite number of inputs. This is called uniform computation. Or we can design
algorithms that work on a �nite set of inputs. This makes sense if the description of
the algorithm is much smaller than the description of the inputs that can be processed
by it. This setting is usually referred to as non-uniform computation.

Keep in mind these two principles when reading the next models.

14



RAM

MTM

TM

Circuits

Uniform Non-uniform

Figure 2.1: Computational models for Time. An arrow from A to B means that B can
simulate A e�ciently (from time t to t logc t).

2.1 Tape machines (TMs)

Tape machines are equipped with an in�nite tape of cells with symbols from the tape alphabet
A, and a tape head lying on exactly one cell. The machine is in one of several states, which
you can think of as lines in a programming language. In one step the machine writes a
symbol where the head points, changes state, and moves the head one cell to the right or
left. Alternatively, it can stop. Such action depends only on the state of the machine and
the tape symbol under the head.

We are interested in studying the resources required for computing. Several resources
are of interest, like time and space. In this chapter we begin with time.

De�nition 2.1. [176]A tape machine (TM) with s states is a map (known as transition or
step)

σ : {1, 2, . . . , s} × A→ A× {Left,Right, Stop} × {1, 2, . . . , s},
where A := {0, 1,#,−,_} is the tape alphabet. The alphabet symbol _ is known as blank.

A con�guration of a TM encodes its tape content, the position of the head on the tape,
and the current state. It can be written as a triple (M, i, j) where M maps the integers to
A and speci�es the tape contents, i is an integer indicating the position of the head on the
tape, and j is the state of the machine.

A con�guration (µ, i, j) yields (µ′, i + 1, j′) if σ(j, µ[i]) = (a,Right, j′) and µ′[i] = a and
µ′ = µ elsewhere, and similarly it yields (µ′, i− 1, j′) if σ(j, µ[i]) = (a,Left, j′) and µ′[i] = a
and µ′ = µ elsewhere, and �nally it yields itself if σ(j, µ[i]) = (a, Stop, j′).

15



We say that a TM computes y ∈ [2]∗ on input x ∈ [2]∗ in time t (or in t steps) if,
starting in con�guration (µ, 0, 1) where x = µ[0]µ[1] · · ·µ[|x| − 1] and µ is blank elsewhere,
it yields a sequence of t con�gurations where the last one is (µ, i, j) where σ(µ[i], j) has a
Stop instruction, and y = µ[i]µ[i+ 1] · · ·µ[i+ |y| − 1] and µ is blank elsewhere.

Describing TMs by giving the transition function quickly becomes complicated and un-
informative. Instead, we give a high-level description of how the TM works. The important
points to address are how the head moves, and how information is moved across the tape.

Example 2.1. On input x ∈ [2]∗ we wish to compute x+ 1 (i.e., we think of x as an integer
in binary, and increment by one). This can be accomplished by a TM with c states as follows.
Move the head to the least signi�cant bit of x. If you read a 0, write a 1, move the head to
the beginning, and stop. If instead you read a 1, write a 0, move the head by one symbol,
and repeat. If you reach the beginning of the input, shift the input by one symbol, append
a 1, move the head to the beginning and stop.

The TM only does a constant number of passes over the input, so the running time is
c|x|.

Example 2.2. On an input x ∈ [2]∗ we wish to decide if it has the the same number of zeros
and ones. This can be done as follows. Do a pass on the input, and cross o� one 0 and one
1 (by replacing them with tape symbol #). If you didn't �nd any 0 or or 1, accept (that is,
write 1 on the tape and stop). If only �nd a 0 but not a 1, or vice versa, reject.

Since every time we do a pass we cross at least two symbols, the running time is cn2.

Exercise 2.1. Describe a TM that decides if a string x ∈ [2]∗ is palindrome, and bound its
running time.

Exercise 2.2. Describe a TM that on input x ∈ [2]∗ computes n := |x| in binary in time
cn log n.

TMs can compute any function if they have su�ciently many states:

Exercise 2.3. Prove that every function f : [2]n → [2] can be computed by a TM in time n
using 2n+1 states.

2.1.1 You don't need much to have it all

How powerful are tape machines? Perhaps surprisingly, they are all-powerful.

Power-time computability thesis. For any �realistic� computational model C there
is d > 0 such that: Anything that can be computed on C in time t can also be computed
on a TM in time td.

This is a thesis, not a theorem. The meaning of �realistic� is a matter of debate, and one
challenge to the thesis is discussed in section �2.6.
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However, the thesis can be proved for many standard computational models, which in-
clude all modern programming languages. The proofs aren't hard. One just tediously goes
through each instruction in the target model and gives a TM implementation. We prove a
representative case below (Theorem 2.7) for rapid-access machines (RAMs), which are close
to how computers operate, and from which the jump to a programming language is short.

Given the thesis, why bother with TMs? Why not just use RAMs or a programming
language as our model? In fact, we will basically do that. Our default for complexity will
be RAMs. However, some of the bene�ts of TMs remain

• TMs are easier to de�ne � just imagine how more complicated De�nition 2.1 would be
were we to use a di�erent model. Whereas for TMs we can give a short self-contained
de�nition, for other models we have to resort to skipping details. There is also some
arbitrariness in the de�nition of other models. What operations exactly are allowed?

• TMs allow us to pinpoint more precisely the limits of computation. Results such as
Theorem ?? are easier to prove for TMs. A proof for RAM would �rst go by simulating
RAM by a TM.

• Finally, TMs allow us to better pinpoint the limits of our knowledge about computa-
tion; we will see several examples of this.

In short, RAMs and programming languages are useful to carry computation, TMs to analyze
it.

2.1.2 Time complexity, P, and EXP

We now de�ne our �rst complexity classes. We are interested in solving a variety of compu-
tational tasks on TMs. So we make some remarks before the de�nition.

• We often need to compute structured objects, like tuples, graphs, matrices, etc. One
can encode such objects in binary by using multiple bits. We will assume that such
encodings are �xed and allow ourselves to speak of such structures objects. For exam-
ple, we can encode a tuple (x1, x2, . . . , xt) where xi ∈ [2]∗ by repeating each bit in each
xi twice, and separate elements with 01.

• We can view machines as computing functions, or solving problems, or deciding sets,
or deciding languages. These are all equivalent notions. For example, for a set A, the
problem of deciding if an input x belongs to A, written x ∈ A, is equivalent to comput-
ing the boolean characteristic function fA which outputs 1 if the input belongs to A,
and 0 otherwise. We will use this terminology interchangeably. In general, �computing
a function� is more appropriate terminology when the function is not boolean.

• We allow partial functions, i.e., functions with a domain X that is a strict subset of
[2]∗, as opposed to total functions which are de�ned over [2]∗ or [2]n. Partial functions
are a natural choice for many problems, cf. discussion in section �0.1.
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• We measure the running time of the machine in terms of the input length, usually
denoted n. Input length can be a coarse measure: it is often natural to express the
running time in terms of other parameters (for example, the time to factor a number
could be better expressed in terms of the number of factors of the input, rather than
its bit length). However for most of the discussion this coarse measure su�ces, and we
will discuss explicitly when it does not.

• We allow non-boolean outputs. However the running time is still only measured in
terms of the input. (Another option which sometimes makes sense, it to bound the
time in terms of the output length as well, which allows us to speak meaningfully of
computing functions with very large outputs, such as exponentiation.)

• More generally, we are interested in computing not just functions but relations . That
is, given an input x we wish to compute some y that belongs to a set f(x). For example,
the problem at hand might have more than one solution, and we just want to compute
any of them.

• We are only interested in su�ciently large n, because one can always hard-wire solutions
for inputs of �xed size, see Exercise 2.3. This allows us to speak of running times like
t(n) = n2/1000 without worrying that it is not suitable when n is small (for example,
t(10) = 100/1000 < 1, so the TM could not even get started). This is re�ected in the
n ≥ cM in the de�nition.

With this in mind, we now give the de�nition.

De�nition 2.2. [Time complexity classes � boolean] Let t : N → N be a function. (N
denotes the natural numbers {0, 1, 2, . . .}.) TM-Time(t) denotes the functions f that map
bit strings x from a subset X ⊆ [2]∗ to a set f(x) for which there exists a TM M such that,
on any input x ∈ X of length ≥ cM , M computes y within t(|x|) steps and y ∈ f(x).

P :=
⋃
d≥1

TM-Time(nd),

Exp :=
⋃
d≥1

TM-Time(2n
d

).

We will not need to deal with relations and partial functions until later in this text.
Also, working with boolean functions, i.e., functions f with range [2] slightly simpli�es

the exposition of a number of results we will see later. To avoid an explosion of complexity
classes, we adopt the following convention.

Convention about complexity classes:
Unless speci�ed otherwise, inclusions and separations among complexity classes refer to

boolean functions. For example, an expression like P ⊆ NP means that every boolean
function in P is in NP.

As hinted before, the de�nition of P is robust. In the next few sections we discuss
this robustness in more detail, and also introduce a number of other central computational
models.
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2.2 TMs with large alphabet

As our �rst example of robustness, we discuss TMs with arbitrary alphabet. This might
seem like a detail, but in fact we are going to shortly present a cute problem in the area
which will come up again and is, as far as I know, open. To set the stage, we �rst a relatively
straightforward power-time simulation.

We de�ne TMs with alphabet size a as in De�nition 2.1 but with |A| of size a; we will
only be interested in a ≥ |A| so we can think of adding symbols to A in De�nition 2.1. We
de�ne similarly TM-Time(t(n)) with alphabet size a.

Theorem 2.1. TM-Time(t(n)) with alphabet size a ⊆ TM-Time(cat(n) + can
2).

Proof. Given a machine Ma as in the LHS, we construct machine M as in the RHS as
follows. We use c log a ≤ ca tape symbols of M to encode one tape symbol of Ma. First we
need to re-encode the input x. This takes time can2 as follows. First we move the head to
the rightmost symbol of x in position |x|, and we shift it right of ca positions. Then we go
to the adjacent symbol in position |x| − 1, and shift all the contents to the right of this by
ca positions, to the right. We continue in this way.

Once this re-encoding is done, M can simulate Ma step-by-step, spending time ca for
each step of Ma. QED

This shows that the de�nition of P is robust w.r.t. di�erent alphabet sizes. Yet the
simulation is unsatisfactory due to the need of re-encode the input which gives a quadratic
time blow-up.

Question 2.1. Is the n2 term in Theorem 2.1 necessary?

2.2.1 The universal TM

Universal machines can simulate any other machine on any input. These machines play a
critical role in some results we will see later. They also have historical signi�cance: before
them machines were tailored to speci�c tasks. One can think of such machines as epitomizing
the victory of software over hardware: A single machine (hardware) can be programmed
(software) to simulate any other machine.

Lemma 2.1. There is a TM U that on input (M, t, x) where M is a TM, t is an integer,
and x is a string:

-Stops in time |M |c · t · |t|,
-Outputs M(x) if the latter stops within t steps on input x.

Proof. We maintain the invariant thatM and t are always next to the tape head of U . After
the simulation of each step of M the tape of U will contain

(x,M, i, t′, y)
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where M is in state i, the tape of M contains xy and the head is on the left-most symbol
of y. The integer t′ is the counter decreased at every step. Computing the transition of M
takes time |M |c. Decreasing the counter takes time c|t|. To move M and t next to the tape
head takes c|M ||t| time. QED

2.3 Multi-tape machines (MTMs)

De�nition 2.3. A k-TM is like a TM but with k tapes, where the heads on the tapes move
independently. The input is placed on the �rst tape, and all other tapes are initialized to _.
The output is on the �rst tape. k-TM-Time is de�ned analogously to TM-Time. We write
MTM for multi-tape machine for some number k of tapes.

Exercise 2.4. Prove that Palindromes is in 2-TM-Time(cn). Compare this to the run-time
from the the TM in Exercise 2.1.

The following result implies in particular that P is unchanged if we de�ne it in terms of
TMs or k-TMs.

Theorem 2.2. k-TM-Time(t(n)) ⊆ TM-Time(ckt2(n)) for any t(n) ≥ n and k.

Exercise 2.5. Prove this. Recall that we de�ned TMs with �xed alphabet, and cf. sec-
tion �2.2.

A much less obvious simulation is given by the following fundamental result about MTMs.
It shows how to reduce the number of tapes to two, at little cost in time. Moreover, the head
movements of the simulator are restricted in a sense that at �rst sight appears too strong.

Theorem 2.3. [86, 142]k-TM-Time(t(n)) ⊆ 2-TM-Time(ckt(n) log t(n)), for every function
t(n) ≥ n. Moreover, the 2-TM is oblivious: the movement of each tape head depends only
on the length of the input.

Using this results one can prove the existence of universal MTMs similar to the universal
TMs in Lemma 2.1. However, we won't need this result so we omit the proof.

2.4 Circuits

We now de�ne circuits. It may be helpful to refer to �gure 2.2 and �gure 2.3.
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Figure 2.2: A circuit computing the Xor of two bits.
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Figure 2.3: An alternating circuit.
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De�nition 2.4. A circuit, abbreviated Ckt, is a directed acyclic graph where each node
is one of the following types: an input variable (fan-in 0), an output variable (fan-in 1), a
negation gate ¬ (fan-in 1), an And gate ∧ (fan-in 2), or an Or gate ∨ (fan-in 2). The fan-in
of a gate is the number of edges pointing to the gate, the fan-out is the number of edges
pointing away from the gate.

An alternating circuit , abbreviated AltCkt, or AC, is a circuit with unbounded fan-in Or
and And gates arranged in alternating layers (that is, the gates at a �xed distance from the
input all have the same type). For each input variable xi the circuit has both xi and ¬ xi as
input.

A DNF (resp. CNF) is an AltCkt whose output is Or (resp. And). The non-ouput gates
are called terms (resp. clauses) .

CktGates(g(n)) denotes the set of function f : [2]∗ → [2]∗ that, for all su�ciently large n,
on inputs of length n have circuits with g(n) gates; input and output gates are not counted.
The Size of a circuit is the number of gates. We also de�ne

PCkt :=
⋃
d

CktGates(nd).

We also denote by AC the class of functions computable by AC circuits of size nd and depth
d for a constant d.

Exercise 2.6. [Pushing negation gates at the input] Show that for any circuit C : [2]n →
[2] with g gates and depth d there is a monotone circuit C ′ (that is, a circuit without
Not gates) with 2g gates and depth d such that for any x ∈ [2]n : C(x1, x2, . . . , xn) =
C ′(x1,¬x1, x2,¬x2 . . . , xn,¬xn).

Often we will consider computing functions on small inputs. In such cases, we can often
forget about details and simply appeal to the following result, which gives exponential-size
circuits which are however good enough if the input is really small. In a way, the usefulness
of the result goes back to the locality of computation. The result, which is a circuit analogue
of Exercise 2.3, will be extensively used in this book.

Theorem 2.4. Every function f : [2]n → [2] can be computed by
(1) circuits of size ≤ (1 + o(1))2n/n, and
(2) A DNF or CNF with ≤ 2n + 1 gates (in particular, circuits of size ≤ n2n).

Exercise 2.7. Prove that the Or function on n bits has circuits of size cn. Prove Item (2)
in Theorem 2.4. Prove a weaker version of Item (1) in Theorem 2.4 with bound cn2n.

Exercise 2.8. Prove that the sum of two n-bit integers can be computed by circuits with
cn gates, and by alternating circuits of depth c and size nc.

We now show that circuits can simulates MTMs. We begin with a simple but instructive
simulation of TMs which incurs a quadratic loss, then present a more interesting quasilinear
simulation.
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Theorem 2.5. Suppose an s-state TM computes f : [2]∗ → [2] in time t ≥ n. Then
f ∈ CktGates(cst2(n)). In particular

P ⊆ PCkt.

For this proof and the next it is convenient to represent a con�guration of a TM in a
slightly di�erent way, as a string over the alphabet A× {0, 1, . . . , s}. String

(a1, 0)(a2, 0) . . . (ai−1, 0)(ai, j)(ai+1, 0) . . . (am, 0)

with j > 0 indicates that (1) the tape content is a1a2 . . . am with blanks on either side, (2)
the machine is in state j, and (3) the head of the machine is on the i tape symbol ai in the
string.

Locality of computation here means that one symbol in a string only depends on the
symbols corresponding to the same tape cell i in the previous step and its two neighbors �
three symbols total � because the head only moves in one step.

Proof of Theorem 2.5. Given a TM M with s states consider a t × (2t + 1) matrix
T , a.k.a. the computation table, where row i is the con�guration at time i. The starting
con�guration in Row 1 has the head in the middle cell. Note we don't need more than t cells
to the right or left because the head moves only by one cell in one step. Next we claim that
Row i+ 1 can be computed from Row i by a Ckt with cst gates. This follows by locality of
computation, where note each entry in Row i + 1 can be computed by a Ckt of size cs, by
Theorem 2.4.

Stacking t such circuits we obtain a circuit of size cst2 which computes the end con�gu-
ration of the TM.

There remains to output the value of the function. Had we assumed that the TM writes
the output in a speci�c cell, we could just read it o� by a circuit of size c. Without the
assumption, we can have a circuit C : A × {0, 1, . . . , s} → [2] which outputs 1 on (x, y) i�
y 6= 0 and x = 1 (i.e., if x is a 1 that is under the TM's head). Taking an Or such circuits
applied to every entry in the last row of T concludes the proof. QED

The simulation in Theorem 2.5. incurs a quadratic loss. However, a better simulation
exists. In fact, this applies even to k-TMs.

Theorem 2.6. [142] Suppose an s-state k-TM computes f : [2]∗ → [2] in time t(n) ≥ n.
Then f ∈ CktGates(cs,kt(n) log t(n)).

Exercise 2.9. Prove Theorem 2.6 assuming Theorem 2.3.

Next we give a direct proof that doesn't need Theorem 2.3.

Proof. We prove this for k = 1, the extension to larger k does not need new ideas and is
omitted. Given a TM M , we construct a circuit Sm that on input a con�guration of M with
m tape symbols where the head position is within m/4 symbols from the center, it computes
the con�guration reached by M after m/4 steps of the computation.
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We shall give an inductive construction of Sm satisfying

Size(Sm) ≤ 2 · Size(Sm/2) + cm

with base case Size(Sc) ≤ cM . This implies Size(St) ≤ cM t log t, as desired.
To construct Sm we think of the m symbols as divided into c blocks, and we rely on a

couple of auxiliary circuits. Circuit Hm given an m-symbol con�guration computes in which
block the head is; circuit Rm given an m-symbol con�guration and i ≤ c, rotates the blocks
by i positions. We can now program Sm as follows. First run Hm to get in which block i the
head is. Use Rm to rotate the blocks by i positions so that the head is in a block closest to
the middle. Run Sm/2. Now again run Hm to get j, and then Rm to move block j closest to
the middle. Run Sm/2. Finally, use Rm to restore the blocks by rotating them back by i+ j
positions.

This circuit simulates (m/2)/4 + (m/2)/4 = m/4 steps, as desired. The circuits R and
H can be implemented using cm gates. QED

In the other direction, TMs can simulate circuits if they have enough states. In general,
allowing for the number of states to grow with the input length gives models with �hybrid
uniformity.�

Exercise 2.10. Suppose that f : [2]n → [2] has circuits with s gates. Show that f can be
computed by a TM with sc states in time sc.

2.5 Rapid-access machines (RAMs)

�In some sense we are therefore merely making concrete intuitions that already
pervade the literature. A related model has, indeed, been treated explicitly� [...]
[14]

The main feature that's missing in all models considered so far is the ability to read and write
a memory cell in one time step given the address. This feature is called direct addressing ,
and is common place in programming languages (where for example we de�ne an array A
and then we can access cell i in the array via A[i]).

One can augment TMs with this capability by equipping them with an extra addressing
tape and a special �jump� state which causes the head on a tape to move in one step to
the address on the address tape. This model is simple enough to de�ne, and could in a
philosophical sense be the right model for how hardware can scale, since we charge for the
time to write the address. However, other models are closer to how computers seem to
operate, at least over small inputs. We want to think of manipulating small integers and
addresses as constant-time operations, as one typically has in mind when programming.
There is a variety of such models, and some arbitrariness in their de�nition. Basically, we
want to think of the memory as an array µ of s cells of w bits and allow for typical operations
of them, including addressing arithmetic and indirect addressing : reading and writing the
cell indexed by another cell.
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One issue that arises is how much memory the machine should have and consequently
how big w should be. There are two main options here. For �typical programming,� we have
a �xed memory size s and time bound t in mind, for example s = n3 and t = n2. A good
choice then is to set w := dlog2 se bits.

This however makes it harder to compare machines with di�erent memory bounds. Also
in some scenarios the memory size and the time bound are not �xed. This occurs for example
when simulating another machine. To handle such scenarios we can start with a memory of
s = n+ c cells,and a cell size of w = dlog2 se bits, enough to access the input. We then equip
machines with the operation MAlloc which increases the memory (i.e., s) by one, and always
sets w := dlog2 se. Note the latter operation may increase w by 1. The MAlloc operation is
akin to the TM's tape head wandering into unknown cells.

There are also two options for how the input is given to the machine. The di�erence
doesn't matter if you don't care about w factors in time, but it matters if you do. For many
problems, like sorting, etc. we think of the input and the output as coming in n cells of w
bits. (Typically, w = c log n, and one can simulate such cells with c cells with log n bits.) In
this case, the RAM is computing a function f : ([2]w)n → ([2]w)m and the input to the RAM
is given accordingly. This is what one often has in mind when writing programs that involve
numbers. For other problems, it is natural to just give one bit of the input in each cell. That
is, the RAM is computing f : [2]n → [2]m and bit i of the input is placed in the i input cells.
We will not be concerned too much with small factors and so we pick the second choice for
simplicity. This choice will also make it easier later to write computation in certain useful
formats (cf. Lemma 6.1).

De�nition 2.5. A w-bit `-line rapid-access machine (RAM) with s cells consists of a mem-
ory array µ[1..s] of s cells of w bits, c registers r1, r2, . . . of w bits, and a program of `
lines.

Each line of the program contains an instruction among the following:

• Standard arithmetical, logical, and control-�ow operations, such as r1 = r2 + r3, if
r1 = 0 then goto line 17, etc.

• ri := µ[rj], called a Read operation, which reads the rj memory cell and copies its
content into ri,

• µ[ri] := rj, called a Write operation, which writes rj into memory cells ri, memory cell
and copies its content into ri,

• MAlloc which increases s by 1 and, if s ≥ 2w also increases w by 1,

• Stop.

Read and write operations out of boundary indices have no e�ect.
On an input x ∈ [2]n, the RAM starts the computation with s := n+ 1 cells of memory.

The input is written in cells 1..n, while µ[0] contains the length n of the input.
The output is written starting in cell 1.
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We use RAMs as our main model for time inside P.

De�nition 2.6. Time(t(n)) is de�ned as TM-Time(t(n)) but for RAMs instead of TMs.

Theorem 2.7. Time(t(n)) ⊆ TM-Time(tc(n)), for any t(n) ≥ n.

Exercise 2.11. Prove it.

What is the relationship between circuits and RAMs? If a �description� of the circuit is
given, then a RAM can simulate the circuit e�ciently. The other way around is not clear.
It appears that circuits need a quadratic blow-up to simulate RAMs.

Exercise 2.12. Give a function f : [2]∗ → [2] in Time(c log n) but which requires circuits of
size ≥ cn.

There are universal RAMs that can simulate any other RAM with only a constant-factor
overhead, unlike the logarithmic-factor overhead for tape machines.

Lemma 2.2. There is a RAM U that on input (P, t, x) where P is a RAM, t is an integer,
and x is an input

-Stops in time ct,
-Outputs P (x) if the latter stops within t steps on input x.

Proof. Throughout the computation, U will keep track of the memory size sP and cell-size
wP of P . These are initialized as in the initial con�guration of P on input x, whereas U
starts with bigger values, since its input also contains P and t. Let h be the �rst cell where
the input x starts. Memory location i of P is mapped to i+h during the simulation. When P
performs an operations among registers, U simulates that with its own registers, but discards
the data that does not �t into wP bits.

After each step, U decreases the counter. The counter can be stored in t cells, one
bit per cell. The total number of operations to decrease such a counter from t to 0 is ≤ ct.
Alternatively, we can think of the counter as being stored in a single register at the beginning
of the simulation. Then decreasing the counter is a single operation. QED

2.6 A challenge to the computability thesis

Today, there's a signi�cant challenge to the computability thesis. This challenge comes
from... I know what you are thinking: Quantum computing, superposition, factoring. Nope.
Randomness.

The last century or so has seen an explosion of randomness a�ecting much of science, and
computing has been a leader in the revolution. Today, randomness permeates computation.
Except for basic �core� tasks, using randomness in algorithms is standard. So let us augment
our model with randomness.
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De�nition 2.7. A randomized (or probabilistic) RAM, written RRAM, is a RAM equipped
with the extra instruction

• ri := Rand, which sets ri to a uniform value, independent of all previous random
choices.

For a RRAM and a sequence R = R1, R2, . . . we write M(x,R) for the execution of M on
input x where the j-th instruction ri := Rand is replaced with ri := Rj.

We refer to BPTime(t(n)) with error ε(n) as the set of functions f that map bit strings
x from a subset X ⊆ [2]∗ to a set f(x) for which there exists a RRAM M such that, on any
input x ∈ X of length ≥ cM ,M stops within t(|x|) steps and PR[M(x,R) ∈ f(x)] ≥ 1−ε(|x|)
.

If the error ε is not speci�ed then it is assumed to be 1/3. Finally, we de�ne

BPP :=
⋃
a

BPTime(na).

Exercise 2.13. Does the following algorithm show that deciding if a given integer x is prime
is in BPP? �Pick a uniform integer y ∈ [2..x − 1]. If y divides x return NOT PRIME, else
return PRIME.�

Today, one usually takes BPP, not P, for �feasible computation.� Thus it is natural to
investigate how robust BPP is.

2.6.1 Robustness of BPP: Error reduction and tail bounds for the
sum of random variables

The error in the de�nition of BPTime is somewhat arbitrary because it can be reduced. The
way you do this is natural. For boolean functions, you repeat the algorithm many times,
and take a majority vote. To analyze this you need probability bounds for the deviation
of the sum of random variables (corresponding to the outcomes of the algorithm) from the
mean. Such deviation bounds permeate theoretical computer science, and many other �elds
as well.

Theorem 2.8. Let X1, X2, . . . , Xt be i.i.d. boolean random variables with p := P[Xi = 1].
Then for q ≥ p we have P[

∑t
i=1 Xi ≥ qt] ≤ 2−D(q|p)t, where

D(q|p) := q log

(
q

p

)
+ (1− q) log

(
1− q
1− p

)
is the divergence.

The proof uses the following basic facts.

Claim 2.1. Let X be a real-valued r.v. s.t. X ≥ 0 always. Then P[X ≥ t] ≤ E[X]/t for
every t > 0.
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Exercise 2.14. Prove this. Hint: Use that for any event E, E[X] = E[X|E]P[E] +
E[X|not E]P[not E].

Claim 2.2. If X and Y are independent, real-valued random variables then E[X · Y ] =
E[X] · E[Y ].

Proof of Theorem 2.8. For z ≥ 1, to be picked later, the function x → zx is increasing.
Using this and then Claim 2.1 and �nally the independence of the Xi, the LHS equals

P[z
∑t
i=1Xi ≥ zqt] ≤ E[z

∑t
i=1Xi ]

zqt
=

∏t
i=1 E[zXi ]

zqt
=

(
pz + 1− p

zq

)t
=: bt.

To minimize b we set

z :=
q(1− p)
(1− q)p

,

which is ≥ 1 because q ≥ p, and obtain

b =

1−p
1−q

zq
=

(
p

q

)q (
1− p
1− q

)1−q

.

QED

Now one can get a variety of bounds by bounding divergence for di�erent settings of
parameter. We state one such bound which we use shortly.

Fact 2.1. D(q|p) ≥ c(p− q)2, for any p, q ∈ [0, 1].

Exercise 2.15. For q = 1/2 and p = 1/2− ε plot both sides of Fact 2.1 as a function of ε.
(Hint: I used https://www.desmos.com/calculator)

The proof of the tail-bound Theorem 2.8 is �exible and applies to a variety of useful
settings. The most interesting extensions concern dependent random variables, where in
general the bounds are weaker. In the next exercise we instead consider other settings where
the bounds in Theorem 2.8 continue to hold.

Exercise 2.16. Prove that the tail bound in Theorem 2.8 holds as stated more gener-
ally for any independent random variables X1, X2, . . . , Xt distributed in [0, 1] with p :=∑

i E[Xi]/t. Guideline: Repeat the same proof as before. Use that zx ≤ 1 + x(z − 1)
and the arithmetic-mean geometric mean inequality (AM-GM) inequality: for all ai ≥ 0:
(
∑

i∈[t] ai)/t ≥ (
∏

i∈[t] ai)
1/t.

Now suppose the Xi are more generally distributed in [a, b]. For q = ε + p prove a
deviation bound of 2−cε

2t/(b−a)2 .

Using the tail-bound Theorem 2.8 we can prove the error reduction stated earlier.
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Theorem 2.9. [Error reduction for BPP] For boolean functions, the de�nition of BPP
(De�nition 2.7) remains the same if 1/3 is replaced with 1/2−1/na or 1/2n

a
, for any constant

a.

Proof. Suppose that f is in BPP with error p := 1/2−1/na and letM be the corresponding
RRAM. On an input x, let us run t := n2a · nb times M , each time with fresh randomness,
and take a majority vote. The new algorithm is thus

Maj(M(x,R1),M(x,R2), . . . ,M(x,Rt)).

This new algorithm makes a mistake i� at least t/2 runs of M make a mistake. To analyze
this error probability we invoke Theorem 2.8 where Xi := 1 i� run i of the algorithm makes
a mistake, i.e., M(x,Ri) 6= f(x), and ε := 1/na. By Fact 2.1 we obtain an error bound of

2−D(1/2|1/2−ε)t ≤ 2−ε
2t ≤ 2−n

b

,

as desired. The new algorithm still runs in power time, for �xed a and b. QED

Exercise 2.17. Consider an alternative de�nition of BPTime, denoted BPTime', which is
analogous to BPTime except that the requirement that the machine always stops within
t(|x|) steps is relaxed to �the expected running time of the machine is t(|x|).�

Show that de�ning BPP with respect to BPTime or BPTime' is equivalent.

Exercise 2.18. Consider biased RRAMs which are like RRAMs except that the operation
Rand returns one bit which, independently from all previous calls to Rand, is 1 with prob-
ability 1/3 and 0 with probability 2/3. Show that BPP does not change if we use biased
RRAMs.

2.6.2 Does randomness buy time?

We can always brute-force the random choices in exponential time. If a randomized machine
uses r random bits then we can simulate it deterministically by running it on each of the 2r

choices for the bits. A RRAM machine running in time t ≥ n has registers of ≤ c log t bits.
Each Rand operation gives a uniform register, so the machine uses ≤ ct log t bits. This gives
the following inclusions.

Theorem 2.10. Time(t) ⊆ BPTime(t) ⊆ Time(ct log t), for any function t = t(n). In partic-
ular, P ⊆ BPP ⊆ EXP.

Proof. The �rst inclusion is by de�nition. The idea for the second was discussed before,
but we need to address the detail that we don't know what t is. One way to carry through
the simulation is as follows. The deterministic machine initializes a counter r to 0. For each
value of r it enumerates over the 2r choices R for the random bits, and runs the RRAM on
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each choice of R, keeping track of its output on each choice, and outputting the majority
vote. If it ever runs out of random bits, it increases r by 1 and restarts the process.

To analyze the running time, recall we only need r ≤ ct log t. So the simulation runs the
RRAM at most ct log t · 2ct log t ≤ 2ct log t times, and each run takes time ct, where this last
bound takes into account the overhead for incrementing the choice of r, and redirecting the
calls to Rand to R. QED

Now, two surprises. First, BPP ⊆ EXP is the fastest deterministic simulation we can
prove for RAMs, or even 2-TMs. On the other hand, and that is perhaps the bigger surprise,
it appears commonly believed that in fact P = BPP! Moreover, it appears commonly believed
that the overhead to simulate randomized computation deterministically is very small. Here
the mismatch between our ability and common belief is abysmal.

However, we can do better for TMs. A randomized TMs has two transition functions σ0

and σ1, where each is as in De�nition 2.1. At each step, the TM uses σ0 or σ1 with probability
1/2 each, corresponding to tossing a coin. We can de�ne TM-BPTime as BPTime but with
randomized TMs instead of RRAMS.

Theorem 2.11. TM-BPTime(t) ⊆ Time(2
√
t logc t), for any t = t(n) ≥ n.

2.6.3 Polynomial identity testing

We now discuss an important problem which is in BPP but not known to be in P. In fact,
in a sense to be made precise later, this is the problem in BPP which is not known to be in
P. To present this problem we introduce two key concepts which will be used many times:
�nite �elds, and arithmetic circuits.

Finite �elds A �nite �eld F is a �nite set with elements 0 and 1 that is equipped with
operations + and · that behave �in the same way� as the corresponding operations over the
reals R or the rationals Q, which are in�nite �elds. One example are the integers modulo a
prime p. For p = 2 this gives the �eld with two elements where + is Xor and · is And. For
larger p you add and multiply as over the integers but then you take the result modulo p.

The following summarizes key facts about �nite �elds. The case of prime �elds su�ces for
the main points of this section, but stating things for general �nite �elds actually simpli�es
the exposition overall (since otherwise we need to add quali�ers to the size of the �eld).

Fact 2.2. [Finite �elds] A unique �nite �eld of size q exists i� q = pt where p is a prime and
t ∈ N. This �eld is denoted Fq.

Elements in the �eld can be identi�ed with {0, 1, . . . , p− 1}t.
Given q, one can compute a representation of a �nite �eld of size q in time (tp)c. This

representation can be identi�ed with p plus an element of {0, 1, . . . , p− 1}t.
Given a representation r and �eld elements x, y computing x+y and x·y is in Time(n logc n).

Fields of size 2t are of natural interest in computer science. It is often desirable to have
very explicit representations for such and other �elds. Such representations are known and
are given by simple formulas, and are in particular computable in linear time.
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Example 2.3. We can represent the elements of Fpt as (the coe�cients of) polynomials of
degree < t over Fp. Addition is done component-wise, and multiplication occurs modulo an
irreducible polynomial of degree t over the base �eld Fp, i.e., a polynomial that cannot be
factored as the product of two non-constant polynomials. It is known zt+zt/2+1 is irreducible
over F2 for any t = 2 ·3` for any `, giving very explicit representations. For example, consider
the �eld elements z2 + 1 and zt−1 + 1 over such a representation of F2t . Their sum equals
zt−1 + z2, and their product equals zt+1 + z2 + zt−1 + 1 = zt−1 + zt/2+1 + z2 + z + 1.

Arithmetic circuits We now move to de�ning arithmetic circuits, which are a natural
generalization of the circuits we encountered in section �2.4.

De�nition 2.8. An arithmetic circuit over a �eld F is a circuit where the gates compute the
operations + and · over F, or are constants, or are input variables. Such a circuit computes
a polynomial mapping Fn → F.

The PIT (polynomial identity testing) problem over F: Given an arithmetic circuit C
over F with n input variables, does C(x) = 0 for every x ∈ Fn?

The PIT problem over large �elds is in BPP but it is not known to be in P. The
requirement that the �eld be large is critical, see Problem 4.1.

Theorem 2.12. [PIT over large �elds in BPP] Given an arithmetic circuit C and the
representation of a �nite �eld of size ≥ c2|C| we can solve PIT in BPP.

To prove this theorem we need the following fundamental fact.

Lemma 2.3. Let p be a polynomial over a �eld F with n variables and degree ≤ d. Let S
be a �nite subset of F, and suppose d < |S|. The following are equivalent:

1. p is the zero polynomial.

2. p(x) = 0 for every x ∈ Fn.

3. Px1,x2,...,xn∈S[p(x) = 0] > d/|S|.

Proof of Lemma 2.3.. The implications 1. ⇒ 2. ⇒ 3. are trivial, but note that for the
latter we need d < |S|. The implication 3. ⇒ 1. is not trivial. We proceed by induction on
n.

The base case n = 1 is the fact that if p has more than d roots then it is the zero
polynomial. This fact in turn can be proved by induction on the degree. The base case
d = 0 is obvious. For larger d, suppose a is a root of p and use division for polynomials to
write p = (x − a)q + r where q has degree ≤ d − 1 and r ∈ F. Because a is a root we have
r = 0, and so p = (x− a)q and q has d− 1 roots, and by induction q = 0 and so p = 0.

For larger n write

p(x1, x2, . . . , xn) =
d∑
i=0

xi1pi(x2, x3, . . . , xn).

31



If p is not the zero polynomial then there is at least one i such that pi is not the zero
polynomial. Let j be the largest such i. Note that pj has degree at most d− j. By induction
hypothesis

Px2,...,xn∈S[pj(x) = 0] ≤ (d− j)/|S|.

For every choice of x2, x3, . . . , xn s.t. pj(x) 6= 0, the polynomial p is a non-zero polynomial
qx2,x3,...,xn(x1) only in the variable x1. Moreover, its degree is at most j by our choice of j.
Hence by the n = 1 case the probability that q is 0 over the choice of x1 is ≤ j.

Overall,
Px1,x2,...,xn∈S[p(x) = 0] ≤ (d− j)/|S|+ j/|S| = d/|S|.

QED

Exercise 2.19. Show that the equivalence between 1. and 2. does not hold over small �elds
such as F2 and large d.

Proof of Theorem 2.12. A circuit C contains at most |C| multiplication gates. Each
multiplication gate at most squares the degree of its inputs. Hence C computes a polynomial
of degree ≤ 2|C|. Let S be a subset of size c · 2|C| of F. Assign uniform values from S
independently to each variables, and evaluate the circuit. If C evaluates to 0 everywhere
then obviously the output will be 0. Otherwise, by Lemma 2.3, the probability we get a 0 is
≤ 2|C|/c2|C| ≤ 1/3. QED

To show that the PIT problem over the integers is in BPP the following result is useful.

Theorem 2.13. [Prime number theorem] limn→∞(Number of primes ≤ n)/(n/ loge n) = 1.

As is often the case in computer science, we don't need the full strength of Theorem 2.13.
An approximate version with loge n replaced by logc n su�ces, and it has a considerably
easier proof. (Moreover sometimes easier proofs are easier to adapt to other settings of
interest in computer science.) This weak version is stated next.

Theorem 2.14. [Weak prime number theorem] The number of primes in [t] is ≥ t/ logc t,
for every t ≥ c.

Exercise 2.20. Show that the PIT problem over the integers is in BPP. (Hint: Use Theorem
2.13 and that checking if a number is prime is in P.)

2.6.4 Simulating BPP by circuits

While we don't know if P = BPP, we can prove that, like P, BPP has power-size circuits.

Theorem 2.15. BPP⊆ PCkt.
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Proof. Let f : X ⊆ [2]∗ → [2] be in BPP. By Theorem 2.9 we can assume that the error is
ε < 2−n, and let M be the corresponding RRAM. Note

PR[∃x ∈ [2]n : M(x,R) 6= f(x)] ≤
∑
x∈[2]n

PR[M(x,R) 6= f(x)] ≤ 2n · ε < 1,

where the �rst inequality is a union bound.
Therefore, there is a �xed choice for R that gives the correct answer for every input

x ∈ [2]n. This choice can be hardwired in the circuit, and the rest of the computation can
be written as a circuit by Theorem 2.5. QED

Exercise 2.21. In this exercise you will practice the powerful technique of combining tail
bounds with union bounds, which was used in the proof of Theorem 2.15, and also see a
related application of Lemma 2.3 .

An error-correcting code with block length n, message length k, minimum distance d,
over the alphabet q, written (n, k, d)q is a subset C ⊆ [q]n of size qk s.t. for any distinct
x, y ∈ C, x and y di�er in at least d coordinates.

(1) Prove the existence of (n, an, bn)2 codes, for some constants a, b > 0 and every n.
(2) Given a prime power q, and k ≤ q construct an explicit (q, k, q − k)q code using

Lemma 2.3. For explicitness, show that given q and x ∈ [q]k computing the corresponding
codeword is in P.

2.6.5 Questions raised by randomness

The introduction of randomness in our model raises several fascinating questions. First,
does �perfect� randomness exists �in nature?� Second, do we need �perfect� randomness for
computation? A large body of research has been devoted to greatly generalize Problem 2.18
to show that, in fact, even imperfect sources of randomness su�ces for computation. Third,
do we need randomness at all? Is P = BPP?

One of the exciting developments of complexity theory has been the connection between
the latter question and the �grand challenge� from the next chapter. At a high level, it has
been shown that explicit functions that are hard for circuits can be used to de-randomize
computation. In a nutshell, the idea is that if a function is hard to compute then its output
is �random,� so can be used instead of true randomness. The harder the function the less
randomness we need. At one extreme, we have the following striking connection:

Theorem 2.16. Suppose for some a > 0 there is a function in Time(2an) which on inputs
of length n cannot be computed by circuits with 2n/a gates, for all large enough n. Then
P = BPP.

In other words, either randomness is useless for power-time computation, or else circuits
can speed up exponential-time uniform computation!

We will prove this in Chapter 13, Exercise 13.17.
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2.7 Inclusion extend �upwards,� separations downwards

To develop intuition about complexity, we now discuss a general technique known as padding.
In short, the technique shows that if you can trade resource X for Y , then you can also trade
a lot of X for a lot of Y . For a metaphor, if you have a magical device that can turn
one pound of sill into gold, you can also use it to turn two pounds of sill into gold. The
contrapositive is that if you can't trade a lot of X for a lot of Y , then you also can't trade
a little of X for a little of Y .

We give a �rst example using the classes that we have encountered so far.

Example 2.4. Suppose that BPTime(cn) ⊆ Time(n2). Then BPTime(n2) ⊆ Time(cn4).

Proof. Let f : [2]∗ → [2] be a function in BPTime(n2). Consider the function f ′ that on
input x of length n equals f computed on the �rst

√
n bits of x. Thus, inputs to f ′ are

padded with n−
√
n useless symbols.

Note that f ′ ∈ BPTime(cn), since in linear time we can erase the last n −
√
n symbols

and then just run the algorithm for f which takes time quadratic in
√
n which is linear in

n. (If computing square roots is not an available instruction, one can show that computing√
n can be done in linear time, for example using binary search.)
By assumption, f ′ ∈ Time(n2).
To compute f in time cn4 we can then do the following. Given input x of length n, pad

x to an input of length n2 in time cn2. Then run the algorithm for f ′. This will take time
c(n2)2 ≤ cn4. QED

2.8 Problems

Problem 2.1. [Indexing] Describe a TM that on input (x, i) ∈ [2]n × {1, 2, . . . , n} outputs
bit i of x in time cn log n.

Problem 2.2. [Indexing] Describe a circuit with cn gates that on input (x, i) ∈ [2]n ×
{1, 2, . . . , n} outputs bit i of x.

Problem 2.3. Show that Palindromes can be solved in time n logc n on a randomized TM.
(Yes, only one tape.)

Hint: View the input as coe�cients of polynomials.

Problem 2.4. Give a function f : X ⊆ [2]∗ → [2] that is in BPTime(c) but not in Time(n/100).

Problem 2.5. Let f : [2]n → [2] be computable by an s-state k-TM in time t. Think of the
input as m cells of w bits, so that n = mw. Consider circuits made or arbitrary functions
which take as input cs,k cells and output one cell. (Each wire in this circuit carries one cell
� the bits cannot be �broken up,� but the result would be non-trivial even if they could.)
Show that f can be computed by such circuits of size (t/w)c. For example, if t = 100n and
w = 0.01n we have circuits of a constant number of gates.
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Problem 2.6. For a circuit C on n bits denote by pC the probability Px[C(x) = 1].
(1) Show how to e�ciently approximate pC . Speci�cally: Give a power-time randomized

algorithm that on input a circuit C and ε > 0 written in unary (for example, as a string of
1/ε ones) outputs p s.t. |p− pC | ≤ ε w.p. ≥ 0.9.

(2) Show that the following decision version of (1) is in BPP: Given a circuit C, a number
p (written in binary), and ε > 0 written in unary, such that |pC − p| ≥ ε, decide if pC ≥ p.

(3) What happens if in (2) you replace the assumption that |pC−p| ≥ ε with |pC−p| > 0
?

(4) Assume P = BPP. Show how the approximation in (1) can be computed in P.

2.9 Notes

�It's all over.�

The fundamental work on complexity is [62]. That work formalized computation for the �rst
time, and discovered its self-referential ability, essentially inventing universal machines and
the diagonalization technique (cf. section �3.3). Of course, [62] did not come out of nowhere,
but was in fact a reaction to a program of automating mathematics, and it built on logical
formalizations of mathematics; and diagonalization has its roots in (and takes the name
from) the proof that the real numbers are uncountable. Also, there are several previous
works aimed at formalizing computation in various branches of science. See [126] for an
account of this compelling history. Still, if a fundamental work must be picked, [62] seems
appropriate, for it can be considered the �rst work on impossibility results about general
computation.

The formalization of computation in [62] is in terms of recursive functions, not unlike
modern functional programming languages. As we saw, many other equivalent formalizations
came about later. Tape machines were introduced in [176] and are closer to computer
hardware or imperative programming languages. They also make it a little more intuitive
to measure time and space in computation.

The brute-force computation of functions via circuits, Theorem 2.4, goes back to [159],
see also [120].

�
For more on the circuit model in Problem 2.5 see [75].
For a computer-science friendly exposition of deviation bounds see the book [53].
�
Theorem 2.11 is from [199].
Theorem 2.15 is from [3].
Theorem 2.16 is from [94].
-
The reference for Fact 2.2 is [161]. For more on �nite �elds see [113], for the �elds F2t in

Example 2.3 see Theorem 1.1.28 in [182].
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Chapter 3

The grand challenge

As mentioned in Chapter 1, our ability to prove impossibility results related to e�cient
computation appears very limited. We can now express this situation more precisely with
the models we've introduced since then.

It is consistent with our knowledge that any problem in a standard algorithm textbook
can be solved

1. in Time cn2 on a TM, and

2. in Time cn on a 2-TM, and

3. by circuits of size cn.

Note that 2. implies 1. by Theorem 2.2, and many other relationships have been explored
in Chapter 2.

In this chapter we begin to present several impossibility results, covering a variety of
techniques which will be used later as well. As hinted above, they appear somewhat weak.
However, jumping ahead, there is a �ip side to all of this:

1. At times, contrary to our intuition, stronger impossibility results are actually false.
One example appears in Chapter 1. A list will be given later.
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2. Many times, the impossibility results that we can prove turn out to be, surprisingly,
just �short� of proving major results. Here by �major result� I mean a result that would
be phenomenal and that was in focus long before the connection was established. We
will see several examples of this (section �7.3, section �10.2).

3. Yet other times, one can identify broad classes of proof techniques, and argue that
impossibility results can't be proved with them (section �19.1).

Given this situation, I don't subscribe to the general belief that stronger impossibility results
are true and we just can't prove them.

3.1 Information bottleneck: Palindromes requires quadratic

time on TMs

Intuitively, the weakness of TMs is the bottleneck of passing information from one end of
the tape to the other. We now show how to formalize this and use it show that deciding if
a string is a palindrome requires quadratic time on TMs, which is tight and likely matches
the time in Exercise 2.1. The same bound can be shown for other functions; palindromes
just happen to be convenient to obtain matching bounds.

Theorem 3.1. Palindromes 6∈ TM-Time(t(n)) for any t(n) = o(n2).
More precisely, for every n and s, an s-state TM that decides if an n-bit input is a

palindrome requires time ≥ cn2/ log s.

The main concept that allows us to formalize the information bottleneck mentioned above
is the following.

De�nition 3.1. A crossing sequence of a TM M on input x and boundary i, abbreviated
i-CS, is the sequence of states that M is transitioning to when crossing cell boundary i (i.e.,
going from Cell i to i+ 1 or vice versa) during the computation on x.

Example 3.1. We think of a step of a TM as �rst changing state and then moving the head.

We write u
i
vw if the tape content is uvw and the TM is in state i with the head on v, where

u,w ∈ A∗ and v ∈ A, cf. De�nition 2.1. The computation
0

0 0 0 0

#
5

0 0 0

# 0
2

0 0

# 0 x
2

0

# 0
2
x 0

#
1

0 x 0

# 0
7
x 0

has the 2-cs (marked with double vertical line; �rst column is cell 1) equal to 2, 1, 7.
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The idea in the proof is very interesting. If M accepts inputs x and y and those two
inputs have the same i-CS for some i, then we can �stitch together� the computation of M
on x and y at boundary i to create a new input z that is still accepted by M . The input z is
formed by picking bits from x to the left of cell boundary i and bits from y to the right of i:

z := x1x2 · · ·xiyi+1yi+2 · · · yn.

The proof that z is still accepted is left as an exercise.

Example 3.2. The following computation has the same 2-cs as the previous example
0

0 1 1 0

0
4

1 1 0

0 0
2

1 0

0
1

0 0 0

0 0
7

0 0

.

If 7 is the accept state, then the TM would also accept the �stitched� input

0010

because on that input the TM has the following �stitched� computation:
0

0 0 1 0

#
5

0 1 0

# 0
2

1 0

#
1

0 0 0

# 0
7

0 0

.

Note that the number of steps of the stitched computations needs not be the same.

Now, for many problems, stitched input z should not be accepted by M , and this gives
a contradiction. In particular this will be be the case for palindromes. We are going to �nd
two palindromes x and y that have the same i-CS for some i, but the corresponding z is
not a palindrome, yet it is still accepted by M . We can �nd these two palindromes if M
takes too little time. The basic idea is that if M runs in time t, because i-CSs for di�erent
i correspond to di�erent steps of the computation, for every input there is a value of i such
that the i-CS is short, namely has length at most t(|x|)/n. If t(n) is much less than n2, the
length of this CS is much less than n, from which we can conclude that the number of CSs
is much less than the number of inputs, and so we can �nd two inputs with the same CS.

Proof. Let n be divisible by four, without loss of generality, and consider palindromes of
the form

p(x) := x0n/2xR
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where x ∈ [2]n/4 and xR is the reverse of x.
Assume there are x 6= y in [2]n/4 and i in the middle part, i.e., n/4 ≤ i ≤ 3n/4 − 1, so

that the i-CS of M on p(x) and p(y) is the same. Then we can de�ne z := x0n/2yR which is
not a palindrome but is still accepted by M , concluding the proof.

There remains to prove that the assumption of Theorem 3.1 implies the assumption in
the previous paragraph. Suppose M runs in time t. Since crossing sequences at di�erent
boundaries correspond to di�erent steps of the computation, for every x ∈ [2]n/4 there is
a value of i in the middle part such that the i-CS of M on p(x) has length ≤ ct/n. This
implies that there is an i in the middle s.t. there are ≥ c2n/4/n inputs x for which the i-CS
of M on x has length ≤ ct/n.

For �xed i, the number of i-CS of length ≤ ` is ≤ (s+ 1)`.
Hence there are x 6= y for which p(x) and p(y) have the same i-CS whenever c2n/4/n ≥

(s+ 1)ct/n. Taking logs one gets ct log(s)/n ≤ cn. QED

Exercise 3.1. For every s and n describe an s-state TM deciding palindromes in time
cn2/ log s (matching Theorem 3.1).

Exercise 3.2. Let L := {xx : x ∈ [2]∗}. Show L ∈ TM-Time(cn2), and prove this is tight
up to constants.

One may be tempted to think that it is not hard to prove stronger bounds for similar
functions. In fact as mentioned above this has resisted all attempts!

3.2 Counting: impossibility results for non-explicit func-

tions

Proving the existence of hard functions is simple: Just count. If there are more functions
than e�cient machines, some function is not e�ciently computable. This is applicable to
any model; next we state it for TMs for concreteness. Later we will state it for circuits.

Theorem 3.2. There exists a function f : [2]n → [2] that cannot be computed by a TM
with s states unless cs log s ≥ 2n, regardless of time.

Proof. The number of TMs with s states is ≤ scs, and each TM computes at most one
function (it may compute none, if it does not stop). The number of functions on n bits is
22n . Hence if 2n > cs log s some function cannot be computed. QED

Note this bound is not far from that in Exercise 2.3.
It is instructive to present this basic result as an application of the probabilistic method:

Proof. Let us pick f uniformly at random. We want to show that

Pf [∃ an s-state TM M such that M(x) = f(x) for every x ∈ [2]n] < 1.
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Indeed, if the probability is less than 1 than some function exists that cannot be computed.
By a union bound we can say that this probability is

≤
∑
M

Pf [M(x) = f(x) for every x ∈ [2]n],

where the sum is over all s-state machines. Each probability in the sum is (1/2)2n , since M
is �xed. The number of s-state machines is ≤ scs. So the sum is ≤ scs(1/2)2n , and we can
conclude as before taking logs. QED

3.3 Diagonalization and time hierarchy

Can you compute more if you have more time? For example, can you write a program that
runs in time n2 and computes something that cannot be computed in time n1.5? The answer
is yes for trivial reasons if we allow for non-boolean functions.

Exercise 3.3. Give a function f : [2]∗ → [2]∗ in Time(n2) \ Time(n1.5).

The answer is more interesting if the functions are boolean. Such results are known as
time hierarchies, and a generic technique for proving them is diagonalization, applicable to
any model.

We �rst illustrate the result in the simpler case of partial functions, which contains the
main ideas. Later we discuss total functions.

Theorem 3.3. There is a partial function in TM-Time(t(n)) such that any TMM computing
it runs in time ≥ cM t(n), for any t(n) = ω(1).

In other words, Time(t(n)) ) Time(o(t(n)).

Proof. Consider the TM H that on input x = (M, 1n−|M |) of length n runs M on x until it
stops and then complements the answer. (We can use a simple encoding of these pairs, for
example every even-position bit of the description of M is a 0.)

Now de�ne X to be the subset of pairs s.t. M runs in time ≤ t(n)/|M |c on inputs of
length n, and |M |c ≤ t(n)/2.

On these inputs, H runs in time |M |c+ |M |c ·t(n)/|M |c ≤ t(n), as desired. To accomplish
this, H can begin by making a copy of M in time |M |c ≤ t(n)/2. Then every step of the
computation of M can be simulated by H with |M |c steps, always keeping the description
of M to the left of the head.

Now suppose N computes the same function as H in time t(n)/|N |c. Note that x :=
(N, 1n−|N |) falls in the domain X of the function, for n su�ciently large, using that t(n) =
ω(1). Now consider running N on x. We have N(x) = H(x) by supposition, but H(x) is the
complement of N(x), contradiction. QED

This proof is somewhat unsatisfactory; in particular we have no control on the running
time of H on inputs not in X. It is desirable to have a version of this fundamental result
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for total functions. Such a version is stated next. It requires additional assumptions on t
and a larger gap between the running times. Perhaps surprisingly, as we shall discuss, both
requirements are essential.

Theorem 3.4. Let t(n) ≥ n be a function. Suppose that f(x) := t(|x|) is in TM-Time(t(n)/ logc n).
There is a total function in TM-Time(ct(n) log t(n)) that cannot be computed by any

TM M in time cM t(n).

The assumption about t is satis�ed by all standard functions, including all those in this
book. (For example, take t(n) := n2. The corresponding f is then |x|2. To compute f on
input x of n bits we can �rst compute |x| = n in time cn log n (Exercise 2.2). This is a
number of b := log n bits. We can then square this number in time bc. Note that the time to
compute f(x) is dominated by the cn log n term coming from computing |x|, which does not
depend on t and is much less than the n2/ logc n in the assumption.) The assumption cannot
be removed altogether because there exist pathological functions t for which the result is
false.

The proof is similar to that of Theorem 3.3. However, to make the function total we
need to deal with arbitrary machines, which may not run in the desired time or even stop
at all. The solution is to clock H in a manner similar to the proof of the universal machine,
Lemma 2.1.

Also, we de�ne a slightly di�erent language to give a stronger result � a unary language
� and to avoid some minor technical details (the possibility that the computation of f erases
the input).

We de�ne a TM H that on input 1n obtains a description of a TM M , computes t(n),
and then simulates M on input 1n for t(n) steps in a way similar to Lemma 2.1, and if M
stops then H outputs the complement of the output of M ; and if M does not stop then
H stops and outputs anything. Now H computes a function in time about t(n). We argue
that this function cannot be computed in much less time as follows. Suppose some TM M
computes the function in time somewhat less than t(n). Then we can pick an 1n for which
H obtains the description of this M , and the simulation always stops. Hence, for that 1n we
would obtain M(1n) = H(1n) = 1−M(1n), which is a contradiction.

However, there are interesting di�erences with the simulation in Lemma 2.1. In that
lemma the universal machine U was clocking the steps of the machine M being simulated.
Now instead we need to clock the steps of U itself, even while U is parsing the description of
M to compute its transition function. This is necessary to guarantee that H does not waste
time on big TM descriptions.

Whereas in Lemma 2.1 the tape was arranged as

(x,M, i, t′, y),

it will now be arranged as
(x,M ′, i, t′,M ′′, y)

which is parsed as follows. The description of M is M ′M ′′, M is in state i, the tape of
M contains xy and the head is on the left-most symbol of y. The integer t′ is the counter
decreased at every step
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Proof. De�ne TM H that on input 1n:

1. Compute (n, t(n), 1n).

2. Compute (Mn, t(n), 1n). Here Mn is obtained from n by removing all left-most zeroes
until the �rst 1. I.e., if n = 0j1x then Mn = x. This is similar to the fact that a
program does not change if you add, say, empty lines at the bottom.

3. Simulate Mn on 1n, reducing the counter t(n) at every step, including those parsing
Mn, as explained before.

4. If Mn stops before the counter reaches 0, output the complement of its output. If the
counter reaches 0 stop and output anything.

Running time of H.

1. Computing n is similar to Exercise 2.2. By assumption t(n) is computable in time
t(n)/ logc n. Our de�nition of computation allows for erasing the input, but we can
keep n around spending at most another logc n factor. Thus we can compute (n, t(n))
in time t(n). Finally, in case it was erased, we can re-compute 1n in time cn log n by
keeping a counter (initialized to a copy of n).

2. This takes time c(n+ t(n)): simply scan the input and remove zeroes.

3. Decreasing the counter takes c|t(n)| steps. Hence this simulation will take ct(n) log t(n)
time.

Overall the running time is ct(n) log t(n).
Proof that the function computed by H requires much time. Suppose some TM M com-

putes the same function as H. Consider inputs 1n where n = 0j1M . Parsing the description
of M to compute its transition function takes time cM , a value that depends on M only and
not on j. Hence H will simulate bt(n)/cMc steps of M . If M stops within that time (which
requires t(n) to be larger than bM , and so n and j su�ciently large compared to M) then
the simulation terminates and we reach a contradiction as explained before. QED

The extra log t(n) factor cannot be reduced because of the surprising result presented
in Theorem 3.5 showing that, on TMs, time o(n log n) equals time n for computing total
functions.

However, tighter time hierarchies hold for more powerful models, like RAMs. Also, a
time hierarchy for total functions for BPTime is... an open problem! But a hierarchy is
known for partial functions.

Exercise 3.4. (1) State and prove a tighter time hierarchy for Time (which recall corre-
sponds to RAMs) for total functions. You don't need to address simulation details, but you
need to explain why a sharper separation is possible.

(2) Explain the di�culty in extending (1) to BPTime.
(3) State and prove a time hierarchy for BPTime for partial functions.
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3.3.1 TM-Time(o(n log n)) = TM-Time(n)

In this subsection we prove the result in the title, which we also mentioned earlier. First let
us state the result formally.

Theorem 3.5. Let f : [2]∗ → [2] be in TM-Time(t(n)) for a t(n) = o(n log n). Then
f ∈ TM-Time(n).

Note that time n is barely enough to scan the input. Indeed, the corresponding machines
in Theorem 3.5 will only move the head in one direction.

The rest of this section is devoted to proving the above theorem. LetM be a machine for
f witnessing the assumption of the theorem. We can assume that M stops on every input
(even though our de�nition of time only applies to large enough inputs), possibly by adding
≤ n to the time, which does not change the assumption on t(n). The theorem now follows
from the combination of the next two lemmas.

Lemma 3.1. Let M be a TM running in time t(n) ≤ o(n log n). Then on every input
x ∈ [2]∗ every i-CS with i ≤ |x| has length ≤ cM .

Proof. Assume towards a contradiction that for every b ∈ N there are inputs which have
crossing sequences of length ≥ b. Speci�cally let x(b) be a shortest input of length n(b) :=
|x(b)| such that there exists j ∈ {0, 1, . . . , n(b)} for which the j-CS in the computation of M
on x(b) has length ≥ b.

Exercise 3.5. Prove n(b)→∞ for b→∞.

There are n(b)+1 ≥ n(b) tape boundaries within or bordering x(b). If we pick a boundary
uniformly at random, the average length of a CS on x(b) is ≤ t(n(b))/n(b). Hence there are
≥ n(b)/2 choices for i s.t. the i-CS on x(b) has length ≤ 2t(n(b))/n(b).

The number of such crossing sequences is

≤ (s+ 1)2t(n(b))/n(b) = (s+ 1)o(n(b) log(n(b))/n(b) = n(b)o(log s).

Hence, the same crossing sequence occurs at ≥ (n(b)/2)/n(b)o(log s) ≥ 4 positions i, using
that n(b) is large enough.

Of these four, one could be the CS of length ≥ b from the de�nition of x(b). Of the other
three, two are on the same side of j. We can remove the corresponding interval of the input
without removing the CS of length ≥ b. Hence we obtained a shorter input with a CS of
length ≥ b, contradicting our de�nition of x(b) and so our initial assumption. QED

Lemma 3.2. Suppose f : [2]∗ → [2] is computable by a TM such that on every input x,
every i-CS with i ≤ |x| has length ≤ b. Then f is computable in time n by a TM with cb
states that only moves the head in one direction.

Exercise 3.6. Prove this.
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3.4 Circuits

The situation for circuits is similar to that of 2-TMs, and by Theorem 2.6 we know that
proving ω(n log n) bounds on circuits is harder than for 2-TMs. Even a bound of cn is
unknown. The following is a circuit version of Theorem 3.2. Again, the bound is close to
what we saw in Theorem 2.4.

Theorem 3.6. There are functions f : [2]n → [2] that require circuits of size ≥ (1 −
o(1))2n/n, for every n.

One can prove a hierarchy for circuit size, by combining Theorem 3.6 and Theorem 2.4.
As stated, the results give that circuits of size cs compute more functions than those of size
s. In fact, the �o(1)� in the theorems is small, so one can prove a sharper result. But a
stronger and more enjoyable argument exists.

Theorem 3.7. [Hierarchy for circuit size] For every n and s ≤ c2n/n there is a function
f : [2]n → [2] that can be computed by circuits of size s+ cn but not by circuits of size s.

Proof. Consider a path from the all-zero function to a function which requires circuits of
size ≥ s, guaranteed to exist by Theorem 3.6, changing the output of the function on one
input at each step of the path. Let h be the �rst function that requires size > s, and let h′ be
the function right before that in the path. Note that h′ has circuits of size ≤ s, and h can be
computed from h′ by changing the value on a single input. The latter can be implemented
by circuits of size cn. QED

Exercise 3.7. Prove a stronger hierarchy result for alternating circuits, where the �cn� in
Theorem 3.7 is replaced with �c.�

In fact, this improvement is possible even for (non alternating) circuits, see Problem 3.2.

3.4.1 The circuit won't �t in the universe: Non-asymptotic, cosmo-
logical results

Most of the results in this book are asymptotic, i.e., we do not explicitly work out the
constants because they become irrelevant for larger and larger input lengths. As stated,
these results don't say anything for inputs of a �xed length. For example, any function on
10100 bits is in Time(c).

However, it is important to note that all the proofs are constructive and one can work
out the constants, and produce non-asymptotic results. We state next one representative
example when this was done. It is about a problem in logic, an area which often produces
very hard problems.

On an alphabet of size 63, the language used to write formulas includes �rst-order vari-
ables that range over N, second-order variables that range over �nite subsets of N, the
predicates �y = x+ 1� and �x ∈ S� where x and y denote �rst-order variables and S denotes
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a set variable, and standard quanti�ers, connectives, constants, binary relation symbols on
integers, and set equality. For example one can write things like �every �nite set has a
maximum:� ∀S∃x ∈ S∀y ∈ S, y ≤ x.

Theorem 3.8. [167] To decide the truth of logical formulas of length at most 610 in this
language requires a circuit containing at least 10125 gates. So even if each gate were the size
of a proton, the circuit would not �t in the known universe.

Their result applies even to randomized circuits with error 1/3, if 610 is replaced with
614. (We can de�ne randomized circuits analogously to BPTime.)

3.5 Problems

Problem 3.1. Hierarchy Theorem 3.4 only gives a function f that cannot be computed fast
on all large enough input lengths: it is consistent with the theorem that f can be computed
fast on in�nitely many input lengths.

Give a function f : [2]∗ → [2]∗ mapping x to [2]log log log |x| that is computable in time nc

but such that for any RAM M running in time n2 the following holds. For every n ≥ cM
and every x ∈ [2]n one has M(x) 6= f(x).

Hint: Note the range of f . Can this result hold as stated with range [2]?

Problem 3.2. Replace �cn� in Theorem 3.7 with �c.�

Problem 3.3. Prove that {0i1i : i ≥ 0} ∈ TM-Time(cn log n) \ TM-Time(t(n)), for any t(n) = o(n log n).
For the negative result, don't use pumping lemmas or other characterization results not

covered in this book.

Problem 3.4. The following argument contradicts Theorem 3.4; what is wrong with it?
�By Theorem 3.5, TM-Time(n log0.9 n) = TM-Time(n). By padding (Theorem 3.5),

TM-Time(n log1.1 n) = TM-Time(n log0.9 n). Hence TM-Time(n log1.1 n) = TM-Time(n).�

3.6 Notes

Concluding, I view the mystery of the di�culty of proving (even the slightest
non-trivial) computational di�culty of natural problems to be one of the greatest
mysteries of contemporary mathematics. [202]

Crossing sequences and the tight quadratic bound for palindromes are from [83].
The time hierarchy originates in [85] and was later optimized [86].
The existence of hard functions via counting arguments, Theorem 3.6, goes back to [159],

Theorem 7, �Are most functions simple or complex?�
Theorem 3.5 follows by combining results in [84, 106].
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Chapter 4

Reductions

https://xkcd.com/230/

One can relate the complexity of functions via reductions . This concept is so ingrained
in common reasoning that giving it a name may feel, at times, strange. For in some sense
pretty much everything proceeds by reductions. In any algorithms textbook, the majority of
algorithms can be cast as reductions to algorithms presented earlier in the book, and so on.
And it is worthwhile to emphasize now that, as we shall see below, reductions, even in the
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context of computing, have been used for millennia. For about a century reductions have
been used in the context of undecidability in a modern way, starting with the incompleteness
theorem in logic, whose proof reduces questions in logic to questions in arithmetic.

Perhaps one reason for the more recent interest in complexity reductions is that we can
use them to relate problems that are tantalizingly close to problems that today we solve
routinely on somewhat large scale inputs with computers, and that therefore appear to be
just out of reach. By contrast, reductions in the context of undecidability tend to apply
to problems that are completely out of reach, and in this sense remote from our immediate
worries.

4.1 Types of reductions

Informally, a reduction from a function f to a function g is a way to compute f given that
we can compute g. One can de�ne reductions in di�erent ways, depending on the overhead
required to compute f given that we can compute g. The most general type of reduction is
simply an implication.

General form of reduction from f to g:
If g can be computed with resources X then f can be computed with resources Y .

A common setting is when X = Y . In this case the reduction allows us to stay within
the same complexity class.

De�nition 4.1. We say that f reduces to g in X (or under X reductions) if

g ∈ X ⇒ f ∈ X.

A further special and noteworthy case is when X = P, or X = BPP; in these cases the
reduction can be interpreted as saying that if g is easy to compute than f is too.But in
general X may not be equal to Y . We will see examples of such implications for various X
and Y .

It is sometimes useful to be more speci�c about how the implication is proved. For
example, this is useful when inferring various properties of f from properties of g, something
which can be obscured by a stark implication. The following de�nition gives a speci�c way
in which the implication can be proved.

De�nition 4.2. We say that f map reduces to g in X (or via a map in X) if there isM ∈ X
such that f(x) = g(M(x)) for every x.

Exercise 4.1. Suppose that f map reduces to g in X.
(1) Suppose X = P. Show f reduces to g in X.
(2) Suppose X =

⋃
dTime(d · n2). Can you still show that f reduces to g in X?

Many reductions we shall see are not mapping reductions. In fact, our �rst example is
not a mapping reduction.
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4.2 Reductions

4.2.1 Multiplication

Summing two n-bit integers is in CktGates(cn) (Exercise 2.8). But the smallest circuit known
for multiplication has ≥ cn log n gates. (The same situation holds for MTMs; over RAMs
and related models multiplication can be done in time cn.) It is a long-standing question
whether we can multiply two n-bit integers with a linear-size circuit.

What about squaring integers? Is that harder or easier than multiplication? Obviously,
if we can multiply two numbers we can also square a number: simply multiply it by itself.
This is a trivial example of a reduction. What about the other way around? We can use a
reduction established millennia ago by the Babylonians. They employed the equation

a · b =
(a+ b)2 − (a− b)2

4
(4.1)

to reduce multiplication to squaring, plus some easy operations like addition and division by
four. In our terminology we have the following.

De�nition 4.3. Multiplication is the problem of computing the product of two n-bit inte-
gers. Squaring is the problem of computing the square of an n-bit integer.

Theorem 4.1. If Squaring has linear-size circuits then Multiplication has linear-size circuits.

Proof. Suppose C computes Squaring. Then we can multiply using equation (4.1). Specif-
ically, given a and b we use Exercise 2.8 to compute a + b and a − b. (We haven't seen
subtraction or negative integers, but it's similar to addition.) Then we run C on both of
them. Finally, we again use Exercise 2.8 for computing their di�erence. It remains to divide
by four. In binary, this is accomplished by ignoring the last two bits � which costs nothing
on a circuit. QED

4.2.2 3Sum

De�nition 4.4. The 3Sum problem: Given a list of integers, are there three integers that
sum to 0?

It is easy to solve 3Sum in time cn2 log n on a RAM. (We can �rst sort the integers then
for each pair (a, b) we can do a binary search to check if −(a+ b) is also present.) The time
can be improved n2/ logc n.

3Sum is believed to require quadratic time.

De�nition 4.5. SubquadraticTime :=
⋃
ε>0 Time(n2−ε).

Conjecture 4.1. 3Sum 6∈ SubquadraticTime.
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One can reduce 3Sum to a number of other interesting problem to infer that, under
Conjecture 4.1, those problems require quadratic time too.

De�nition 4.6. The Collinearity problem: Given a list of points in the plane, are there
three points on a line?

Theorem 4.2. Collinearity ∈ SubquadraticTime⇒ 3Sum ∈ SubquadraticTime (i.e., Conjecture
4.1 is false).

Proof. We map instance a1, a2, . . . , an of 3Sum to the points

(a1, a
3
1), (a2, a

3
2), . . . , (an, a

3
n),

and solve Collinearity on those points.
To verify correctness, notice that points (x, x3), (y, y3), and (z, z3) are on a line i�

y3 − x3

y − x
=
z3 − x3

z − x
.

Because y3 − x3 = (y − x)(y2 + yx+ x2), this condition is equivalent to

y2 + yx+ x2 = z2 + zx+ x2 ⇔ (x+ (y + z))(y − z).

Assuming y 6= z, i.e., that the 3Sum instance consists of distinct numbers, this is equivalent
to x+ y + z = 0, as desired. (The case where there can be duplicates is left as an exercise.)

Note that the Collinearity instance has length linear in the 3Sum instance, and the result
follows. QED

Exercise 4.2. The Tripartite-3Sum problem: Given lists A1, A2, and A3 of numbers, are
there ai ∈ Ai s.t. a1 + a2 + a3 = 0?

Prove that Tripartite-3Sum is in subquadratic time i� 3Sum is.

We now give a reduction in the other direction: We reduce a problem to 3Sum.

De�nition 4.7. The 3Cycle-Detection problem: Given the adjacency list of a directed graph,
is there a cycle of length 3?

This problem can be solved in time n2ω/(ω+1)+o(1) where ω < 2.373 is the exponent
of matrix multiplication. If ω = 2 then the bound is n1.33̄+o(1). It is not known if any
subquadratic algorithm for 3Sum would improve these bounds. However, we can show that
an improvement follows if 3Sum ∈ Time(n1+ε) for a small enough ε.

Theorem 4.3. 3Sum ∈ Time(t(n))⇒ 3Cycle-Detection ∈ BPTime(ct(n)), for any t(n) ≥ n.
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The reduction can be derandomized (that is, one can replace BPTime with Time in the
conclusion) but the randomized case contains the main ideas.

Proof. We assign random numbers rx with 4 log n bits to each node x in the graph. The
3Sum instance consists of the integers rx − ry for every edge x→ y in the graph.

To verify correctness, suppose that there is a cycle

x→ y → z → x

in the graph. Then we have rx − ry + ry − rz + rz − rx = 0, for any random choices.
Conversely, suppose there is no cycle, and consider any three numbers rx1 − ry1, rx2 −

ry2, rx3 − ry3 from the reduction and its corresponding edges. Some node xi has unequal
in-degree and out-degree in those edges. This means that when summing the three numbers,
the random variable rxi will not cancel out. When selecting uniform values for that variable,
the probability of getting 0 is at most 1/n4.

By a union bound, the probability there there are three numbers that sum to zero is
≤ n3/n4 < 1/3. QED

Exercise 4.3. Prove analogous results for:
3Sum vs. 3 Cycles on undirected graphs.
4Sum vs. 4 Cycles on undirected graphs. Hint: This might not be as easy as the �rst

part.
To be clear, in the input to the undirected graph problems we do not allow repeated

edges among nodes, and a cycle cannot use an edge more than once.

Many other clusters of problems exist, for example based on matrix multiplication or
all-pairs shortest path.

4.3 Reductions from 3Sat

In this section we begin to explore an important cluster of problems not known to be in
BPP. What's special about these problems is that in Chapter 5 we will show that we can
reduce arbitrary computation to them, while this is unknown for the problems in the previous
section.

Perhaps the most basic problem in the cluster is the following.

De�nition 4.8. A 3CNF is a CNF where every clause has at most three literals. The 3Sat
problem: Given a 3CNF φ, is there an assignment x s.t. φ(x) = 1?

Conjecture 4.2. 3Sat6∈ P.

Stronger conjectures have been made.

Conjecture 4.3. [Exponential time hypothesis (ETH)] There is ε > 0 such that there is no
algorithm that on input a 3CNF φ with v variables and cv3 clauses decides if φ is satis�able
in time 2(ε+o(1))v.
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Conjecture 4.4. [Strong exponential-time hypothesis (SETH)] For every ε > 0 there is k
such that there is no algorithm that on input a kCNF φ with v variables and cvk clauses
decides if φ is satis�able in time 2(1−ε+o(1))v.

It is known that SETH⇒ ETH, but the proof is not immediate.
We now give reductions from 3Sat to several other problems. The reductions are in fact

mapping reductions. Moreover, the reduction map can be extremely restricted, see Problem
4.5. In this sense, therefore, this reduction can be viewed as a direct translation of the
problem, and maybe we shouldn't really be thinking of the problems as di�erent, even if
they at �rst sight refer to di�erent types of objects (formulas, graphs, numbers, etc.).

For videos covering these reductions you can watch videos 29, 30, 31, and 32 covering
reductions: 3SAT to CLIQUE, CLIQUE to VERTEX-COVER, 3SAT to SUBSET-SUM,
3SAT to 3COLOR from https://www.ccs.neu.edu/home/viola/classes/algm-generic.

html Note: The videos use the terminology �polynomial time� instead of �power time� here.

4.3.1 3Sat to Clique

De�nition 4.9. The Clique problem, given a graph G and an integer t, are there t nodes
in G that are all connected? The latter is called a clique of size t.

Example 4.1. The following graph has a clique of size 3 but not of size 4:

Theorem 4.4. Clique ∈ P⇒ 3Sat ∈ P.

Proof. Given a 3CNF ϕ with k clauses, we construct a graph G with 3k nodes where we
have a node for each literal occurrence. We then connect all except

(A) Nodes in same clause, and
(B) Contradictory nodes, such as x and ¬x.
The construction is in P.
We claim that ϕ is satis�able i� G has a clique of size k.
Only if: Given a satisfying assignment, collect exactly one node which is satis�ed in

each clause. This makes t = k nodes. For any pair of such nodes, (A) does not hold by
construction, and (B) because they correspond to an assignment.

If : Given a clique of size t, pick any assignment that makes the corresponding literals
true. This is a valid de�nition by (B). Also, because of (A), there is at least one true literal
in each clause. QED
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Example 4.2. Consider

ϕ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z) ∧ (x ∨ y ∨ ¬z).

The corresponding graph G is:

¬x ¬y z

x

y

z

x

y

¬z

We seek cliques of size t = k = 3, a.k.a. triangles.
A satisfying assignment to ϕ is x = 0; y = 1; z = 0. The corresponding clique is shown

next:

¬x ¬y z

x

y

z

x

y

¬z

Another satisfying assignment is x = 1; y = 0; z = 1. The corresponding clique is shown
next:
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¬x ¬y z

x

y

z

x

y

¬z

4.3.2 Clique to cover-by-vertexes

TBD

4.3.3 3Sat to Subset-Sum

De�nition 4.10. The Subset-uum problem: Given n integers ai and a target t, is there a
subset of the ai that sums to t?

Example 4.3. There is a subset of 5, 2, 14, 3, 9 summing to t := 25 (2 + 14 + 9 = 25). But
there is no subset of 1, 3, 4, 9 summing to t := 15.

Subset-sum is also a very interesting problems. If the numbers are small it can be
solved in power time via dynamic programming. Hence the next reduction capitalizes on the
magnitude of the numbers.

Theorem 4.5. Subset-sum ∈ P⇒ 3Sat ∈ P.

Proof. On input ϕ with v variables and k clauses we produce a list of numbers with v + k
digits. The most signi�cant vcorrespond to variables. The other k to clauses For each
variable x include number aTx which has 1 in the digit corresponding to x, and a 1 in every
digit of a clause where x appears without negation. Similarly, include number aFx which
also has a 1 in the digit corresponding to x, and now a 1 in every digit of a clause where x
appears negated.

Also, for each clause C, include twice the number aC which has a 1 in the digit corre-
sponding to C, 0 in others.

Set t to be 1 in �rst v digits, and 3 in rest k digits.
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This construction is power time.
Now suppose ϕ has satisfying assignment. Pick aTx if x is true, aFx if x is false. The sum

of these numbers yield 1 in �rst v digits by construction. It also yields 1, 2, or 3 in each of
the last k digits because each clause has a true literal. By picking appropriate subset of the
numbers aC we can reach t.

Conversely, given a subset, note that there is no carry in sum, because tehre are only
3 literals per clause. So digits behave �independently.� For each pair aTx , a

F
x exactly one is

included, otherwise would not get 1 in that digit. De�ne x true if aTx included, false otherwise.
For any clause C, the aC contribute ≤ 2 in that digit. So each clause must have a true literal
otherwise sum would not get to 3 in that digit. QED

Example 4.4. Let ϕ := (x∨ y ∨ z)∧ (¬x∨¬y ∨ z)∧ (x∨ y ∨¬z). The subset-sum instance
is:

var x var y var z clause 1 clause 2 clause 3
aTx = 1 0 0 1 0 1
aFx = 1 0 0 0 1 0
aTy = 0 1 0 1 0 1
aFy = 0 1 0 0 1 0
aTz = 0 0 1 1 1 0
aFz = 0 0 1 0 0 1
ac1 = 0 0 0 1 0 0
ac2 = 0 0 0 0 1 0
ac3 = 0 0 0 0 0 1
t = 1 1 1 3 3 3

A satisfying assignment is x = 0, y = 1, z = 0. The corresponding subset is:
var x var y var z clause 1 clause 2 clause 3

aTx = 1 0 0 1 0 1
aFx = 1 0 0 0 1 0
aTy = 0 1 0 1 0 1
aFy = 0 1 0 0 1 0
aTz = 0 0 1 1 1 0
aFz = 0 0 1 0 0 1

(2x) ac1 = 0 0 0 1 0 0 (choose twice)
(2x) ac2 = 0 0 0 0 1 0 (choose twice)
(2x) ac3 = 0 0 0 0 0 1

t = 1 1 1 3 3 3
Another satisfying assignment is x = y = z = 1 with corresponding subset
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var x var y var z clause 1 clause 2 clause 3
aTx = 1 0 0 1 0 1
aFx = 1 0 0 0 1 0
aTy = 0 1 0 1 0 1
aFy = 0 1 0 0 1 0
aTz = 0 0 1 1 1 0
aFz = 0 0 1 0 0 1

(2x) ac1 = 0 0 0 1 0 0
(2x) ac2 = 0 0 0 0 1 0 (choose twice)
(2x) ac3 = 0 0 0 0 0 1

t = 1 1 1 3 3 3

4.3.4 3Sat to 3Color

De�nition 4.11. A 3-coloring of a graph is a coloring of each node, using at most 3 colors,
such that no adjacent nodes have the same color. The 3Color problem: Given a graph G,
does it have a 3 coloring?

Example 4.5. The following graphs have a 3-coloring, shown:

An example of a graph that cannot be 3-colored is a clique of size 4.

Theorem 4.6. 3Color∈ P⇒ 3Sat ∈ P.

Proof. Given a 3CNF φ, we construct a graph G as follows.
Add 3 special nodes called the "palette" in a clique:
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T = True
F = False
B = Base

T B

F

For each variable add 2 literal nodes with an edge between them

x ¬x

For each clause add the following gadget with 6 nodes

Connect each literal node to node B in the palette

T B

F

x ¬x
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For each clause (`1, `2, `3) connect the clause gadget to he palette and to the nodes `i as
follows:

T B

F

a b c

The construction of G is in P. We now prove that ϕ is satis�able i� G is 3 colorable.
We begin with some preliminary remarks. In the palette, T's color represents TRUE, and
F's color represents FALSE. Note in a 3-coloring, all variable nodes must be colored T or F
because they are connected to B. Also, x and ¬x must have di�erent colors because they are
connected. So we can �translate� a 3-coloring of G into a true/false assignment to variables
of ϕ.

The important claim is that a clause gadget can be 3-colored i� any of the literals
connected to it is colored True. This holds because each of the two triangles in a the clause
gadget is computing �Or:� In a triangle, the top node is colored according to the Or of the
two literals connected to the bottom two nodes in the triangle. For example, if the literals
are both F, then the bottom nodes in the triangle must be colored T and B, and so the top
is F.

The result follows. Given a satisfying assignment, we can pick the corresponding coloring
of the literal nodes and extend it to a 3 coloring of the entire graph. Vice versa, given a 3
coloring of the graph we can infer an assignment to the variables and note that each clause
has a true literal since each clause gadget is 3 colored. QED

Example 4.6. Let ϕ := (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ z). Then G is
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T B

F

x ¬x y ¬y z ¬z

A satisfying assignment is x = y = 0 and z = 1. The corresponding coloring is
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T B

F

x ¬x y ¬y z ¬z

Exercise 4.4. The problem System is de�ned as follows. A linear inequality is an inequality
involving sums of variables and constants, such as x+ y ≥ z, x ≤ −17, and so on. A system
of linear inequalities has an integer solution if it is possible to substitute integer values for
the variables so that every inequality in the system becomes true. The language System
consists of systems of linear inequalities that have an integer solution. For example,

(x+ y ≥ z, x ≤ 5, y ≤ 1, z ≥ 5) ∈ System

(x+ y ≥ 2z, x ≤ 5, y ≤ 1, z ≥ 5) 6∈ System

Reduce 3Sat to System in P.

Exercise 4.5. For an integer k, k-Color is the problem of deciding if the nodes of a given
undirected graph G can be colored using k colors in such a way that no two adjacent vertices
have the same color.

Reduce 3-Color to 4-Color P.

Reductions in the opposite directions are possible, and so in fact the problems in this
section are power-time equivalent in the sense that any of the problems is in P i� all the
others are. We will see a generic reduction in the next chapter. For now, we illustrate this
equivalence in a particular case.
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Exercise 4.6. Reduce 3Color to 3Sat in P, following these steps:
1. Given a graph G, introduce variables xi,d representing that node i has color d, where

d ranges in the set of colors C = {g, r, b}. Describe a set of clauses that is satis�able if and
only if for every i there is exactly one d ∈ C such that xi,d is true.

2. Introduce clauses representing that adjacent nodes do not have the same color.
3. Brie�y conclude the proof.

Thus, we are identifying a cluster of problems which are all power-time equivalent.

4.4 Power hardness from SETH

In this section we show that a conjecture similar to Conjecture 4.1 can be proved assuming
SETH. This is an interesting example of how we can connect di�erent parameter regimes,
since SETH is stated in terms of exponential running times. In general, �scaling� parameters
is a powerful technique in the complexity toolkit.

De�nition 4.12. The Or-Vector problem: Given two sets A and B of strings of the same
length, determine if there is a ∈ A and b ∈ B such that the bit-wise Or a ∨ b equals the
all-one vector.

The Or-Vector problem is in Time(n2). We can show that a substantial improvement
would disprove SETH.

Theorem 4.7. Or-Vector ∈ SubquadraticTime⇒ SETH is false.

Proof. Divide the variables in two blocks of v/2 each. For each assignment to the variables
in the �rst block construct the vector in [2]d where bit i is 1 i� clause i is satis�ed by the
variables in the �rst block. Call A the resulting set of vectors. Let N := 2v/2 and note
|A| = N . Do the same for the other block and call the resulting set B.

Note that φ is satis�able i� ∃a ∈ A, b ∈ B such that a ∨ b = 1d.
Constructing these sets takes time Ndc. If Or-Vector ∈ Time(n2−ε) for some ε > 0, we

can take k = cε and rule out SETH. QED

4.5 Search problems

Most of the problems in the previous sections ask about the existence of solutions. For
example 3Sat asks about the existence of a satisfying assignment. It is natural to ask about
computing such a solution, if it exists. Such non-boolean problems are known as search
problems .

Next we show that in some cases we can reduce a search problem to the corresponding
boolean problem.
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De�nition 4.13. Search-3Sat is the problem: Given a satis�able 3CNF formula, output a
satisfying assignment.

Theorem 4.8. Search-3Sat reduces to 3Sat in P. That is: 3Sat ∈ P⇒ Search-3Sat ∈ P.

Proof. We construct a satisfying assignment one variable at the time. Given a satis�able
3CNF, set the �rst variable to 0 and check if it is still satis�able with the assumed algorithm
for 3Sat. If it is, go to the next variable. If it is not, set the �rst variable to 1 and go to the
next variable. QED

Exercise 4.7. Show Clique ∈ P⇒ Search-Clique ∈ P.

4.5.1 Fastest algorithm for Search-3Sat

A curious fact about many search problems is that we know of an algorithm which is, in
an asymptotic sense to be discussed now, essentially the fastest possible algorithm. This
algorithm proceeds by simulating every possible program. When a program stops and out-
puts the answer, we can check it e�ciently. Naturally, we can't just take any program and
simulate it until it ends, since it may never end. So we will clock programs, and stop them if
they take too long. There is a particular simulation schedule which leads to e�cient running
times.

Theorem 4.9. There is a RAM U such that on input any satis�able formula x:
(1) M outputs a satisfying assignment, and
(2) If there is a RAM M that on input x outputs a satisfying assignment for x in t steps

then U stops in cM t+ |x|c steps.

We are taking advantage of the RAM model. On other models it is not known if the
dependence on t can be linear.

Proof. For i = 1, 2, . . . the RAM U simulates RAM i for 2i steps. 2.2 guarantees that for
each i the simulation takes time c2i. If RAM i stops and outputs y, then U checks in time |x|c
if y is a satisfying assignment. If it is, then U outputs y and stops. Otherwise it continues.

Now letM be as in (2). As before, we work with an enumeration of programs where each
program appears in�nitely often. Hence we can assume that M has a description of length
` := cM + log t. Thus the simulation will terminate when i = `.

The time spent by U for a �xed i is ≤ c · 2i + |x|c. Hence he total running time of U is

≤ c
∑̀
j=1

(
c2j + |x|c

)
≤ cM2` + cM |x|c ≤ cM(t+ |x|c).

QED

This result nicely illustrates how �constant factors� can lead to impractical results be-
cause, of course, the problem is that the constant in front of t is enormous. Speci�cally, it is
exponential in the size of the program, see Problem 4.6.
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4.6 Gap-SAT: The PCP theorem

�Furthermore, most problem reductions do not create or preserve such gaps.
There would appear to be a last resort, namely to create such a gap in the
generic reduction [C]. Unfortunately, this also seems doubtful. The intuitive
reason is that computation is an inherently unstable, non-robust mathematical
object, in the sense that it can be turned from non-accepting by changes that
would be insigni�cant in any reasonable metric � say, by �ipping a single state
to accepting.�

One of the most exciting, consequential, and technical developments in complexity theory of
the last few decades has been the development of reductions that create gaps.

De�nition 4.14. γ-Gap-3Sat is the 3Sat problem restricted to input formulas f that are
either satis�able or such that any assignment satis�es at most a γ fraction of clauses.

Note that 3Sat is equivalent to γ-Gap-3Sat for γ = 1− 1/n, since a formula of size n has
at most n clauses. At �rst sight it is unclear how to connect the problems when γ is much
smaller. But in fact it is possible to obtain a constant γ. This result is known as the PCP
theorem, where PCP stands for probabilistically-checkable-proofs. The connection to proofs
will be discussed in Chapter 11.

Theorem 4.10. [PCP] There is γ < 1 such that γ-Gap-3Sat ∈ P⇒ 3Sat ∈ P.

Similar results can be established for other problems such as 3Color, but the reductions
in the previous section don't preserve gaps and can't be immediately applied.

A major application of the PCP theorem is in inapproximability results. A typical opti-
mization problem is Max-3Sat.

De�nition 4.15. The Max-3Sat problem: given a 3CNF formula, �nd a satisfying assign-
ment that satis�es the maximum number of clauses.

Solving 3Sat reduces to Max-3Sat (in Chapter 5 we will give a reverse reduction as
well). But we can ask for β-approximating Max-3Sat, that is, computing an assignment that
satis�es a number of clauses that is at least a β fraction of the maximum possible clauses
that can be satis�ed.

The PCP Theorem 4.10 implies that 3Sat reduces to β−approximating Max-3Sat, for
some constant β < 1.

It has been a major line of research to obtain tight approximation factors β for a variety
of problems. For example, 3Sat reduces to β-approximating Max-3Sat for any β > 7/8. This
constant is tight because a random uniform assignment to the variables satis�es each clause
with probability 7/8 and hence expects to satisfy a 7/8 fraction of the clauses.

Exercise 4.8. Turn this latter observation in an e�cient randomized algorithm with an
approximation factor 7/8− o(1).
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4.7 Problems

Problem 4.1. Reduce 3Sat in P to the PIT problem (De�nition 2.8) over the �eld with two
elements.

Problem 4.2. Prove that 3Sat is not TM-Time(n1.99). (Hint: Consider a variant of the
palindromes problem where the input bits are suitably spaced out with zeroes. Prove a time
lower bound for this variant by explaining what modi�cations are needed to the proof of
Theorem 3.1. Conclude by giving a suitable reduction from Padded-Palindromes to 3Sat.)

Problem 4.3. Consider the problem H: The input is a directed graph with a special source
node s, m destination nodes t1, t2, . . . , tm, and a subset B of bad nodes. The question is
whether there are m paths from s to each of the destination nodes. The paths can share
edges, but any two paths entering a bad node must leave through the same outgoing edge.

Reduce 3SAT to H in P.

Problem 4.4. Show that 3Color ∈ P⇒ Search-3Color ∈ P.

Problem 4.5. Give an encoding of 3Sat so that the reduction to 3Color in section �4.3 can
be computed, for any input length, by a 1-local map (in particular, a circuit of constant
depth).

Problem 4.6. Suppose there exists a such that Theorem 4.9 holds with the running time
of U replaced with (|M | · t · |x|)a. (That is, the dependence on the program description
improved to power, and we allow even weaker dependence on t.) Prove that 3Sat ∈ P.

Problem 4.7. Use Problem 2.6 and its notation. Assume P = BPP. Show that given a
circuit C and ε written in unary s.t. pC ≥ ε we can compute x : C(x) = 1 in P. In particular,
given a non-zero arithmetic circuit we can �nd a non-zero assignment.

4.8 Notes

Circuits of size cn log n for multiplication were obtained in [77]. For the result about RAMs
see [156].

Following [48] (discussed in the next chapter), [101] established reductions from satis�abil-
ity of (general) boolean formulas to 21 problems, including 3Sat, Clique, Cover-by-vertexes,
3Color, and Subset Sum. This opened the �oodgates: The web of reductions from 3Sat is
immense, see [61] for a starter.

The ETH and the SETH are from [91] and [93]. Again, a large number of reductions
involving these hypotheses exists.

The web of reductions of 3Sum, including Theorem 4.2, was �rst spun in [59] and has
grown ever since. Theorem 4.3 is from [192].

Theorem 4.9 is from [112].
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The quote at the beginning of section �4.6 is from [139]. The PCP theorem as stated in
Theorem 4.10 is from [17]. A sequence of exciting works preceded and followed it. For an
account, as well as a proof of the PCP theorem, see [16].

Problem 4.7 is from [66].
Problem 4.6 is from [175].
This cluster of problems equivalent to 3Sat is so prominent that problems in it have been

compiled into books [61], see also the list on wikipedia: https://en.wikipedia.org/wiki/List_of_NP-
complete_problems. Amusingly, this list contains (generalized versions of) several popular
games including: Tetris, Lemmings, Sudoku, etc. For an excellent exposition of this type of
results see the video https://www.youtube.com/watch?v=oS8m9fSk-Wk

Tight hardness results based on SETH have been established for several well-studied
problems, including longest-common subsequence [2] and edit distance [21].
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Chapter 5

Completeness: Reducing arbitrary

computation

In this chapter we show how to reduce arbitrary computation to 3Sat (and hence to the
other problems in section �4.3). What powers everything is the following landmark and, in
hindsight, simple result which reduces circuit computation to 3Sat.

Theorem 5.1. Given a circuit C : [2]n → [2] with s gates we can compute in P a 3CNF
formula fC in n+ s variables such that for every x ∈ [2]n:

C(x) = 1⇔ ∃y ∈ [2]s : fC(x, y) = 1.

The key idea to guess computation and check it e�ciently, using that computation is
local. The additional s variables one introduces contain the values of the gates during
the computation of C on x. We simply have to check that they all correspond to a valid
computation, and this can be written as 3CNF because each gate depends on at most two
other gates.

Proof. Introduce a variable yi for each non-input gate gi in C. The value of yi is intended
to be the value of gate gi during the computation. Whether the value of a gate gi is correct
is a function of 3 variables: yi and the ≤ 2 gates that input gi, some of which could be input
variables. This can be written as a 3CNF by Theorem 2.4. Take an And of all these 3CNFs.
Finally, add clause yo for the output gate go. QED

Exercise 5.1. Write down the 3CNF for the circuit in �gure 2.2, as given by the proof of
Theorem 5.1.

Theorem 5.1 is a depth-reduction result. Indeed, note that a 3CNF can be written as a
circuit of depth c log s, whereas the original circuit may have any depth. This is helpful for
example if you don't have the depth to run the circuit yourself. You can let someone else
produce the computation, and you can check it in small depth.

We can combine Theorem 5.1 with the simulations in Chapter 2 to reduce computation
in other models to 3SAT. In particular, we can reduce MTMs running in time t to 3Sat
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of size t logc t. To obtain such parameters we need the quasilinear simulation of MTMs by
circuits, Theorem 2.6.

However, recall that a quasilinear simulation of RAMs by circuits is not known. Only
a power simulation is (which is obtained by combining the power simulation of RAMs by
MTMs, Theorem 2.7, with a simulation of MTMs by circuits). This would reduce RAM
computation running in time t to 3CNFs of size tc. We content ourselves with this power
loss for the beginning of this chapter. Later in section �5.3 we will obtain a quasi-linear
simulation using an enjoyable argument which also bypasses Theorem 2.6.

In fact, these simulations apply to a more general, non-deterministic, model of com-
putation. We de�ne this model next, and then present the simulation with power loss in
5.2.

5.1 Nondeterministic computation

In the concluding equation in Theorem 5.1 there is an ∃ quanti�er on the right-hand side,
but there isn't one on the left, next to the circuit. However, because the simulation works for
every input, we can �stick� a quanti�er on the left and have the same result. The resulting
circuit computation C(x, y) has two inputs, x and y. We can think of it as a non-deterministic
circuit, which on input x outputs 1 i� ∃y : C(x, y). Following the discussion before, we could
do the same for other models like TMs, MTMs, and RAMs. The message here is that �
if we allow for an ∃ quanti�er, or in other words consider nondeterministic computation �
e�cient computation is equivalent to 3CNF! This is one motivation for formally introducing
a nondeterministic computational model.

De�nition 5.1. NTime(t(n)) is the set of functions f : X ⊆ [2]∗ → [2] for which there is a
RAM M such that:

- f(x) = 1 i� ∃y ∈ [2]t(|x|) such that M(x, y) = 1, and
- M(x, y) stops within t(|x|) steps on every input (x, y).
We also de�ne

NP :=
⋃
d≥1

NTime(nd),

NExp :=
⋃
d≥1

NTime(2n
d

).

Note that the running time of M is a function of |x|, not |(x, y)|. This di�erence is
inconsequential for NP, since the composition of two powers is another power. But it is
important for a more �ne-grained analysis. We refer to a RAM machine as in De�nition 5.1
as a nondeterministic machine, and to the y in M(x, y) as the nondeterministic choices, or
guesses, of the machine on input x.

We can also de�ne NTime in a way that is similar to BPTime, De�nition 2.7. The two
de�nitions are essentially equivalent. Our choice for BPTime is motivated by the identi�-
cation of BPTime with computation that is actually run. For example, in a programming
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language one uses an instruction like Rand to obtain random values; one does not think of
the randomness as being part of the input. By contrast, NTime is a more abstract model,
and the de�nition with the nondeterministic guesses explicitly laid out is closer in spirit to
a 3CNF.

All the problems we studied in section �4.3 are in NP.

Fact 5.1. 3Sat, Clique, Cover-by-vertexes, SubsetSum, and 3Color are in NP.

Proof. For a 3Sat instance f , the variables y correspond to an assignment. Checking if the
assignment satis�es f is in P. This shows that 3Sat is in NP. QED

Exercise 5.2. Finish the proof by addressing the other problems in Fact 5.1

5.1.1 How to think of NP

We can think of NP as the problems which admit a solution that can be veri�ed e�ciently,
namely in P. For example for 3Sat it is easy to verify if an assignment satis�es the clauses,
for 3Color it is easy to verify if a coloring is such that any edge has endpoints of di�erent
colors, for SubsetSum it is easy to verify if a subset has a sum equal to a target, and so on.
However, as we saw above this veri�cation step can be cast in a restricted model, namely
a 3CNF. So we don't have to think of the veri�cation step as using the full power of P
computation.

Here's a vivid illustration of NP. Suppose I claim that the following matrix contains a 9:

56788565634705634705637480563476

70156137805167840132838202386421

85720582340570372307580234576423

80275880237505788075075802346518

78502378564067807582348057285428

05723748754543650350562378804337

52305723485008160234723884077764

86543234567865435674567836738063

45463788486754345743457483460040

73273873486574375464584895741832

85075783485634856237847287422112

83748874883753485745788788223201

How can you tell, without tediously examining the whole matrix? However, if I tell you
that it's in row 10, 8 digits from the right, you can quickly check that I am right. I won't
be able to cheat, since you can check my claims. On the other hand I can provide a proof
that's easy to verify.

P vs. NP

The �agship question of complexity theory is whether P = NP or not. This is a young,
prominent special case of the grand challenge we introduced in Chapter 3. Contrary to
the analogous question for BPP, cf. section 2.6.2, the general belief seems to be that P 6=
NP. Similarly to BPP, cf. Theorem 2.10, the best deterministic simulation of NP runs in
exponential time by trying all nondeterministic guesses. This gives the middle inclusion in
the following fact; the other two are by de�nition.
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Fact 5.2. P ⊆ NP ⊆ Exp ⊆ NExp.
A consequence of the Time Hierarchy Theorem 3.4 is that P 6= Exp. From the inclusions

above it follows that
P 6= NP or NP 6= Exp, possibly both.

Thus, we are not completely clueless, and we know that at least one important separation
is lurking somewhere. Most people appear to think that both separations hold, but we are
unable to prove either.

For multi-tape machines, a separation between deterministic and non-deterministic linear
time is in [141, 154].

5.2 NP-completeness

We now go back to the question at the beginning of this chapter about reducing arbitrary
computation to 3Sat. We shall reduce all of NP to 3Sat in Theorem 5.2. Problems like 3Sat
admitting such reductions deserve a de�nition.

De�nition 5.2. We call a problem L:
NP-hard if every problem in NP reduces to L in P;
NP-complete if it is NP-hard and in NP. To spell it out, this means that L ∈ NP and

moreover for any M ∈ NP we have L ∈ P⇒M ∈ P.

One can de�ne NP-hard (and hence NP-complete) w.r.t. di�erent reductions, cf. Chapter
4, and we will do so later. But the simple choice above su�ces for now.

Complete problems are the �hardest problems� in the class, as formalized in the following
fact.

Fact 5.3. Suppose L is NP-complete. Then L ∈ P⇔ P = NP.

Proof. (⇐) This is because L ∈ NP.
(⇒) Let L′ ∈ NP. Because L is NP-hard we know that L ∈ P⇒ L′ ∈ P. QED

Exercise 5.3. Suppose P = NP. Prove that any problem in NP is NP-complete.
Suppose instead P 6= NP. Let L ∈ NP. Prove L is NP-complete i� L 6∈ P.

Fact 5.3 points to an important interplay between problems and complexity classes. We
can study complexity classes by studying their complete problems, and vice versa.

The central result in the theory of NP completeness is the following.

Theorem 5.2. [49, 112] 3Sat is NP-complete.

Proof. 3Sat is in NP by Fact 5.1. Next we prove NP-hardness. The main idea is Theorem
5.1, while the rest of the proof mostly amounts to opening up de�nitions and using some
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previous simulations. Let L ∈ NP and let M be the corresponding TM which runs in time
nd on inputs (x, y) where |x| = n and |y| = nd, for some constant d. We can work with
TMs instead of RAMs since they are equivalent up to a power loss, as we saw in Theorem
2.7. We can construct in P a circuit C(x, y) of size cMncd such that for any x, y we have
M(x, y) = 1⇔ C(x, y) = 1 by Theorem 2.5.

Now, suppose we are given an input w for which we are trying to decide membership
in L. This is equivalent to deciding if ∃y : C(w, y) = 1 by what we just said. We can
�hard-wire� w into C to obtain the circuit Cw(y) := C(w, y) only on the variables y, with
no loss in size. Here by �hard-wise� se mean replacing the input gates x with the bits of w.
Now we can apply Theorem 5.1 to this new circuit to produce a 3CNF fw on variables y and
new variables z such that Cw(y) = 1 ⇔ ∃z : f(y, z) = 1, for any y. The size of fw and the
number of variables z is power in the size of the circuit.

We have obtained:

w ∈ L⇔ ∃y : M(w, y) = 1⇔ ∃y : Cw(y) = 1⇔ ∃y, z : fw(y, z) = 1⇔ fw ∈ 3Sat,

as desired. QED

In section �4.3 we reduced 3Sat to other problems which are also in NP by Fact 5.1. This
implies that all these problems are NP-complete. Here we use that if problem A reduces to
B in P, and B reduces to C, then also A reduces to C. This is because if C ∈ P then B ∈ P,
and so A ∈ P.

Corollary 5.1. Clique, Cover-by-vertexes, Subset-sum, and 3Color are NP-complete.

It is important to note that there is nothing special about the existence of NP-complete
problems. The following is a simple such problem that does not require any of the machinery
in this section.

Exercise 5.4. Consider the problem, given a RAM M , an input x, and t ∈ N, where t is
written in unary, decide if there is y ∈ [2]t such that M(x, y) = 1 in t steps. Prove that this
is NP-complete.

What if t is written in binary?

The interesting aspect of NP-complete problems such as 3Sat and those in Corollary 5.1
is that they are very simple and structured, and don't refer to computational models. This
makes them suitable for reductions, and for inferring properties of the complexity class which
are not evident from a machine-based de�nition.

5.3 From RAM to 3SAT in quasi-linear time

The framework in the previous section is useful to relate membership in P of di�erent prob-
lems in NP, but it is not suitable for a more �ne-grained analysis. For example, under the
assumption that 3Sat is in Time(cn) we cannot immediately conclude that other problems in
NP are solvable in this time or in about this time. We can only conclude that they are in P.
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In particular, the complexity of 3Sat cannot be related to that of other central conjectures,
such as whether 3Sum is in subquadratic time, Conjecture 4.1.

The culprit is the power loss in reducing RAM computation to circuits, mentioned at the
beginning of the chapter. We now remedy this situation and present a quasi-linear reduction.
As we did before, cf. Theorem 5.1 and Theorem 5.2, we �rst state a version of the simulation
for (deterministic) computation which contains all the main ideas, and then we note that a
completeness result follows.

Theorem 5.3. Given an input length n ∈ N, a time bound t ∈ N, and a RAM M that runs
in time t on inputs of n bits, we can compute in time t′ := cM t(log t)c a 3CNF f on variables
(x, y) where |y| ≤ t′ such that for every x ∈ [2]n:

M(x) = 1 ⇐⇒ ∃y : f(x, y) = 1.

We now present the proof of this amazing result; you may want to refer back to De�-
nition 2.5 of a RAM. A key concept in the proof is the following �snapshot� of the RAM
computation.

De�nition 5.3. The internal con�guration, abbreviated IC, of a RAM speci�es:

• its registers,

• the program counter,

• the word length w, and

• if the current instruction is a Read ri := µ[rj] or Write µ[rj] := ri then the IC includes
the content µ[rj] of the memory cell indexed by rj.

Note that at most one memory cell is included in one IC. By contrast, the con�guration of
a TM (De�nition 2.1) includes all its tape cells. Also note that an IC has length ≤ cM+c log t
bits, where the cM is for the program counter, and the c log t is for the rest, using that the
maximum word length of a machine running in time t ≥ n is c log t.

The key idea in the proof. At the high level, the approach is, like in Theorem 5.1, to
guess computation and check it e�ciently. We are going to guess the sequence of ICs, and
we need additional ideas to check them e�ciently by a circuit. This is not immediate, since,
again, the RAM can use direct access to read and write in memory at arbitrary locations,
something which is not easy to do with a circuit.

The key idea is to check operations involving memory independently from the operations
involving registers but not memory. If both checks pass, then the computation is correct.
More precisely, a sequence of internal con�gurations s1, s2, . . . , st corresponds to the compu-
tation of the RAM on input x i� for every i < t:

1. If si does not access memory, then si+1 has its registers, program counter, and word
length updated according to the instruction executed in si,
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2. If si is computing a read operation ri := µ[rj] then in si+1 register rj contains the
most recent value written in memory cell rj. In case this cell was never written, then
rj should contain xj if j ∈ {1, 2, . . . , n}, n if j = 0, and 0 otherwise. The program
counter in si+1 also points to the next instruction.

Rather than directly constructing a 3CNF that implements these checks, we construct a
circuit and then appeal to Theorem 5.1. It is easy to construct a circuit of quasi-linear size
implementing Check 1, since the circuit only has to check adjacent pairs of ICs. As remarked
before, these ICs have length ≤ cM + c log t. For �xed i, Check 1 can be implemented by
a circuit which depends on the RAM and has size power in the length of an IC. Taking an
And of these circuits over the choices of i gives a circuit of the desired size for Check 1.

The di�culty lies in Check 2, because the circuit needs to �nd �the most recent value
written.� The solution is to sort the ICs by memory addresses. After sorting, we can
implement Check (2) as easily as Check (1), since we just need to check adjacent pairs of
ICs.

The emergence of sorting in the theory of NP-completeness cements the pivotal role this
operation plays in computer science.

To implement this idea we need to be able to sort with a quasi-linear size circuit. Standard
sorting algorithms like Mergesort, Heapsort, or Radixsort run in quasi-linear time on a
RAM, but rely on direct addressing (cf. section �2.5) and for this reason cannot be easily
implemented by a circuit of quasi-linear size. However other algorithms have been developed
that do have such an implementation. This gives the following lemma.

Lemma 5.1. Given t and m we can compute in time t′ := t · (m log t)c a circuit (of size ≤ t′)
that sorts t integers of m bits.

Because this reduction is so fundamental, for completeness we give a proof of Lemma 5.1
in section �5.3.1.

We summarize the key steps in the proof.

Proof of Theorem 5.3. We construct a circuit CM and then appeal to Theorem 5.1. The
extra variables y correspond to t ICs s1, s2, . . . , st. An IC takes cM + c log t bits to specify,
so we need ≤ cM t log t variables y. The circuit CM �rst performs Check (1) above for each
adjacent pair (si, si+1) of ICs. This takes size cM logc t for each pair, and so size cM t logc t
overall.

Then CM sorts the ICs by memory addresses, producing sorted ICs s′1, s
′
2, . . . , s

′
t. This

takes size t · logc t by Lemma 5.1, using that the memory addresses have ≤ c log t bits.
Then the circuit performs Check (2) for each adjacent pair (s′i, s

′
i+1) of ICs. The circuit size

required for this is no more than for Check (1).
Finally, the circuit takes an And of the results of the two checks, and also checks that st

is accepting. QED

We can now prove completeness in a manner similar to Theorem 5.2, with a relatively
simple extension of Theorem 5.3.
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Theorem 5.4. Every problem L in NTime(t) map reduces to 3Sat in Time(cL,tt logc t), for
every function t ≥ n such that t(x) is computable in time t(x) given x.

The assumption on t is similar to that in the hierarchy Theorem 3.4, and is satis�ed by
all standard functions including all those in this book � cf. discussion after Theorem 3.4.

Proof. Let M be a RAM computing L in the assumed time. Given an input w of length n
we have to e�ciently compute a 3CNF f such that

∃y ∈ [2]t(n) : M(w, y) = 1 ⇐⇒ ∃y ∈ [2]cL,tt(n) logc t(n) : f(y) = 1.

First we compute t(n), using the assumption. We now apply Theorem 5.3, but on a new
input length n′ := c(n+t) ≤ ct, to accommodate for inputs of the form (x, y). This produces
a formula f of size cL,tt(log t)c in variables (x, y) and new variables z. We can now set x to
w and conclude the proof. QED

With these sharper results we can now study hardness and completeness within time
bounds such as n2, n log3 n etc. We work out an example in the next section.

5.3.1 E�cient sorting circuits: Proof of Lemma 5.1

We present an e�cient sorting algorithm for an array A[n] which enjoys the following prop-
erty: the only way in which the input is accessed is via Compare-Exchange operations.
Compare-Exchange takes two indexes i and j and swaps A[i] and A[j] if they are in the
wrong order. It has the following code:

Compare-Exchange(Array A[0..(n− 1)] and indexes i and j with i < j):
if A[i] > A[j]
swap A[i] and A[j]

Why care about this property? It makes the comparisons independent from the data, and
this allows us to implement the algorithm with a network � a sorting network � of �xed
Compare-Exchange operations. In particular, we will get a circuit.

We call an algorithm with this property oblivious . Familiar mergesort is not oblivious,
because the merge operations performs comparisons which depend on the outcome of previous
ones. However a variant of Mergesort [24], called Odd-Even-Mergesort, is oblivious.

Algorithm Odd-Even-Merge(A) merges the two already sorted halves [a0, a1, . . . , an/2−1]
and [an/2, an/2+1, . . . , an−1] of the sequence A = [a0, a1, . . . , an−1], resulting in a sorted out-
put sequence. It works in a remarkable and mysterious way. First it merges the odd subse-
quence of the entire array A, then the even, and �nally it makes O(n) Compare-Exchange-
Operations. Throughout, we assume that n is a power of 2.

Odd-Even-Merge(A = [a0, . . . , a(n−1)]):
if n = 2
Compare-Exchange(A, 0, 1)
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else {

Odd-Even-Merge([a0, a2, . . . , a(n−2)], n/2) //the even subsequence

Odd-Even-Merge([a1, a3, . . . , a(n−1)], n/2) //the odd subsequence

for i ∈ {1, 3, 5, 7, . . . , n− 3}
Compare-Exchange(A, i, i+ 1)

}

We shall now argue that this algorithm is correct.

Lemma 5.2. If [a0, a1, . . . , an/2−1] and [an/2, an/2+1, . . . , an−1] are sorted, then Odd-Even-
Mergesort([a0, a1, . . . , an−1]) outputs a sorted array.

Proof. To prove this lemma we invoke the so-called �0-1 principle.� This principle says that
it su�ces to prove the lemma when each ai is either 0 or 1, assuming that the algorithm
only accesses the input via Compare-Exchange operations. For completeness we sketch a
proof of this principle in this paragraph. Let A = [a0, . . . , an−1] be an input to Odd-Even-
Merge, and let B = [b0, . . . , bn−1] be the output sequence produced by the algorithm. If the
algorithm fails to correctly sort A, then consider the smallest index k such that bk > bk+1.
De�ne a function f such that f(c) = 1 if c ≥ bk and f(c) = 0 otherwise. For an array
X = [X0, X1, . . . , Xn−1] let f(X) be the sequence [f(X0), f(X1), . . . , f(Xn−1)] obtained by
applying f to each element of X. Observe that f(B) is not sorted. However it is easy to
verify that f commutes with any Compare-Exchange operation applied to any sequence X,
i.e.,

f(Compare-Exchange(X, i, j)) = Compare-Exchange(f(X), i, j).

Because Odd-Even-Merge is just a sequence of Compare-Exchange, we have that

f(B) = f(Odd-Even-Merge(A)) = Odd-Even-Merge(f(A))

and so the algorithm fails to correctly merge the 0-1 sequence f(A). It only remains to
notice that f(A) is a valid input for Odd-Even-Merge. This is indeed the case because if a
sequence X is sorted then f(X) is also sorted.

We now prove the lemma by induction on n, based on the recursive de�nition of Odd-
Even-Merge. Refer to Figure 5.3.1.

The base case n = 2 is clear. Assume that Odd-Even-Merge correctly merges any two
sorted 0-1 sequences of size n/2. We view an input sequence of n elements as an n/2 ×
2 matrix, with the left column corresponding to elements at the even-indexed positions
0, 2, . . . , n− 2 and the right column corresponding to elements at the odd-indexed positions
1, 3, . . . , n − 1 (Figure 5.3.1(a)). �gure 5.3.1(b) shows a corresponding 0-1 input, which we
can assume w.l.o.g. because of the zero-one principle. 5.3.1(c) shows the matrix after the
recursive calls to the sorting. Since the upper half of the matrix is sorted by assumption,
the right column in the upper half has the same number or exactly one more 1 than the left
column in the upper half. The same is true for the lower half. Because each (length-(n/4))
column in each half of the matrix is also individually sorted by assumption, the induction
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a[0] a[1]

a[2] a[3]

a[4] a[5]

a[6] a[7]

a[8] a[9]

a[10] a[11]

a[12] a[13]

a[14] a[15]

(a)

0 0

0 1

1 0

0 1

0 1

1 0

1 0

1 1

(b)

0 0

0 0

0 1

1 1

0 0

0 1

1 1

1 1

(c)

0 0

0 0

0 0

0 1

0 1

1 1

1 1

1 1

(d)

0 0

0 0

0 0

0 1

0 1

1 1

1 1

1 1

(e)

0 0

0 0

0 0

0 0

1 1

1 1

1 1

1 1

(f)

1

Figure 5.1: Odd-Even-Mergesort
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hypothesis guarantees that after the two calls to Odd-Even-Merge both the left and right
(length-(n/2)) columns are sorted (Figure 5.3.1(d)).

At this point only one of 3 cases arises:

1) The odd and even subsequences have the same number of 1s.
2) The odd subsequence has a single 1 more than the even subsequence.
3) The odd subsequence has two 1s more than the even subsequence.

In the �rst two cases, the sequence is already sorted. In the third case, the Compare-
Exchange operations (Figure 5.3.1(e)) yield a sorted sequence (Figure 5.3.1(f)). QED

Given Odd-Even-Merge, we can sort by the following algorithm which has the same
structure as Mergesort

Oblivious-Mergesort(A = [a0, . . . , a(n−1)]):
if n ≥ 2 {

Oblivious-Mergesort([a0, a1, . . . , an/2−1])
Oblivious-Mergesort([an/2, an/2+1, . . . , an−1])
Odd-Even-Merge([a0, a1, . . . , an−1])
}

It only remains to argue e�ciency. Let SM(n) denote the number of Compare-Exchange
operations for Odd-Even-Merge for an input sequence of length n. We have the recurrence

SM(n) = 2 · SM(n/2) + n/2− 1,

which yields SM(n) = O(n · log n).
Finally, let S(n) denote the number of calls to Compare-Exchange for Oblivious-Mergesort

with an input sequence of length n. Then we have the recurrence S(n) = 2 · S(n/2) +
(n · log n), which yields S(n) = O(n · log2 n).

To conclude the proof, note that Compare-Exchange for inputs with m bits can be im-
plemented by a circuit of size mc. QED

5.3.2 Quasilinear-time completeness

In this section we use the machinery we just developed to study completeness in quasi-linear
time, instead of power time.

De�nition 5.4. We de�ne the quasi-linear time complexity classes

QLin-Time :=
⋃
d∈N

Time(n logd n) and

QLin-NTime :=
⋃
d∈N

NTime(n logd n).
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Theorem 5.5. 3Sat is complete for QLin-NTime with respect to mapping reductions in
QLin-Time. That is:

- 3Sat is in QLin-NTime, and
- every problem in QLin-NTime map reduces to 3Sat in QLin-Time.

Proof. To show that 3Sat is in QLin-NTime, consider a 3CNF instance f of length n. This
instance has at most n variables, and we can guess an assignment y to them within our
budget of non-deterministic guesses. There remains to verify that y satis�es f . For this, we
can do one pass over the clauses. For each clause, we access the bits in y corresponding to
the 3 variables in the clause, and check if the clause is satis�ed. This takes constant time
per clause, and so time cn overall.

The second part follows from Theorem 5.4, using the fact that the composition of two
quasilinear functions is also quasilinear (similarly to the fact that the composition of two
power functions is also a power). QED

Note that the proof that 3Sat is in QLin-NTime relies on our computational model being
a RAM, because we use direct access to fetch the values for the variables in a clause.

We can now give the following quasi-linear version of Fact 5.3. The only extra observation
for the proof is again that the composition of two quasi-linear functions is quasi-linear.

Corollary 5.2. 3Sat ∈ QLin-Time⇔ QLin-NTime = QLin-Time.

Exercise 5.5. Prove that Theorem 5.5 holds with 3Color instead of 3Sat. What about
Clique and Subset-sum?

Exercise 5.6. Prove that 3Sum reduces to 3Sat in Subquadratic time. That is: 3Sat ∈
SubquadraticTime⇒ 3Sum ∈ SubquadraticTime (i.e., Conjecture 4.1 is false).

5.4 Completeness in other classes

The completeness phenomenon is not special to NP but enjoyed by many other classes.
In this section we begin to explore completeness for NExp and Exp. One needs to be
careful how hardness (and hence completeness) is de�ned, since these classes are known to
be di�erent from P by the hierarchy Theorem 3.4. So de�ning a problem L to be NExp-hard
if L ∈ P⇒ NExp = P would mean simply that L 6∈ P. To avoid this in this section hardness
(hence completeness) is de�ned w.r.t. mapping reductions, cf. Chapter 4. (Another option
would be to replace P with say BPP, since it is not known if BPP = NExp.)

5.4.1 NExp completeness

Complete problems for NExp include succinct versions of problems complete for NExp. Here
succinct means that rather than giving the input x to the problem in standard format, the
input consists instead of a circuit C : [2]m → [2] encoding x, for example C(i) equals bit i of
x, for every i.
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De�nition 5.5. The Succinct-3Sat problem: Given a circuit C encoding a 3CNF fC , does
fC have a satisfying assignment?

Theorem 5.6. Succinct-3Sat is NExp complete with respect to power-time mapping reduc-
tions.

Proof sketch.. Let us �rst show that Succinct-3Sat is in NExp. Given a circuit C of
length n, we can run it on every possible input (of length ≤ n) and write down the formula
fC encoded by C. This formula has size ≤ 2n. We can then use the fact that 3Sat is in
NP to decide satis�ability of this formula in non-deterministic power time in 2n, that is
NTime(2cn) ⊆ NExp.

To prove NExp hardness it is convenient to work with TMs rather than RAMs. The main
observation is that in the simulation of a TM M on an input x by a circuit CM , Theorem
2.5, the circuit is very regular, in the sense that we can construct another circuit SM which
is a succinct encoding of CM . The circuit SM is given as input indexes to gates in CM and
outputs the type of the gate and its wires. The size of SM is power in the index length and
M . Thus, if CM has size tc, SM only needs size logc t. If t = 2n

d
, SM has size power in n,

as desired. The transformation from circuit to 3CNF in Theorem 5.1 is also regular and can
be done succinctly. QED

As a consequence, we obtain the following �concrete� problem not in P.

Corollary 5.3. Succinct-3Sat 6∈ P.

5.4.2 Exp-completeness

Exp-complete problems include several two-player games. The important feature for com-
pleteness is that the game may last for an exponential number of steps (otherwise it would
belong to a class believed to be stricter which we will investigate in Chapter 7). These games
include (generalized versions of) Chess [56] and Checkers [152].

5.5 Power from completeness

The realization that arbitrary computation can be reduced to 3Sat and other problems is
powerful and liberating. In particular it allows us to signi�cantly widen the net of reductions.

5.5.1 Optimization problems

As observed in section �4.6, 3Sat trivially reduces to Max-3Sat. The converse will be shown
next.

Theorem 5.7. Max-3Sat reduces to 3Sat in P.
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Proof. Consider the problem Atleast-3Sat: Given a 3CNF formula and an integer t, is there
an assignment that satis�es at least t clauses? This is in NP and so can be reduced to 3Sat
in P. This is the step that's not easy without �thinking completeness:� given an algorithm
for 3Sat it isn't clear how to use it directly to solve Atleast-3Sat.

Hence, if 3Sat is in P so is Atleast-3Sat. On input a 3CNF f , using binary search and
the fact that Atleast-3Sat is in P, we can �nd in P the largest t s.t. (f, t) ∈ Atleast-3Sat.
Having found this t, there remains to construct an assignment satisfying the clauses. This
can be done �xing one variable at the time as in Theorem 4.8. QED

5.5.2 NP is as easy as detecting unique solutions

A satis�able 3CNF can have multiple satisfying assignments. On the other hand some
problems and puzzles have unique solutions. In this section we relate these two scenarios.

De�nition 5.6. Unique-CktSat is the problem: Given a circuit C s.t. there is at most one
input x for which C(x) = 1, decide if such an input exists.

Unique-3Sat is the Unique-CktSat problem restricted to 3CNF circuits.

Theorem 5.8. [181] 3Sat reduces to Unique-3Sat in BPP.

We in fact reduce 3Sat to Unique-CktSat. Then Unique-CktSat can be reduced to Unique-
3Sat observing that the reduction in Theorem 5.1 preserves uniqueness.

The beautiful proof uses a powerful and general technique in randomized computation:
pairwise uniformity, sometimes more generically referred to as hashing. We �rst de�ne
such functions and give e�cient constructions. Then we show how to use them to �isolate�
assignments.

De�nition 5.7. A distribution H on functions mapping S → T is called pairwise uniform
if for every x, x′ ∈ S and y, y′ ∈ T one has

PH [H(x) = y ∧H(x′) = y′] = 1/|T |2.

This is saying that on every pair of inputs H is behaving as a completely uniform func-
tion. Yet unlike completely uniform functions, the next lemma shows that pairwise uniform
functions can have a short description, which makes them suitable for use in algorithms.

Exercise 5.7. Let Fq be a �nite �eld. De�ne the random function H : Fq → Fq as H(x) :=
Ax+B where A,B are uniform in Fq.

Prove that H is pairwise uniform.
Explain how to use H to obtain a pairwise uniform function from [2]n to [2]t for any given

t ≤ n.

Exercise 5.8. De�ne the random function H1 : [2]n → [2] as H(x) :=
∑

i≤nAixi +B where
A is uniform in [2]n and B is uniform in [2].

Prove that H1 is pairwise uniform.
Explain how to use H to obtain a pairwise uniform function from [2]n to [2]t for any given

t ≤ n.
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We can now state the lemma that we use to isolate assignments.

Lemma 5.3. Let H be a pairwise uniform function mapping S → T , and let 1 ∈ T . The
probability that there is a unique element s ∈ S such that H(s) = 1 is

≥ |S|
|T |
− |S|

2

|T |2
.

In particular, if |T |/8 ≤ |S| ≤ |T |/4 this prob. is ≥ 1
8
− 1

16
≥ 1/8.

Proof. For �xed s ∈ S, the probability s is the unique element mapped to 1 is at least the
prob. that s is mapped to 1 minus the prob. that both s and some other s′ 6= s are mapped
to 1. This is

≥ 1

|T |
− |S| − 1

|T |2
.

These events for di�erent s ∈ S are disjoint; so the target probability is at least the sum
of the above over s ∈ S. QED

Proof of Theorem 5.8. Given a 3Sat instance φ with ≤ n variables x, we pick a random i
from 0 to n+ c. We then pick a pairwise uniform function mapping [2]n to [2]i, and consider
the circuit

C := φ(x) ∧H(x) = 0i.

This circuit has size nc.
If φ is not satis�able, C is not satis�able, for any random choices.
Now suppose that φ has s ≥ 1 satisfying assignment. With prob. ≥ 1/n we will have

2i−3 ≤ s ≤ 2i−2, in which case Lemma 5.3 guarantees that C has a unique satisfying
assignment with prob. ≥ c.

Overall, C has a unique satisfying assignment with prob. ≥ c/n. Hence the Unique-
3Sat algorithm on C outputs 1 with prob. ≥ c/n. If we repeat this process cn times,
with independent random choices, the Or of the outcomes gives the correct answer with
prob. ≥ 2/3. QED

5.6 Problems

Problem 5.1. In Theorem 4.8 we reduced Search-3Sat to 3Sat.
- Suppose 3Sat is computable by circuits of depth c log n. What would be the depth of

the circuits for Search-3Sat given by the reduction?
- Reduce Search-3Sat to 3Sat in

⋃
a>0Depth(a log n).

Hint: First work with randomized circuits. Use ideas in proof of Theorem 4.8.
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5.7 Notes

NP-completeness originates in the fundamental works [48, 112]. The �rst paper proves a
version of Theorem 5.1 for TM, for a more recent and similar exposition see [165]. Theorem
5.3 is from [72, 153]. The �rst work focuses on an equivalence between computational models,
while the second explicitly constructs a 3CNF formula. We presented the proof in a slightly
di�erent way, using sorting circuits and following the exposition in [132].
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Chapter 6

Alternation

We placed one quanti�er �in front� of computation and got something interesting: NP. So
let's push the envelope.

De�nition 6.1. ΣiTime(t(n)) is the set of functions f : X ⊆ [2]∗ → [2] for which there is a
RAM M such that on input (x, y1, y2, . . . , yi) stops within t(|x|) steps and

f(x) = 1⇔ ∃y1∀y2∃y3∀y4 . . . Qiyi ∈ [2]t(|x|) : M(x, y1, y2, . . . , yi) = 1.

ΠiTime(t(n)) is de�ned similarly except that we start with a ∀ quanti�er. We also de�ne

ΣiP :=
⋃
d

ΣiTime(nd),

ΠiP :=
⋃
d

ΠiTime(nd), and

the power hiearchy PH :=
⋃
i

ΣiP =
⋃
i

ΠiP.

We refer to such computation and the corresponding machines as alternating, since they
involve alternation of quanti�ers and we will soon see a connection with alternating circuits.

As for NP, De�nition 5.1, note that the running time of M is a function of |x| only.
Again, this di�erence is inconsequential for ΣiP, since the composition of two powers is
another power. But it is important for a more �ne-grained analysis.

Exercise 6.1. Min-Ckt is the problem of deciding if an input circuit has an equivalent circuit
which is smaller. It is not known to be in NP. In which of the above classes can you place
it?

6.1 Does the PH collapse?

We refer to the event that ∃i : ΣiP = PH as �the PH collapses.� It is unknown if the PH
collapses. Most people appear to believe that it does not, and to consider statements of the
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type
X ⇒ PH collapses

as evidence that X is false. Examples of such statements are discussed next.

Theorem 6.1. P = NP⇒ P = PH.

The idea in the proof is simply that if you can remove a quanti�er then you can remove
more.

Proof. We prove by induction on i that ΣiP
⋃

ΠiP = P.
The base case i = 1 follows by assumption and the fact that P is closed under complement.
Next we do the induction step. We assume the conclusion is true for i and prove it for

i+ 1. We will show Σi+1P = P. The result about Πi+1P follows again by complementing.
Let L ∈

∑
i+1 P, so ∃a and a power-time TM M such that for any x ∈ [2]n,

x ∈ L⇔ ∃y1∀y2∃y3∀y4 . . . Qi+1yi+1 ∈ [2]n
a

: M(x, y1, y2, . . . , yi+1) = 1.

(As discussed after De�nition 6.1 we don't need to distinguish between time as a function of
|x| or of |(x, y1, y2, . . . , yi+1)| when considering power times as we are doing now.)

Now the creative step of the proof is to consider

L′ :=
{

(x, y1) : ∀y2 ∈ [2]n
a

. . . Qi+1yi+1 ∈ [2]n
a

: M(x, y1, y2, . . . , yi+1) = 1
}
.

Note L′ ∈ ΠiP. By induction hypothesis L′ ∈ P. So let TM M ′ solve L′ in power time. So
x ∈ L ⇐⇒ ∃y1 ∈ [2]n

a
: M ′(x, y1) = 1. And so L ∈ NP= P, again using the hypothesis.

QED

Exercise 6.2. Prove the following strengthening of Theorem 6.1:⋃
d

NTime(dn) ⊆ Time(n1+ε)⇒
⋃
d

ΣiTime(dn) ⊆ Time(n1+εci ).

Exercise 6.3. Show that if ΣiP = ΠiP for some i then the PH collapses to ΣiP, that is,
PH = ΣiP.

Theorem 6.2. [102] NP ⊆ PCkt⇒ PH = Σ2P.

Proof. We'll show Π2P ⊆ Σ2P and then appeal to Exercise 6.3. Let f ∈ Π2Time(nd) and
M be a corresponding machine s.t.

f(x) = 1⇔ ∀y1 ∈ [2]n
d∃y2 ∈ [2]n

d

: M(x, y1, y2) = 1.

We claim the following equivalent expression for the right-hand side above:

∀y1 ∈ [2]n
d∃y2 ∈ [2]n

d

: M(x, y1, y2) = 1⇔ ∃C∀y1 ∈ [2]n
d

: M(x, y1, C(x, y1)) = 1,
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where C ranges over circuits of size |x|d′ for some d′. If the equivalence is established the
result follows, since evaluating a circuit can be done in power time.

To prove the equivalence, �rst note that the the ⇐ direction is obvious, by setting
y2 := C(x, y1). The interesting direction is the ⇒. We claim that under the assumption,
there is a circuit that given x, y1 outputs a string y2 that makes M(x, y1, y2) accept, if there
is such a string.

To verify this, consider the problems CktSat and Search-CktSat which are analogous
to the 3Sat and Search-3Sat problems but for general circuits rather than 3CNF. CktSat
is in NP, and so by assumption has power-size circuits. By the reduction in Theorem 4.8,
Search-CktSat has power-size circuits S as well. Hence, the desired circuit C may, on input
x and y1 produce a new circuit W mapping an input y2 to M(x, y1, y2), and run S on W .
QED

Exercise 6.4. Prove that PH 6⊆ CktGates(nk), for any k ∈ N. (Hint: Existentially guess
the truth table of a hard function.)

Improve this to Σ2P 6⊆ CktGates(nk).

Exercise 6.5. Prove Exp ⊆ PCkt⇒ Exp = Σ2P.

6.2 PH vs. alternating circuits

As suggested by the word alternation in De�nition 6.1, the power hierarchy PH and its
subclasses can be seen as alternating circuits. Before presenting this connection it is useful
to write problems in PH in a speci�c format. The next lemma shows that we can restrict
the machine M in De�nition 6.1 to read only one bit of the input x. The price for this is
that we are going to have to introduce an extra quanti�er, however this new quanti�er will
only range over log t bits.

Lemma 6.1. Let L ∈ ΣiP. Then there exists a RAM M s.t.:

x ∈ L⇔∃y1 ∈ [2]t(|x|)∀y2 ∈ [2]t(|x|) . . . Qi−1yi−1 ∈ [2]t(|x|)

Qi(yi, z) ∈ [2]2t(|x|)Qi+1yi+1 ∈ [2]log t(|x|) : M(x, y1, y2, . . . , yi+1) = 1,

and M on input (x, y1, y2, . . . , yi+1) stops within ct(|x|) steps and only reads one bit of x.

Note the �rst i − 1 quanti�ers are over t bits and unchanged from De�nition 6.1, the
next one is over 2t bits, written as a pair (yi, z), and the last is over log t. The idea is... you
guessed it ! We are going to guess the bits read from the input, and verify that each of them
is correct.

Proof. LetM ′ be the machine corresponding to L in De�nition 6.1. We assume that Qi = ∃,
i.e., i is odd. The case Qi = ∀ is left for exercise.

We enlarge Qi to quantify over additional t bits z which correspond to the bits of x read
by M ′. The desired machine M simulates M ′ with the following change. At any time step
s, if M ′ reads bit j of x:
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(1) If s 6= yi+1 then M does not read x and instead uses bit zs,
(2) If s = yi+1 then M reads the corresponding bit of x, and it also checks that this bit

equals zs. If it doesn't M rejects.
By inspection, M reads at most one bit of x.
Correctness is argued as follows. For any y1, y2, . . . , yi, if M ′ accepts x then there are

values z for the bits read from the input x that cause M to accept. Conversely, if M accepts
for some z then this z matches the bits read from x by M ′, for else M would reject in (2).
Hence M ′ accepts x as well. QED

We now show how to simulate computation in PH by small-depth circuits. The size of
the circuit is exponential in the time; such a simulation would not be interesting if the circuit
is not explicit and the time is more than the input length, since every function on n bits has
circuits of size 2n (Theorem 2.4). By contrast, the simulation will give explicit circuits and
also apply to running times less than the input length. The setting of running time less than
the input length makes the simulation interesting even for non-explicit circuits, and is soon
to play a critical role.

Lemma 6.2. Any function in ΣdTime(t)
⋃

ΠdTime(t) has on inputs of length n alternating
circuits of depth d + 1 and 2cdt(n) gates. The fan-in of each gate is ≤ 2ct(n) and the fan-in
of the gates closest to the input is ≤ t(n). Moreover, the circuit is explicit in the following
sense: Given an index to a gate g of fan-in h and a number i ≤ h we can compute the index
of child i of g in Time(cn).

In fact, most of this circuit only depends on t. The only thing that depends on the actual
function being computed are the connections between the gates closest to the input and the
input.

Proof. We apply Lemma 6.1. Then an ∃ (resp. ∀) quanti�er on b bits corresponds to an Or
(resp. And) gate with fan-in 2b. A gate g closest to the input correspond to the computation
of the RAM for �xed quanti�ed variables. This computation depends on at most one bit of
x. If this computation is a constant independent of x, we simply replace this gate with the
appropriate constant. Otherwise, if it depends on a bit xj of x then the computation of the
RAM is either xj or ¬xj. Thus we can connect gate g to either input gate xj or input gate
¬xj.

An index to a gate g next to the input is just an assignment to the quanti�ed variables
yi. Given such an index and i ≤ t we can compute in linear time which input bit it depends
on. This is done by simulating the machine until the i-th time it reads an input bit. Note
this simulation runs in time ct which is linear in the length of an index to the gate. QED

6.3 BPP in PH

It is not known if BPP is contained in NP. However, we can show that BPP is in PH.
More precisely, the following two simulations are known. The �rst optimizes the number of
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quanti�ers, the second the time. This should be contrasted with various conditional results
suggesting that in fact a quasilinear deterministic simulation (with no quanti�ers) is possible.

Theorem 6.3. For every function t we have:
(1) [164] BPTime(t) ⊆ Σ2Time(t2 logc t), and
(2) [189] BPTime(t) ⊆ Σ3Time(t logc t).

A good way to think of these results is as follows. Fix a BPTime(t) machine M and an
input x ∈ [2]n. Now the alternating machine is trying to decide if for most choices of the
random bits y we have M(x, y) = 1, or if for most choices we have M(x, y) = 0. This can
be seen as a version of the Majority problem, with two critical features. The �rst is that
it is succinct in the sense of section 5.4.1, that is, the alternating machine does not have
access to the exponentially-long majority instance, but rather has access to a small circuit
M(x, ·) s.t. M(x, y) is bit y of the majority instance. The second is that instances have a
gap. We de�ne this gap-majority problem next. We de�ne the non-succinct version which
is of independent interest, and so use the letter n to indicate input length. But recall that
for the application later in this section the input is given succinctly, as just remarked, so the
gap majority instance will actually be on a number of bits that is exponential in the input
length to the alternating machine.

De�nition 6.2. Gap-Majα,β is the problem of deciding if an input x ∈ [2]n has weight
|x| ≤ αn or |x| ≥ βn.

As discussed in section �6.2, it is useful to think of alternating computation as alternating
circuits. Indeed, the circuit result that is the starting point of all these simulations is the
following somewhat surprising construction of small-depth alternating circuits for Gap-Maj.
By contrast, (non-gap) Maj does not have small constant-depth alternating circuits, as we
will prove in Chapter ??.

Lemma 6.3. [5] Gap-Maj1/3,2/3(x) has alternating circuits of depth 3 and size nc. Moreover,
the gates at distance 1 from the input have fan-in ≤ c log n.

Proof. This is a striking application of the probabilistic method. For a �xed pair of inputs
(x, y) we say that a distribution C on circuits gives (≤ p,≥ q) if PC [C(x) = 1] ≤ p and
PC [C(y) = 1] ≥ q; and we similarly de�ne gives with reverse inequalities. Our goal is to
have a distribution that gives

(≤ 2−n,≥ 1− 2−n) (6.1)

for every pair (x, y) ∈ [2]n× [2]n where |x| ≤ n/3 and |y| ≥ 2n/3. Indeed, if we have that we
can apply a union bound over the < 2n inputs to obtain a �xed circuit that solves Gap-Maj.

We construct the distribution C incrementally. Fix any pair (x, y) as above. Begin with
the distribution C∧ obtained by picking 2 log n bits uniformly from the input and computing
their And. This gives (

(1/3)2 logn, (2/3)2 logn
)
.
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Let p := (1/3)2 logn and note (2/3)2 logn = p · n2. So we can say that C∧ gives(
≤ p,≥ p · n2

)
.

Now consider the distribution C∨ obtained by complementing the circuits in C∧. This gives(
≥ 1− p,≤ 1− p · n2

)
.

Next consider the distribution C∧∨ obtained by taking the And of m := p−1/n independent
samples of C∨. This gives (

≥ (1− p)m,≤ (1− p · n2)m
)
.

To make sense of these quantities we use the basic approximations

1 + α ≤ eα ≤ 1 + 2α

valid for all α ∈ [0, 1]. These imply (1−p)m ≥ e−pm/2 = e−1/(2n) ≥ 0.9 and (1−p·n2)m ≤ e−n.
Summarizing, this gives

(≥ 0.9,≤ e−n).

Next consider the distribution C∨∧ obtained by complementing the circuits in C∧∨. This
gives

(≤ 0.1,≥ 1− e−n).

Finally, consider the distribution C∧∨∧ obtained by taking the And of n independent samples
of C∨∧. This gives (

≤ 0.1n,≥
(
1− e−n

)n)
.

To make sense of the rightmost quantity we can use the approximation

(1 + α)r ≥ 1 + rα

valid for all α ≥ −1 and r ≥ 1. Thus this gives(
≤ 0.1n,≥ 1− ne−n

)
.

We have ne−n < 2−n. Thus this distribution in particular gives equation (6.1). The bounds
on the number of gates and the fan-in holds by inspection. QED

Exercise 6.6. Prove Gap-Maj1/2−1/
√

logn,1/2+1/
√

logn has alternating circuits of depth c and
size nc.

Exercise 6.7. Assume the circuit in Lemma 6.3 is explicit in the sense of Lemma 6.2. Prove
Theorem 6.3.

There remains to construct explicit circuits for Gap-Maj. We give a construction which
has worse parameters than Lemma 6.3 but is simple and su�ces for (1) in Theorem 6.3.
The idea is that if the input weight of x is large, then we can �nd a few shifts of the ones
in x that cover each of the n bits. But if the weight of x is small we can't. By �shift� by s
we mean the string xi⊕s, obtained from x by permuting the indices by xoring them with s.
(Other permutations would work just as well.)
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Lemma 6.4. Let r := log n. The following circuit solves GapMaj1/r2,1−1/r2 on every x ∈ [2]n:∨
s1, s2, . . . , sr ∈ [2]r :

∧
i ∈ [2]r :

∨
j ∈ {1, 2, . . . , r} : xi⊕sj .

Note that ∧
i ∈ [2]r :

∨
j ∈ {1, 2, . . . , r} : xi⊕sj

means that every bit i is covered by some shift sj of the input x.

Proof. Assume |x| ≤ n/r2. Each shift si contributes at most n/r2 ones. Hence all the r
shifts contribute ≤ n/r ones, and we do not cover every bit i.

Now assume |x| ≥ n(1− 1/r2). We show the existence of shifts si that cover every bit by
the probabilistic method. Speci�cally, for a �xed x we pick the shifts uniformly at random
and aim to show that the probability that we do not cover every bit is < 1. Indeed:

Ps1,s2,...,sr [∃i ∈ [2]r : ∀j ∈ {1, 2, . . . , r} : xi⊕sj = 0]

≤
∑
i∈[2]r

Ps1,s2,...,sr [∀j ∈ {1, 2, . . . , r} : xi⊕sj = 0] (union bound)

=
∑
i∈[2]r

Ps[xi⊕s = 0]r (independence of the si)

≤
∑
i∈[2]r

(1/r2)r (by assumption on |x|)

≤(2/r2)r

<1,

as desired. QED

Exercise 6.8. Prove (1) in Theorem 6.3.

Lemma 6.4 is not su�cient for (2) in Theorem 6.3. One can prove (2) by derandomizing
the shifts in Lemma 6.4. This means generating their r2 bits using a seed of only r logc r
bits (instead of the trivial r2 in Lemma 6.4.). This is done in section 13.1.3.

Exercise 6.9. Prove:
(1) P = NP⇒ P = BPP.
(2) Σ2P ⊆ BPP⇒ PH collapses.

6.4 The quanti�er calculus

We have extended P with ∃ and ∀ quanti�ers. We have also extended it with randomness to
obtain BPP. As alluded to before, we can also think of BPP as a quanti�er BP applied to
P. The Unique-3Sat problem (Theorem 5.8) also points to a new quanti�er, �exists unique.�
We now develop a general calculus of quanti�ers, and examine fundamental relationships
between then. For simplicity, we only consider power-time computation.
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De�nition 6.3. Let C be a class of functions mapping [2]∗ → [2]. We de�ne L ∈ Op · C if
there is L′ ∈ C and d ∈ N such that

• Op = Maj

x ∈ L⇔ P
y∈[2]|x|d

[(x, y) ∈ L′] ≥ 1/2.

• Op = BP

x ∈ L⇒ P
y∈[2]|x|d

[(x, y) ∈ L′] ≥ 2/3,

x 6∈ L⇒ P
y∈[2]|x|d

[(x, y) ∈ L′] ≤ 1/3.

• Op = ⊕ (read: parity)

x ∈ L⇔ there is an odd number of y ∈ [2]|x|
d

: (x, y) ∈ L′.

• Op = ∃
x ∈ L⇔ ∃y ∈ [2]|x|

d

: (x, y) ∈ L′.

• Op = ∀
x ∈ L⇔ ∀y ∈ [2]|x|

d

: (x, y) ∈ L′.

With this notation we have: NP = ∃ · P, BPP = BP · P, Σ2P = ∃ · ∀ · P.

6.5 PH is a random low-degree polynomial

In this section we prove the following result.

Theorem 6.4. [174] PH ⊆ BP · ⊕ · P.

This is saying that any constant number of ∃ and ∀ quanti�er can be replaced by a BP
quanti�er followed by a ⊕ quanti�er. Let's see what this has to do with the title of this
section. Where is the polynomial? Consider polynomials over F2 ∈ [2]. Recall that such a
polynomial over n bits is an object like

p(x1, x2, . . . , xn) = x1 · x2 + x3 + x7 · x2 · x1 + x2 + 1.

Because we are only interested in inputs in [2] we have xi = x for any i ≥ 1 and any
variable x, so we don't need to raise variables to powers bigger than one.
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Example 6.1. The And function on n bits can be written as the polynomial

And(x1, x2, . . . , xn) =
n∏
i=1

xi.

The Or function on n bits can be written as the polynomial

Or(x1, x2, . . . , xn) = 1 + And(1 + x1, 1 + x2, . . . , 1 + xn) = 1 +
n∏
i=1

(1 + xi).

For n = 2 we have
Or(x1, x2) = x1 + x2 + x1 · x2.

The polynomial corresponding to a PH computation will have an exponential number of
terms, so we can't write it down. The big sum over all its monomials corresponds to the
⊕ in Theorem 6.4. The polynomial will be su�ciently explicit: we will be able to compute
each of its monomials in P. Finally, there won't be just one polynomial, but we will have a
distribution on polynomials, and that's the BP part.

Confusing? Like before, a good way to look at this result is in terms of alternating
circuits. We state the basic circuit result behind Theorem 6.4 after a de�nition. The result
is of independent interest and will be useful later in Chapter 10.

De�nition 6.4. A distribution P on polynomials computes a function f : [2]n → [2] with
error ε if for every x we have

PP [P (x) = f(x)] ≥ 1− ε.

Theorem 6.5. [147] Let C : [2]n → [2] be an alternating circuit of depth d and size s. Then
there is a distribution P on polynomials over F2 of degree logd−1 s/ε that computes C with
error ε.

Ultimately we only need constant error, but the construction requires small error. Jump-
ing ahead, this is because we construct distributions for each gate separately, and we need
the error to be small enough for a union bound over all gates in the circuit.

The important point in Theorem 6.5 is that if the depth d is small (e.g., constant) (and
the size is not enormous and the error is not too small) then the degree is small as well. For
example, for power-size alternating circuits of constant depth the degree is power logarithmic
for constant error.

Let us slowly illustrate the ideas behind Theorem 6.5 starting with the simplest case: C
is just a single Or gate on n bits.

Lemma 6.5. For every ε and n there is a distribution P on polynomials of degree log 1/ε
in n variables over F2 that computes Or with error ε.
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Proof. For starters, pick the following distribution on linear polynomials: For a uniform
A = (A1, A2, . . . , An) ∈ [2]n output the polynomial

pA(x1, x2, . . . , xn) :=
∑
i

Ai · xi.

Let us analyze how pA behaves on a �xed input x ∈ [2]n:

• If Or(x) = 0 then pA(x) = 0;

• If Or(x) = 1 then PA[pA(x) = 1] ≥ 1/2.

While the error is large in some cases, a useful feature of pA is that it never makes mistakes
if Or(x) = 0. This allows us to easily reduce the error by taking t := log 1/ε polynomials pA
and combining them with an Or.

pA1,A2,...,At(x) := pA1(x) ∨ pA2(x) ∨ · · · ∨ pAt(x).

The analysis is like before:

• If Or(x) = 0 then pA1,A2,...,At(x) = 0;

• If Or(x) = 1 then PA1,A2,...,At [pA1,A2,...,At(x) = 1] ≥ 1− (1/2)t ≥ 1− ε.

It remains to bound the degree. Each pAi has degree 1. The Or on t bits has degree t by
Example 6.1. Hence the �nal degree is t = log 1/ε. QED

Exercise 6.10. Obtain the same result for C = And.

Now we would like to handle general circuits which have any number of And and Or
gates. As mentioned earlier, we apply the construction above to every gate, and compose
the polynomials. We pick the error at each gate small enough so that we can do a union
bound over all gates.

Proof of Theorem 6.5. We apply Lemma 6.5 to every gate in the circuit with error ε/s.
By a union bound, the probability that any gate makes a mistake is ε, as desired.

The �nal polynomial is obtained by composing the polynomials of each gate. The com-
position of a polynomial of degree d1 with another of degree d2 results in a polynomial of
degree d1 · d2. Since each polynomial has degree log s/ε, and we compose d − 1 times, the
�nal degree is logd−1 s/ε. QED

6.5.1 Back to PH

We have proved Theorem 6.5 which is a circuit analogue of Theorem 6.4. We now go back
to the PH. First, we have to come up with a more explicit description of the polynomials,
instead of picking them at random. This is similar to the way we proceeded in section �6.3:
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After a non-explicit construction (Lemma 6.3) we then obtained an explicit construction
(Lemma 6.4).

Let us go back to the simplest case of Or. Recall that the basic building block in the
proof of Lemma 6.5 was the construction of a distribution pA on linear polynomials which
are zero on the all-zero input (which just means that they do not have constant terms), and
are often non-zero on any non-zero input. We introduce a de�nition, since now we will have
several constructions with di�erent parameters.

De�nition 6.5. A distribution pA on linear polynomials with no constant term has the
Or property if PA[pA(x) = 1] ≥ 1/3 for any x 6= 0. We identify pA with the n bits A
corresponding to its coe�cients.

The next lemma shows that we can compute distributions on linear polynomials with
the Or property from a seed of just log n + c bits, as opposed to the n bits that were used
for A in the proof of Lemma 6.5. This important fact is generalized and put in context
in section 13.1.2. Recall that for our application to Lemma 6.5 the polynomials have an
exponential number of monomials and so we cannot a�ord to write them down. Instead
we shall guarantee that given a seed r and an index to a monomial we can compute the
monomial via a function f in P. In this linear case, for a polynomial in n variables we have
≤ n monomials xi. So the function f takes as input r and a number i ≤ n and outputs the
coe�cient to xi.

Lemma 6.6. [128] Given n, i ≤ n, and r ∈ [2]2 logn+c we can compute in P a function f(r, i)
such that for uniform R ∈ [2]2 logn+c the distribution

(f(R, 1), f(R, 2), . . . , f(R, n))

has the Or property.

Proof. [13] Let q := 2logn+c and identify the �eld Fq with bit strings of length log q. We
view r as a pair (s, t) ∈ (Fq)2. Then we de�ne

f((s, t), i) := 〈si, t〉

where si is exponentiation in Fq and 〈., .〉 : (Fq)2 → [2] is de�ned as 〈u, v〉 :=
∑
ui · vi over

F2.
To show that this has the Or property, pick any non-zero x ∈ [2]n. We have to show that

p := PS,T [
∑
i

〈Si, T 〉xi = 1] ≥ 1/3.

The critical step is to note that∑
i

〈Si, T 〉xi =
∑
i

〈xi · Si, T 〉 = 〈
∑
i

xi · Si, T 〉.
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Now, if x 6= 0, then the probability over S that
∑

i xi ·Si = 0 is ≤ n/q ≤ 1/6. This is because
any S that gives a zero is a root of the non-zero, univariate polynomial q(y) :=

∑
i xi · yi of

degree ≤ n over Fq, and so the bound follows by Lemma 2.3.
Whenever

∑
i xi · Si 6= 0, the probability over T that 〈

∑
i xi · Si, T 〉 = 0 is 1/2. Hence

our target probability p above satis�es

p ≥ 1/2− 1/6

as desired. QED

Exercise 6.11. Give an alternative construction of a distribution with the Or property
following this guideline.

(1) Satisfy the Or property for every input x with weight 1.
(2) For any j, satisfy the Or property for every input x with weight between 2j and 2j+1.

Use Lemma 5.3.
(3) Combine (2) with various j to satisfy the Or property for every input.
(4) State the seed length for your distribution and compare it to that of Lemma 6.6.

With this in hand, we can now reduce the error in the same way we reduced it in the
proof of Lemma 6.5.

Lemma 6.7. Given n, a seed r ∈ [2]c log(1/ε) logn, and m ≤ nc log 1/ε we can compute in P a
monomial Xr,m of degree c log 1/ε such that the distribution∑

m

XR,m

for uniform R computes Or with error ε.

Proof. We use the construction

pA1,A2,...,At(x) := pA1(x) ∨ pA2(x) ∨ · · · ∨ pAt(x)

from the proof of Lemma 6.5, except that each Ai is now generated via Lemma 6.5, and that
t = c log 1/ε (as opposed to t = log 1/ε before). The bound on the degree is the same as
before, as is the proof that it computes Or: The error will be (1/3)c log 1/ε ≤ ε.

There remains to show that the monomials can be computed in P. For this we can go
back to the polynomial for Or in Example 6.1. Plugging that gives

pA1,A2,...,At(x) =
∑

a∈[2]t:a6=0

∏
i≤t

(pAi(x) + ai + 1).

We can use m to index a choice of a and then a choice for a monomial in each of the
t linear factors pAi(x) + ai + 1. For each factor we can use Lemma 6.6 to compute the
monomials. QED
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We can now use Lemma 6.7 to prove Theorem 6.4. As in the proof Theorem 6.5 we will
convert each gate to a polynomial.

Proof of Theorem 6.4. Let L ∈ PH. Apply Lemma 6.2 to obtain a corresponding
alternating circuit C of depth d and size s ≤ 2n

d
for a constant d. Replace each gate with

the distribution on polynomials given by Lemma 6.7. Note each of these polynomials is
on 2n

cdvariables and has degree ncd . We set the error ε in Lemma 6.7 to be 1/(3s). This
guarantees that the seed length in each application of Lemma 6.7 is ≤ ncd . Moreover, the
seed used to sample the polynomials is re-used across all gates. We can a�ord this because
we use a union bound in the analysis. Hence the seed length for all the polynomials is again
just ncd . We can quantify over this many bits using the BP quanti�er.

Finally, we have to compose the polynomials at each gate. We are going to show how we
can compute the monomials of the composed polynomial in the same way as we computed
monomials in Lemma 6.7. Once we have a monomial in the input variables x1, x2, . . . , xn we
simply evaluate it in P on the input bits.

Start at the output gate. We use ncd bits in the ⊕ quanti�er to choose a monomial in the
corresponding polynomial. We write down this monomial, using Lemma 6.7. This monomial
is over the 2n

d
variables z1, z2, . . . corresponding to the children of the output gate, and only

contains ncd variables. To each zi there corresponds a polynomial pi. Choose a monomial
from pi and replace zi with that monomial; do this for every i. The choice of the monomials
is done again using bits quanti�ed by the ⊕ quanti�er. We continue in this way until we
have monomials just in the input variables x1, x2, . . . , xn. Because each monomial is over ncd

variables, and the depth is constant, the total number of bits in the ⊕ quanti�er, which are
needed to choose monomials, is ncd . QED

Exercise 6.12. A set C ⊆ [2]n of size 2k is called linear if there exists an n× k matrix M
over F2 such that C = {Mx : x ∈ [2]k}.

1. Recall error-correcting codes from Exercise 2.21. Prove that a linear set C is an error-
correcting code i� the weight of any non-zero string in C is at least n/3.

2. Prove the existence of linear error-correcting codes matching the parameters in Exercise
2.21.

3. Let S be a subset of [2]k s.t. the uniform distribution over S has the Or property. De�ne
|S| × k matrix MS where the rows are the elements of S. Prove that {MSx : x ∈ [2]k}
is an error-correcting code.

4. Give explicit error-correcting codes over ck2 bits of size 2k.

5. This motivates improving the parameters of distributions with the Or property. Im-
prove the seed length in Lemma 6.6 to log n + c log log n. Hint: What property you
need from T?

6. Give explicit error-correcting codes over k logc k bits of size 2k.
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6.6 The power of majority

Exercise 6.13. [The power of majority] Prove:

1. BPP · P ⊆ Maj · P.

2. {(M,x, t) : the number of y ∈ [2]|t| such that M(x, y) = 1 is ≥ t} ∈ Maj · P.

3. The same as 2. but with ≥ replaced by ≤.

4. NP ⊆ Maj · P.

5. Maj · ⊕ ·P ⊆ Maj ·Maj · P. (Hint: This is confusing if you don't have the right angle,
otherwise is not too bad. For starters, forget everything and imagine you have an
integer w in some range and you want to know if w is odd by just asking questions of
the type w ≥ t and w ≤ t′, for various t, t′. You want that the number of questions
with answer �yes� only depends on whether w is odd or even.)

6. PH ⊆ Maj ·Maj · P.

It is not known if NP has linear-size circuits. We saw in Exercise 6.4 that PH does not
have circuits of size nk, for any k. By Exercise 6.13 this holds for Maj · Maj · P as well.
The following result improves this Maj · P. It is particularly interesting because it cannot be
established using a well-studied class of techniques which includes all the results about PH
we have encountered so far.

Theorem 6.6. [185] Maj · P 6⊆ CktGates(nk), for any k ∈ N.

6.7 Problems

Problem 6.1. [108] Prove Theorem 6.5 with the bound on the degree replaced by (logd−1 cs)c log 1/ε
(which is better when ε is small).
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Chapter 7

Space

As mentioned in Chapter 2, Time is only one of several resources we with to study. Another
important one is space, which is another name for the memory of the machine. Computing
under space constraints may be less familiar to us than computing under time constraints,
and many surprises lay ahead in this chapter that challenge our intuition of e�cient compu-
tation.

If only space is under consideration, and one is OK with a constant-factor slackness, then
TMs and RAMs are equivalent; much like P is invariant under power changes in time. In
a sense, changing the space by a constant factor is like changing the time by a power; from
this point of view the equivalence is not surprising.

We shall consider both space bounds bigger than the input length and smaller. For the
latter, we have to consider the input separately. The machine should be able to read the
input, but not write on its cells. One way to formalize this is to consider 2TMs, where one
tape holds the input and is read-only. The other is a standard read-write tape.

We also want to compute functions f whose output is more than 1 bit. One option is
to equip the machine with yet another tape, which is write-only. We prefer to stick to two
tapes and instead require that given x, i the i output bit of f(x) is computable e�ciently.

De�nition 7.1. A function f : X ⊆ [2]∗ → [2]∗ is computable in Space(s(n)) if there is a
2TM which on input (x, i) on the �rst tape, where x ∈ X and i ≤ |f(x)|, outputs the i bit
of f(x), and the machine never writes on the �rst tape and never uses more than s(|x|) cells
on the second.

We de�ne:

L :=
⋃
d

Space(d log n),

PSpace :=
⋃
d

Space(nd).

We investigate next some basic relationship between space and time.

Theorem 7.1. For every functions t and s:
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1. kTM-Time(t) ⊆ Space(ckt),

2. Time(t) ⊆ Space(ct log(nt)),

3. Space(s) ⊆ 2TM-Time(cs(n) · nc).

Proof. 1. A TM running in time t can only move its heads at most t tape cells. We can
write all these contents in one tape. To simulate one step of the kTM we do a pass on all
the contents and update them accordingly.

2. A RAM running in time t can only access ≤ t memory cells, each containing at most
c log nt bits; the factor n is to take into account that the machine starts with word length
≥ log n. We simulate this machine and for each Write operation we add a record on the
tape with the memory cell index and the content, similar to Theorem 2.7. When the RAM
reads from memory, we scan the records and read o� the memory values from one of them.
If the record isn't found, then the simulation returns the value corresponding to the initial
con�guration.

We also allocate c log nt bits for the registers of the RAM. It can be shown that the
operations among them can be performed in the desired space, since they only involve a
logarithmic number of bits. A stronger result is proved later in Theorem 7.5.

3. On an input x with |x| = n, a Space(s) machine can be in at most nc · cs(n) con�gu-
rations. The �rst nc factor is for the head position on the input. The second factor is for
the contents of the second tape. Since the machine ultimately stops, con�gurations cannot
repeat, hence the same machine (with no modi�cation) will stop in the desired time. QED

A non-trivial saving is given by the following theorem.

Theorem 7.2. [88] k-TM-Time(t) ⊆ Space(ckt/ log t), for every function t.

This result is not speci�c to MTMs but can be proved for other models such as RAMs.

Proof sketch of Theorem 7.2. We only give a sketch of the beautiful proof here. For
simplicity, let us think of 1TMs, for which the problem is already non-trivial. The solution
will generalize rather straightforwardly to more tapes.

Let b := tc. Divide the tape into consecutive blocks of b = tc symbols, and assume
that the machine so that it only crosses a block at times that are multiples of b. One can
modify machines to have this property by increasing the number of tapes and only paying a
constant-factor overhead in time.

We also divide time into t/b blocks. For i ≤ t/b we talk of simulating the machine up to
time block i. This means computing state and head positions right at the end of time block
i, and also the contents of the block the machine worked on in time block i.

We construct a graph with cM · t · t/b nodes. Here a node encodes a time block i, the
state of the machine right at the end of that time block, and the position of the head on the
tape.

We always have edges i − 1 → i. In addition, we place an edge i → j if the machine in
time block j is working on the same block the machine was working in time block i, and i is
the largest index less than j with this property.
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The main beautiful idea is to pebble this graph. The rules for such a pebbling are that
we can place a pebble on any node whose predecessors are all pebbled, and remove a pebble
from any node. It is known that if t is reachable from s in a graph with n nodes then we
can pebble t using ≤ cn/ log n pebbles.

If you can pebble i, then you can simulate the machine up to time block i, using space
that is roughly the number of pebbles times the size of a block. The edges i− 1→ i will be
needed to know the state and head positions, and the edges i→ j will be needed in case the
machine is crossing a block.

There remains to compute the pebbling. This is a non-trivial task, since the pebbling
can involve an exponential number of moves, but we can use a recursive strategy to solve
the following problem (similar to Theorem 7.17): Given a current pebbling of the graph,
compute the next move in an optimal pebbling. This can be done in space roughly square
the size of the pebbling, which will be within our budget by our choice of b. QED

Exercise 7.1. Improve Theorem 7.2 for 1TMs.

From Theorem 7.1 and the next exercise we have

L ⊆ P ⊆ NP ⊆ PH ⊆ PSpace ⊆ Exp.

Exercise 7.2. Prove PH ⊆ PSpace.

Just like for Time, for space one has universal machines and a hierarchy theorem. The
latter implies L 6= PSpace. Hence, analogously to the situation for Time and NTime (sec-
tion �5.1), we know that at least one of the inclusions above between L and PSpace is strict.
Most people seem to think that all are, but nobody can prove that any speci�c one is.

7.1 Branching programs

Branching programs are the non-uniform counterpart of Space, just like circuits are the
non-uniform counterpart of Time.

De�nition 7.2. A (branching) program is a directed acyclic graph. A node can be labeled
with an input variable, in which case it has two outgoing edges labeled 0 and 1. Alternatively
a node can be labeled with 0 or 1, in which case it has no outgoing edges. One special node
is the start node.

The space of the program with S nodes is logS. A program computes a function f :
[2]n → [2] by following the path from the starting node, following edge labels corresponding
to the input, and outputting b ∈ [2] as soon as it reaches a node labeled b.

Theorem 7.3. Suppose a 2TMM computes f : [2]n → [2] in space s. Then f has branching
programs of space cM(s + log n). In particular, any f ∈ L has branching programs of size
ncf .
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Proof. Each node in the program corresponds to a con�guration. QED

De�nition 7.3. The branching program given by Theorem 7.3 is called the con�guration
graph of M .

The strongest available impossibility result for branching programs is the following.

Theorem 7.4. [130] There are explicit functions (in P) that require branching programs of
size cn2/ log n on inputs of length n.

7.2 The power of L

Computing with severe space bounds, as in L, seems quite di�cult. Also, it might be
somewhat less familiar than, say, computing within a time bound. It turns out that L is a
powerful class capable of amazing computational feats that challenge our intuition of e�cient
computation. Moreover, these computational feats hinge on deep mathematical techniques
of wide applicability. We hinted at this in Chapter 1. We now give further examples. At the
same time we develop our intuition of what is computable with little space.

To set the stage, we begin with a composition result. In the previous sections we used
several times the simple result that the composition of two maps in P is also in P. This
is useful as it allows us to break a complicated algorithm in small steps to be analyzed
separately � which is a version of the divide et impera paradigm. A similar composition
result holds and is useful for space, but the argument is somewhat less obvious.

Lemma 7.1. Let f1 : [2]∗ → [2]∗ be in Space(s1) and satisfy |f1(x)| ≤ m(|x|) for a function
m. Suppose f2 : [2]∗ → [2] is in Space(s2).

Then the composed function g de�ned as g(x) = f2(f1(x)) is computable in space
c(s2(m(n)) + s1(n) + log nm(n)).

In particular, if f1 and f2 are in L then g is in L, as long as m ≤ nd for a constant d.

Exercise 7.3. Prove this.

7.2.1 Arithmetic

A �rst example of the power of L is given by its ability to perform basic arithmetic. Grade
school algorithms use a lot of space, for example they employ space ≥ n to multiply two
n-bit integers.

Theorem 7.5. The following problems are in L:

1. Addition of two input integers.

2. Iterated addition: Addition of any number of input integers.

3. Multiplication of two input integers.
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4. Iterated multiplication: Multiplication of any number of input integers.

5. Division of two integers.

Iterated multiplication is of particular interest because it can be used to compute �pseu-
dorandom functions.� Such objects shed light on our ability to prove impossibility results
via the �Natural Proofs� connection which we will see in Chapter 19.

Proof of 1. in Theorem 7.5. We are given as input x, y ∈ N and an index i and need to
compute bit i of x + y. Starting from the least signi�cant bits, we add the bits of x and y,
storing the carry of 1 bit in memory. Output bits are discarded until we reach bit i, which
is output. QED

Exercise 7.4. Prove 2. and 3. in Theorem 7.5.

Proving 4. and 5. is more involved and requires some of those deep mathematical tools
of wide applicability we alluded to before. Division can be computed once we can compute
iterated multiplication. In a nutshell, the idea is to use the expansion

1

x
=
∑
i≥0

(−1)i(x− 1)i.

We omit details about bounding the error. Instead, we point out that this requires
computing powers (x− 1)i which is an example of iterated multiplication (and in fact is no
easier).

So for the rest of this section we focus on iterated multiplication. Our main tool for this
the Chinese-remaindering representation of integers, abbreviated CRR.

De�nition 7.4. We denote by Zm the integers modulo m equipped with addition and
multiplication (modulo m).

Theorem 7.6. Let p1, ..., p` be distinct primes and m :=
∏

i pi. Then Zm is isomorphic to
Zp1 × . . .× Zp` .

The forward direction of the isomorphism is given by the map

x ∈ Zm → (x mod p1, x mod p2, ..., x mod p`) ∈ Zp1 × ...× Zp` .

For the converse direction, there exist integers e1, ..., e` ≤ (p′)c, depending only on the pi
such that the converse direction is given by the map

(x mod p1, x mod p2, ..., x mod p`) ∈ Zp1 × ...× Zp` → x :=
∑̀
i=1

ei · (x mod pi).

Each integer ei is 0 mod pj for j 6= i and is 1 mod pi.
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Example 7.1. Z6 is isomorphic to Z2 ×Z3. The equation 2 + 3 = 5 corresponds to (0, 2) +
(1, 0) = (1, 2). The equation 2·3 = 6 corresponds to (0, 2)+(1, 0) = (0, 0). Note how addition
and multiplication in CRR are performed in each coordinate separately; how convenient.

To compute iterated multiplication the idea is to move to CRR, perform the multiplica-
tions there, and then move back to standard representation. A critical point is that each
coordinate in the CRR has a representation of only c log n bits, which makes it easy to
perform iterated multiplication one multiplication at the time, since we can a�ord to write
down intermediate products.

The algorithm is as follows:

Computing the product of input integers x1, . . . , xt. [29]

1. Let ` := nc and compute the �rst ` prime numbers p1, p2, . . . , p`.

2. Convert the input into CRR: Compute (x1 mod p1, . . . , x1 mod p`), . . . , (xt
mod p1, . . . , xt mod p`).

3. Compute the multiplications in CRR: (Πt
i=1xi mod p1), . . . , (Πt

i=1xi mod p`).

4. Convert back to standard representation.

Exercise 7.5. Prove the correctness of this algorithm.

Now we explain how steps 1, 2, and 3 can be implemented in L. Step 4 can be implemented
in L too, but showing this is somewhat technical due to the computation of the numbers ei
in Theorem 7.6. However these numbers only depend on the input length, and so we will
be able to give a self-contained proof that iterated multiplication has branching programs of
size nc.

Step 1

By Theorem 2.14, the primes pi have magnitude ≤ nc and so can be represented with c log n
bits. We can enumerate over integers with ≤ c log n bits in L. For each integer x we can test
if it's prime by again enumerating over all integers y and z with ≤ c log n bits and checking
if x = yz, say using the space-e�cient algorithm for multiplication in Theorem 7.5. (The
space required for this step would in fact be c log log n.)

Step 2

We explain how given y ∈ [2]n we can compute (y mod p1, . . . , y mod p`) in L. If yj is bit
j of y we have that

y mod pi =

[
n−1∑
j=0

(2jyj)

]
mod pi

=

[
n−1∑
j=0

(2j mod pi)yj

]
mod pi.
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Note that the values ai,j := 2j mod pi can be computed in L and only take c log n bits.
Multiplying by yj is also in L. Hence the problem reduces to iterated addition of n numbers
which is in L by Theorem 7.5.

Step 3

This is a smaller version of the original problem: for each j ≤ `, we want to compute (Πt
i=1xi

mod pj) from x1 mod pj, . . . , xt mod pj. However, as mentioned earlier, each (xi mod pj)
is at most nc in magnitude and thus has a representation of c log n bits. Hence we can just
perform one multiplication at the time in L.

Step 4

By Theorem 7.6, to convert back to standard representation from CRR we have to compute
the map

(y mod p1, . . . , y mod p`)→
∑̀
i=1

ei · (y mod pi).

Assuming we can compute the ei, this is just multiplication and iterated addition, which are
in L by Theorem 7.5.

Putting the steps together

Combining the steps together we can compute iterated multiplication in L as long as we are
given the integers ei in Theorem 7.6.

Theorem 7.7. Given integers x1, x2, . . . , xt, and given the integers e1, e2, . . . , e` as in The-
orem 7.6, where ` = nc, we can compute

∏
i xi in L.

In particular, because the ei only depend on the input length, but not on the xi they can
be hardwired in a branching program.

Corollary 7.1. Iterated multiplication has branching programs of size nc.

Exercise 7.6. Show that given integers x1, x2, . . . , xt and y1, y2, . . . , yt one can decide if

t∏
i=1

xi =
t∏
i=1

yi

in L. You cannot use the fact that iterated multiplication is in L, a result which we stated
but not completely proved.

Exercise 7.7. Show that the iterated multiplication of d× d matrices over the integers has
branching programs of size ncd .
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7.2.2 Graphs

We now give another example of the power of L.

De�nition 7.5. The undirected reachability problem: Given an undirected graph G and
two nodes s and t in G determine if there is a path from s to t.

Standard time-e�cient algorithms to solve this problem mark nodes in the graph. In
logarithmic space we can keep track of a constant number of nodes, but it is not clear how
we can avoid repeating old steps forever.

Theorem 7.8. [151] Undirected reachability is in L.

The idea behind this result is that a random walk on the graph will visit every node,
and can be computed using small space, since we just need to keep track of the current
node. Then, one can derandomize the random walk and obtain a deterministic walk, again
computable in L.

7.2.3 Linear algebra

Our �nal example comes from linear algebra. Familiar methods for solving a linear system

Ax = b

can be done requires a lot of space. For example using elimination we need to rewrite the
matrix A. Similarly, we cannot easily compute determinants using small space. However, a
di�erent method exists.

Theorem 7.9. [50] Solving a linear system is computable in Space(c log2 n).

7.3 Checkpoints

The checkpoint technique is a fundamental tool in the study of space-bounded computation.
Let us illustrate it at a high level. Let us consider a graph G, and let us write u ;t v if
there is a path of length ≤ t from u to v. The technique allows us to trade the length of
the path with quanti�ers. Speci�cally, for any parameter b, we can break down paths from u
to v in b smaller paths that go through b − 1 checkpoints. The length of the smaller paths
needs be only t/b (assuming that b divides t). We can guess the breakpoints and verify each
smaller path separately, at the price of introducing quanti�ers but with the gain that the
path length got reduced from t to t/b. The checkpoint technique is thus an instantiation of
the general paradigm of guessing computation and verifying it locally, introduced in Chapter
5. One di�erence is that now we are only going to guess parts of the computation.

The checkpoint technique

u ;t v ⇔ ∃p1, p2, . . . , pb−1 : ∀i ∈ {0, 1, b− 1} : pi ;t/b pi+1,

where we denote p0 := u and pb := v.
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An important aspect of this technique is that it can be applied recursively: We can apply
it again to the problems pi ;t/b pi+1. We need to introduce more quanti�ers, but we can
reduce the path length to t/b2, and so on. We will see several instantiations of this technique,
for various settings of parameters, ranging from b = 2 to b = nc.

We now utilize the checkpoint technique to show a simulation of small-space computation
by small-depth alternating circuits.

Theorem 7.10. A function computable by a branching program with S nodes is also com-
putable by an alternating circuit of depth c logb S and size Sb logb S+c, for any b ≤ S.

To illustrate the parameters, suppose S = na, and let us pick b := nε where n ≥ ca,ε.
Then we have AltCkts of depth d := ca/ε and size ≤ Sn

εd+c = 2n
cε
. In other words, we can

have depth d and size 2n
ca/d , for every d. Another way of saying this is that the circuit has

constant depth and power size on inputs of power-logarithmic length. This is quite useful to
design AltCkts

Exercise 7.8. Prove that for any t and d the Majority function on logd t bits can be computed
by AltCks of size tcd and depth cd.

The parameters in the above discussion before the exercise in particular hold for every
function in L. We will later give explicit functions (also in P) which cannot be computed by
AltCkts of depth d and size 2n

c/d
, �just short� of ruling out L. This state of a�airs is worth

emphasis:

(1) Every f in L has alternating circuits of depth d and size 2n
cf /d .

(2) We can prove that there are explicit functions (also in L) which
cannot be computed by circuits of depth d and size 2n

c/d
.

(3) Improving the constant in the double exponent for a function in P
would yield L 6= P. In this sense, the result in (2) is the best possible
short of proving a major separation.

Proof. We apply the checkpoint technique to the branching program, recursively, with pa-
rameter b. For simplicity we �rst assume that S is a power of b. Each application of the
technique reduces the path length by a factor b. Hence with logb S applications we can reduce
the path length to 1.

In one application, we have an ∃ quanti�er over b−1 nodes, corresponding to an Or gate
with fan-in Sb−1, and then a ∀ quanti�er over b smaller paths, corresponding to an And gate
with fan-in b. This gives a tree with Sb−1 · b ≤ Sb leaves. Iterating, the number of leaves will
be

(Sb)logb S.

Each leaf can be connected to the input bit on which it depends. The size of the circuit
is at most c times the number of leaves.

If S is not a power of b we can view the branching program as having S ′ ≤ bS nodes
where S ′ is a power of b . QED
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The following is a uniform version of Theorem 7.10, and the proof is similar. It shows that
we can speed up space-bounded computation with alternations.

Theorem 7.11. [131]Any f ∈ L is also in Σcf/εTime(nε), for any ε > 0.

Proof. Let G be the con�guration graph of f . Note this graph has ncf nodes. We need to
decide if the start con�guration reaches the accept con�guration in this graph within t := ncf

steps.
We apply to this graph the checkpoint technique recursively, with parameter b := nε/2.

Each application of the technique reduces the path length by a factor b. Hence with cf/ε
applications we can reduce the path length to

t

bcf/ε
=

ncf

ncf/2
≤ 1.

Each quanti�er ranges over b log ncf = cfn
ε/2 log n ≤ nε bits for large enough n.

There remains to check a path of length 1, i.e., an edge. The endpoints of this edge are
two con�gurations u and v which depend on the quanti�ed bits. The machine can compute
the two endpoints in time logcm where m is the total number of quanti�ed bits, using rapid
access. Once it has u and v it can check if u leads to v in one step by reading one bit from
the input. Note m ≤ nε · cf/ε, so logcm ≤ cfn

ε. QED

We note that by the generic simulation of alternating time by small-depth circuits in
Lemma 6.2, the above theorem also gives a result similar to Theorem 7.10.

7.4 Reductions: L vs. P

Again, we can use reductions to related the space complexity of problems. In particular we
can identify the problems in P which have space-e�cient algorithms i� every problem in P
does.

De�nition 7.6. A problem f is P-complete if f ∈ P and f ∈ L⇒ L = P.

De�nition 7.7. The circuit value problem: Given a circuit C and an input x, compute
C(x).

Theorem 7.12. Circuit value is P-complete.

Proof. Circuit value is in P since we can evaluate one gate at the time. Now let g ∈ P.
We can reduce computing g on input x to a circuit value instance, as in the simulation of
TMs by circuits in Theorem 2.5. The important point is that this reduction is computable
in L. Indeed, given an index to a gate in the circuit, we can compute the type of the gate
and index to its children via simple arithmetic, which is in L by Theorem 7.5, and some
computation which only depends on the description of the P-time machine for g.n QED
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De�nition 7.8. The monotone circuit value problem: Given a circuit C with no negations
and an input x, compute C(x).

Exercise 7.9. Prove that monotone circuit value is P-complete.

Recall from section 7.2.3 that �nding solutions to linear systems

Ax = b

has space-e�cient algorithms. Interestingly, if we generalize equalities to inequalities the
problem becomes P complete. This set of results illustrates a sense in which �linear algebra�
is easier than �optimization.�

De�nition 7.9. The linear inequalities problem: Given a d× d matrix A of integers and a
d-dimensional vector, determine if the system Ax ≤ b has a solution over the reals.

Theorem 7.13. Linear inequalities is P-complete.

Proof. The ellipsoid algorithm shows that Linear inequalities is in P, but we will not discuss
this classic result.

Instead, we focus on showing how given a circuit C and an input x we can construct a
set of inequalities that are satis�able i� C(x) = 1.

We shall have as many variables vi as gates in the circuit, counting input gates as well.
For an input gate gi = xi add equation vi = xi.
For a Not gate gi = Not(gj) add equation vi = 1− vj.
For an And gate gi = And(gj, gk) add equations 0 ≤ vi ≤ 1, vi ≤ vj, vi ≤ vk, vj + vk− 1 ≤

vi.
The case of Or is similar, or can be dispensed by writing an Or using Not and And.
Finally, if gi is the output gate add equation vi = 1.
We claim that in every solution to Av ≤ b the value of vi is the value in [2] of gate gi on

input x. This can be proved by induction. For input and Not gates this is immediate. For
an And gate, note that if vj = 0 then vi = 0 as well because of the equations vi ≥ 0 and
vi ≤ vj. The same holds if vk = 0. If both vj and vk are 1 then vi is 1 as well because of the
equations vi ≤ 1 and vj + vk − 1 ≤ vi. QED

7.4.1 Nondeterministic space

Because of the insight we gained from considering non-deterministic time-bounded com-
putation in section �5.1, we are naturally interested in non-deterministic space-bounded
computation. In fact, perhaps we will gain even more insight, because this notion will really
challenge our understanding of computation.

For starters, let us de�ne non-deterministic space-bounded computation. A naive ap-
proach is to de�ne it using the quanti�ers from section �6.4, leading to the class ∃ · L. This
is an ill-fated choice:
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Exercise 7.10. Prove ∃ · L = ∃ · P.

Instead, non-deterministic space is de�ned in terms of non-deterministic TMs.

De�nition 7.10. A function f : [2]∗ → [2] is computable in NSpace(s(n)) if there is a
two-tape TM which on input x never writes on the �rst tape and never uses more than s(n)
cells on the second, and moreover:

1. The machine is equipped with a special �Guess� state. Upon entering this state, a
guess bit is written on the work tape under the head.

2. f(x) = 1 i� there exists a choice for the guess bits that causes the machine to output
1.

We de�ne

NL :=
⋃
d

NSpace(d log n),

NPSpace :=
⋃
d

NSpace(nd).

How can we exploit this non-determinism? Recall from section 7.2.2 that reachability in
undirected graphs is in L. It is unknown if the same holds for directed graphs. However, we
can solve it in NL.

De�nition 7.11. The directed reachability problem: Given a directed graph G and two
nodes s and t, decide if there is a path from s to t.

Theorem 7.14. Directed reachability is in NL.

Proof. The proof simply amounts to guessing a path in the graph. The algorithm is as
follows:

�On input G, s, t, let v := s.
For i = 0 to |G|:

If v = t, accept.
Guess a neighbor w of v. Let v := w.

If you haven't accepted, reject.�
The space needed is |v|+ |i| = c log |G|. QED

We can de�ne NL completeness similarly to NP and P completeness, and have the fol-
lowing result.

Theorem 7.15. Directed reachability is NL-complete. That is, it is in NL and it is in L i�
L = NL.

Exercise 7.11. Prove this.

Recall by de�nition Space(s(n)) ⊆ NSpace(s(n)). We showed Space(s(n)) ⊆ Time(nccs(n))
in Theorem 7.1. We can strengthen the inclusion to show that it holds even for non-
deterministic space.
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Theorem 7.16. NSpace(s(n)) ⊆ Time(nccs(n)).

Proof. On input x, we compute the con�guration graph G of M on input x. The nodes are
the con�gurations, and there is an edge from u to v if the machine can go from u to v in one
step. Then we solve reachability on this graph in power time, using say breadth-�rst-search.
QED

The next theorem shows that non-deterministic space is not much more powerful than
deterministic space: it buys at most a square. Contrast this with the P vs. NP question!
The best deterministic simulation of NP that we know is the trivial NP ⊆ Exp. Thus the
situation for space is entirely di�erent.

How can this be possible? The high-level idea, which was used already in Lemma 7.1,
can be cast as follows:

Unlike time, space can be reused.

Theorem 7.17. [155] NSpace(s) ⊆ Space(cs2), for every function s = s(n) ≥ log n. In
particular, NPSpace = PSpace.

Proof. We use the checkpoint technique with parameter b = 2, and re-use the space to verify
the smaller paths. Let N be a non-deterministic TM computing a function in NSpace(s(n)).
We aim to construct a deterministic TM M that on input x returns

Reach(Cstart, Caccept, c
s(n)),

where Reach(u, v, t) decides if v is reachable from u in ≤ t steps in the con�guration graph
of N on input x, and Cstart is the start con�guration, Caccept is the accept con�guration, and
cs(n) is the number of con�gurations of N .

The key point is how to implement Reach.
Computing Reach(u, v, t)
For all �middle� con�gurations m
If both Reach(u,m, t/2) = 1 and Reach(m, v, t/2) = 1 then Accept.

Reject
Let S(t) denote the space needed for computing Reach(u, v, t). We have

S(t) ≤ cs(n) + S(t/2).

This is because we can re-use the space for two calls to Reach. Therefore, the space for
Reach(Cstart, Caccept, c

s(n)) is

≤ cs(n) + cs(n) + . . .+ cs(n) ≤ cs2(n).

QED
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To set the stage for the next result, recall that we do not know if Ntime(t) is closed under
complement. It is generally believed not to be, and we showed that if it is then the PH
collapses Exercise 6.3.

What about space? Theorem 7.17 shows NSpace(s) ⊆ Space(cs2). Because the latter is
closed under complement, up to a quadratic loss in space, non-deterministic space is closed
under complement.

Can we avoid squaring the space?
Yes! This is weird!

Theorem 7.18. The complement of Path is in NL. In particular, NL is closed under com-
plement.

Proof. We want a non-deterministic 2TM that given G, s, and t accepts if there is no path
from s to t in G.

For starters, suppose the machine has computed the number C of nodes reachable from
s. The key idea is that there is no path from s to t i� there are C nodes di�erent from t
reachable from s. Thus, knowing C we can solve the problem as follows

Algorithm for deciding if there is no path from s to t, given C:

Initialize Count=0; Enumerate over all nodes v 6= t
Guess a path from s of length |G|. If path reaches v, increase Count by 1

If Count = C Accept, else Reject.

There remains to compute C.
Let Ai be the nodes at distance ≤ i from s, and let Ci := |Ai|. Note A0 = {s}, c0 = 1.

We seek to compute C = Cn.
To compute Ci+1 from Ci, enumerate nodes v (candidate in Ai+1). For each v, enumerate

over all nodes w in Ai, and check if w → v is an edge. If so, increase Ci+1 by 1.
The enumeration over Ai is done guessing Ci nodes and paths from s. If we don't �nd

Ci nodes, we reject. QED

Exercise 7.12. Given a graph G and nodes s, t show how to compute in L a graph G′ and
nodes s′, t′ s.t. there is a path from s to t in G i� there is no path from s′ to t′ in G′, and
|G′| ≤ |G|c.

7.5 TiSp

So far in this chapter we have focused on bounding the space usage. For this, the TM
model was su�cient, as remarked at the beginning. It is natural to consider algorithms that
operate in little time and space. For this, of course, whether we use TMs or RAMs makes a
di�erence.
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De�nition 7.12. Let TiSp(t, s) be the functions computable on a RAM that on every input
x ∈ [2]n runs in time t(n) and only uses memory cells 0 to s(n)− 1.

Exercise 7.13. Prove L =
⋃
dTiSp(nd, d).

An alternative de�nition of TiSp would allow the RAM to access s(n) cells anywhere
in memory. One can maintain a data structure to show that this alternative de�nition is
equivalent to De�nition 7.12.

To illustrate the relationship between TiSp, Time, and Space, consider undirected reach-
ability. It is solvable in Time(n logc n) by breadth-�rst search, and in logarithmic space by
Theorem 7.8. But it isn't known if it is in TiSp(n loga n, a log n) for some constant a.

Exercise 7.14. Prove the following version of Theorem 7.11: TiSp(na, n1−α) ⊆ Σca/αTime(n)
for any a ≥ 1 and α > 0.

The following is a non-uniform version of TiSp.

De�nition 7.13. A branching program of length t and width W is a branching program
where the nodes are partitioned in t layers L1, L2, . . . , Lt where nodes in Li only lead to
nodes in Li+1, and |Li| ≤ W for every i.

Thus t represents the time of the computation, and logW the space.
Recall that Theorem 7.10 gives bounds of the form ≥ cn2/ log n on the size of branching

program (without distinguishing between length and width). For branching programs of
length t and width W this bound gives t ≥ cn2/W log n. Note this gives nothing for power
width like W = n2. The state-of-the-art for power width is t ≥ Ω(n

√
log n/ log log n) [6, 31]

(in fact the bound holds even for subexponential width).
With these de�nitions in hand we can re�ne the connection between branching programs

and small-depth circuits in Theorem 7.10 for circuits of depth 3.

Theorem 7.19. Let f : [2]n → [2] be computable by a branching program with width W
and time t. Then f is computable by an alternating depth-3 circuit with ≤ 2c

√
t logW wires.

We will later show explicit functions that require depth-3 circuits of size 2c
√
n. Theo-

rem 7.19 shows that improving this would also improve results for small-width branching
programs, a re�nement of the message emphasized after Theorem 7.10.

A more general version of Theorem 7.19. states that for any parameter b one can have a
depth-3 circuit with

2b logW+t/b+log t

wires, output fan-in W b, and input fan-in t/b. Interestingly, this tradeo� essentially matches
known impossibility results for depth-3 circuits!

Exercise 7.15. Prove Theorem 7.19.

7.6 Notes

For a discussion of the complexity of division, see [9]. For a compendium of P-complete
problems see [69].
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Chapter 8

Three impossibility results for 3Sat

We should turn back to a traditional separation technique � diagonalization.[55]

In this chapter we put together many of the techniques we have seen to obtain several
impossibility results for 3Sat. The template of all these results (and others, like those
mentioned in section �5.1) is similar. All these results prove time bounds of the form t ≥ n1+α

where α ∈ (0, 1). One can optimize the methods to push α close to 1, but even establishing
α = 1 seems out of reach, and there are known barriers for current techniques [41].

8.1 Impossibility I

We begin with the following remarkable result.

Theorem 8.1. [55] Either 3Sat 6∈ L or 3Sat 6∈ Time(n1+ε) for some constant ε.

Note that we don't know if 3Sat ∈ L or if 3Sat ∈ Time(n log10 n). In particular, Theorem
8.1 implies that any algorithm for 3Sat either must use super-logarithmic space or time n1+c.

Proof. We assume that what we want to prove is not true and derive the following striking
contradiction with the hierarchy Theorem 3.4:

Time(n2) ⊆ L

⊆
⋃
d

ΣdTime(n)

⊆ Time(n1.9).

The �rst inclusion holds by the assumption that 3Sat ∈ L and the fact that any function
in Time(n2) can be reduced to 3Sat in log-space, by Theorem 5.1 and the discussion after
that.

The second inclusion is Theorem 7.11.
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For the third inclusion, the assumption that 3Sat ∈ Time(n1+ε) for every ε implies that
NTime(dn) ⊆ Time(n1+ε) for every d and ε, by the quasi-linear-time completeness of 3Sat,
Theorem 5.4. Now apply Exercise 6.2. QED

8.2 Impossibility II

We now state and prove a closely related result for TiSp. We seek to rule out algorithms for
3Sat that simultaneously use little space and time, whereas in Theorem 8.1 we even ruled
out the possibility that there are two distinct algorithms, one optimizing space and the other
time. The main gain is that we will be able to handle much larger space: power rather than
log.

Theorem 8.2. 3Sat 6∈ TiSp(n1+cε , n1−ε), for any ε > 0.

The important aspect of Theorem 8.1 is that it applies to the RAM model; stronger
results can be shown for space-bounded TMs.

Exercise 8.1. Prove that Palindromes 6∈ TM-TiSp(n1+cε , n1−ε), for any ε > 0. (TM-
TiSp(t, s) is de�ned as Space(s), cf. De�nition 7.1, but moreover the machine runs in at
most t steps.) Hint: This problem has a simple solution. Give a suitable simulation of
TM-Tisp by 1TM, then apply Theorem 3.1.

Proof. We assume that what we want to prove is not true and derive the following contra-
diction with the hierarchy Theorem 3.4:

Time(n1+ε) ⊆ TiSp(cn(1+ε)(1+cε),cn(1+ε)(1−ε))

⊆ TiSp(n1+cε ,cn1−ε2)

⊆ ΣcεTime(n)

⊆ Time(n1+ε/2).

The �rst inclusion holds by the assumption, padding, and the fact that 3Sat is complete
under reductions s.t. each bit is computable in time (and hence space) no(1), a fact we do
not prove here. QED

Exercise 8.2. Finish the proof by justifying the remaining inclusions.

8.3 Impossibility III

So far our impossibility results required bounds on space. We now state and prove a result
that applies to time. Of course, as discussed in Chapter 3, we don't know how to prove that,
say, 3Sat cannot be computed in linear time on a 2TM. For single-tape machines, we can
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prove quadratic bounds, for palindromes (Theorem 3.1) and 3Sat (Problem 4.2). Next we
consider an interesting model which is between 1TM and 2TM and is a good indication of
the state of our knowledge.

De�nition 8.1. A 1.5TM is like a 2TM except that the input tape is read-only.

Theorem 8.3. [121, 184] 3Sat requires time n1+c on a 1.5TM.

Exercise 8.3. Prove Theorem 8.3 following this guideline:

1. Let M be a 1.5TM running in time t(n). Divide the read-write tape of M into consec-
utive blocks of b cells, shifted by an o�set i < b. (So the the �rst cells of the blocks
include i, i + b, i + 2b, . . ..) Prove that for every input x ∈ [2]n there is i such that
the sum of the lengths of the crossing sequences between any adjacent blocks of the
computation M on x is at most t(n)/b. Here a crossing sequence also encodes the
position of the head on the input tape, and the time at which each crossing occurs.

2. Prove that 1.5TM-Time(n1.1) ⊆ ∃y ∈ [2]n
1−c

TiSp(nc, n1−c). (The right-hand side is
the class of functions f : [2]∗ → [2] for which there is a RAM M that on input (x, y),
where |x| = n, runs in time nc and uses memory cells 0..n1−c and s.t. f(x) = 1⇔ ∃y ∈
[2]n

1−c
M(x, y) = 1.)

3. Conclude the proof.

Notes

For a survey (not up to date) of this type of impossibility results see [183].
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Chapter 9

Log-depth circuits

In this chapter we investigate circuits of logarithmic depth. Again, several surprises lay
ahead, including a solution to the teaser in Chapter 1!

Let us begin slowly with some basic properties of these circuits so as to get familiar with
them. The next exercise shows that circuits of depth d log n for a constant d also have power
size, so we don't need to bound the size separately.

Exercise 9.1. A circuit of depth d has size ≤ cd without loss of generality.

The next exercises shows how to compute several simple functions by log-depth circuits.

Exercise 9.2. Prove that the Or, And, and Parity functions on n bits have circuits of depth
c log n.

Prove that any f : [2]n → [2] computable by an AltCkt of depth d and size s ≥ n is also
computable by a circuit of depth cd log s and size sc.

Next, let us relate these circuits to branching programs. The upshot is that circuits of
logarithmic depth are a special case of power-size branching programs, and the latter are a
special case of circuits of log-square depth.

Theorem 9.1. Directed reachability has circuits of depth c log2 n and size nc. In particular,
the same holds for any function in NL, and any function with power-size branching programs.

Proof. On input a graph G on u nodes and two nodes s and t, let M be the u×u transition
matrix corresponding to G, where Mi,j = 1 i� edge j → i is in G.

Transition matrices are multiplied as normal matrices, except that �+� is replaced with
�∨,� which su�ces to know connectivity. To answer directed reachability we compute entry
t of Muv, where v has a 1 corresponding to s and 0 everywhere else. (We can modify the
graph to add a self-loop on node t so that we can reach t in exactly u steps i� we reach t in
any number of steps.)

Computing Mu can be done by squaring c log u times M . Each squaring can be done in
depth c log u, by Exercise 9.2. This establishes the �rst claim, since u ≤ n.
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The �in particular� follows because those functions can be reduced to directed reachability
e�ciently. QED

Conversely, we have the following.

Theorem 9.2. Any function f : [2]n → [2] computed by a circuit of depth d can be computed
by a branching program of size 2d.

In particular, functions computed by circuits of logarithmic depth can be computed by
branching programs of power size.

Later in this chapter we will prove a stronger and much less obvious result.

Proof. We proceed by induction on the depth of the circuit C. If the depth is 1 then C is
either a constant or an input bit, and a branching program of size 1 is available by de�nition.

Suppose the circuit C has the form C1 ∧ C2. By induction, C1 and C2 have branching
programs B1and B2 each of size 2d−1. A branching program B for C of size 2d is obtained
by rewiring the edges leading to states labelled 1 in B1 to the start state of B2. The start
state of B is the start state of B1. QED

Exercise 9.3. Finish the proof by analyzing the case C = C1 ∨ C2.

De�nition 9.1. NCi is the class of functions f : [2]∗ → [2]∗ computable by circuits that
have depth a logi n and size na, for some constant a. The circuits are uniform if they can be
computed in L.

The class NC0 is also of great interest. It can be more simply de�ned as the class of
functions where each output bit depends on a constant number of input bits. We will see
many surprising useful things that can be computed in this class.

The previous results give, for uniform circuits:

NC0 ⊆ NC1 ⊆L ⊆ NL ⊆ NC2 ⊆ NC3 ⊆ · · · ⊆ P.

The only inclusion known to be strict is the �rst one:

Exercise 9.4. Prove that NC0 6= NC1. (Mostly to practice de�nitions.)

9.1 The power of NC1: Arithmetic

In this section we illustrate the power of NC1 by showing that the same basic arithmetic
which we saw is doable in L (Theorem 7.5) can in fact be done in NC1 as well.

Theorem 9.3. The following problems are in NC1:

1. Addition of two input integers.

2. Iterated addition: Addition of any number of input integers.
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3. Multiplication of two input integers.

4. Iterated multiplication: Multiplication of any number of input integers.

5. Division of two integers.

Exercise 9.5. Prove Item 1. in Theorem 9.3.

Iterated addition is surprisingly non-trivial. We can't use the methods from the proof of
Theorem 7.5. Instead, we rely on a new and very clever technique.

Proof of Item 2. in Theorem 9.3.. We use �2-out-of-3:� Given 3 integers X, Y, Z, we
compute 2 integers A,B such that

X + Y + Z = A+B,

where each bit of A and B only depends on three bits, one from X, one from Y , and one
from Z. Thus A and B can be computed in NC0.

If we can do this, then to compute iterated addition we construct a tree of logarithmic
depth to reduce the original sum to a sum 2 terms, which we add as in Item 1.

Here's how it works. Note Xi + Yi +Zi ≤ 3. We let Ai be the least signi�cant bit of this
sum, and Bi+1 the most signi�cant one. Note that Ai is the XOR Xi + Yi + Zi, while Bi+1

is the majority of Xi, Yi, Zi. QED

The following corollary will also be used to solve the teaser in Chapter 1.

Corollary 9.1. Majority is in NC1.

Exercise 9.6. Prove it.

Exercise 9.7. Prove Item 3. in Theorem 9.3.

Next we turn to iterated multiplication. The idea is to follow the proof for L in sec-
tion 7.2.1. We shall use CRR again. The problem is that we still had to perform iterated
multiplication, albeit only in Zp for p ≤ nc. One more mathematical result is useful now:

Theorem 9.4. If p is a prime then (Zp − {0}) is a cyclic group, meaning that there exists
a generator g ∈ (Zp − {0}) : ∀x ∈ (Zp − {0}), x = gi, for some i ∈ Z.
Example 9.1. For p = 5 we can take g = 2: 20 = 1, 21 = 2, 22 = 4, 23 = 8 = 3.

Proof of Item 4. in Theorem 9.3. We follow the proof for L in section 7.2.1. To compute
iterated product of integers r1, r2, . . . , rt modulo p, use Theorem 9.4 to compute exponents
e1, e2, . . . , et s.t.

ri = gei .

Then
∏

i ri mod p = g
∑
i ei . We can use Item 2. to compute the iterated addition of the

exponents. Note that computing the exponent of a number mod p, and vice versa, can be
done in log-depth since the numbers have c log n bits (as follows for example by combining
Theorem 2.4 and Exercise 9.2). QED

One can also compute division, and make all these circuits uniform, but we won't prove
this now.
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9.2 Computing with 3 bits of memory

We now move to a surprising result that in particular strengthens Theorem 9.2. For a
moment, let's forget about circuits, branching programs, etc. and instead consider a new,
minimalistic type of programs. We will have 3 one-bit registers: R0, R1, R2, operating modulo
2. We allow the following operations

Ri+ = Rj,

Ri+ = Rjxk

where xk is an input bit, for any i, j ∈ {0, 1, 2}, with i 6= j. (Talk about RISC!) Here
Ri+ = Rj means to add the content of Rj to Ri, while Ri+ = Rjxk means to add Rjxk to
Ri, where Rjxk is the product (a.k.a. And) of Rj and xk.

De�nition 9.2. For i, j and f : [2]n → [2] we say that a program is for (or equivalent to)

Ri+ = Rjf

if for every input x and initial values of the registers, executing the program is equivalent to
the instruction Ri+ = Rjf(x), where note that Rj and Rk are unchanged.

Also note that if we repeat twice a program for Ri+ = Rjf then no register changes
(recall the sum is modulo 2, so 1 + 1 = 0). This feature is critically exploited later to �clean
up� computation.

We now state and prove the surprising result. It is convenient to state it for circuits with
Xor instead of Or gates. This is without loss of generality since x ∨ y = x+ y + x ∧ y.

Theorem 9.5. [125, 33] Suppose f : [2]n → [2] is computable by circuits of depth d with
Xor and And gates. For every i 6= j there is a program of length ≤ c4d for

Ri+ = Rjf.

Once such a program is available, we can start with register values (0, 1, 0) and i = 0, j = 1
to obtain f(x) in R0.

Proof. We proceed by induction on d. When d = 1 the circuit is simply outputting a constant
or one of the input bits, which we can compute with the corresponding instructions. (If the
circuit is the constant zero then the empty program would do.)

Proceeding with the induction step:
A program for Ri+ = Rj(f1 + f2) is simply given by the concatenation of (the programs

for)

Ri+ = Rjf1

Ri+ = Rjf2.

Less obviously, a program for Ri+ = Rj(f1 ∧ f2) is given by
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Ri+ = Rkf1

Rk+ = Rjf2

Ri+ = Rkf1

Rk+ = Rjf2.

QED

Exercise 9.8. Prove that the program for f1 ∧ f2 in the proof works. Write down the
contents of the registers after each instruction in the program.

A similar proof works over other �elds as well.
We can now address the teaser Theorem 1.1 from Chapter 1.

Proof of Theorem 1.1.. Combine Corollary 9.1 with Theorem 9.5. QED

Corollary 9.2. Iterated product of 3x3 matrices over F2 is complete for NC1 under projec-
tions.

That is, the problem is in NC1 and for any f ∈ NC1 and n one can write a sequence
of t = nc 3x3 matrices M1,M2, . . . ,Mt where each entry is either a constant or an input
variable xi s.t. for every x ∈ [2]n:

t∏
i=1

Mi ·

0
1
0

 =

f(x)
1
0

 .
Exercise 9.9. Prove this.

Recall from Chapter 7 (see in particular section 7.4.1) that various graph reachability
problems are complete for space-bounded computation. In particular, one can reduce any
function computable by branching programs of size s to iterated multiplication of s × s
matrices over F2.

Exercise 9.10. Prove this. Does it work for NL?

Hence the (non-uniform version of the) question L =? NC1 is equivalent to the following
�purely mathematical question� that doesn't make any direct reference to computation.

Can (any one entry of) the product of s s × s matrices be reduced via projection to
the product of sd 3× 3 matrices, for some constant d? (That is, the former product has s3

variables xi and each entry in the latter product is either a variable xi or 0 o 1.)
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9.3 Linear-size log-depth

It is unknown whether NP has linear-size circuits of logarithmic depth! But there is a
non-trivial simulation of such circuits by AltCkts of depth 3 of sub-exponential size.

Theorem 9.6. [179] Any circuit C : [2]n → [2] of size an and depth a log n has an equivalent
AC of depth 3 and size 2can/ log logn.

The idea is... yes! Once again, we are going to guess computation. It is possible to guess
the values of about n/ log log n wires to reduce the depth to say 0.1 log n, and the rest is
brute-forced. For an exposition, see [190].

Notes

The landmark paper on representing computation via groups is [125], although the general
idea is actually already in [109]. (One can verify that the matrices in 9.2 form a group,
cf. [125] for more on the group perspective.) The critical insight in the former is that this
representation is e�cient for small-depth circuits. After [125], several related simulations
were discovered, such as [33]. Our presentation of Theorem 9.5 follows [47].
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Chapter 10

Constant-depth circuits

In this section we further investigate circuits of constant depth, focusing on two pervasive
classes, which indeed we have already encountered under di�erent names.

10.1 Threshold circuits

De�nition 10.1. A threshold circuit, abbreviated TC, is a circuit made of Majority gates
(of unbounded fan-in). We also denote by TC the class of functions f computable by a TC
of depth d and size nd for some constant d.

TCs are one of the frontiers of our knowledge. It isn't known how to prove impossibility
results even for TCs of depth 3 and size, say, n2.

Exercise 10.1. Prove that AC ⊆ TC ⊆ NC1.

Exercise 10.2. A function f : [2]∗ → [2] is symmetric if it only depends on the weight of
the input. Prove that any symmetric function is in TC.

The result PH⊆ Maj ·Maj · P obtained in 6.13 in particular yields the following.

Theorem 10.1. [8]Any function f in PAC has TCs of depth 3 and size 2log
cf n.

Theorem 10.2. The following problems are in TC:

1. Addition of two input integers.

2. Iterated addition: Addition of any number of input integers.

3. Multiplication of two input integers.

4. Iterated multiplication: Multiplication of any number of input integers.

5. Division of two integers.

The proof follows closely that for NC1 in section �9.1 (which in turn was based on that for
L). Only iterated addition requires a new idea.

Exercise 10.3. Prove the claim about iterated addition. (Hint: Write input as n×n matrix,
one number per row. Divide columns into blocks of t = c log n.)
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10.2 TC vs. NC1

Another great question is whether TC = NC1. For any d, we can show that functions in NC1,
such as Parity, require depth-d TCs of size ≥ n1+c log d, and this is tight up to constants.[92]
A natural question is whether we can prove stronger bounds for harder functions in NC1.
A natural candidate is iterated multiplication of 3x3 matrices. The following result shows
that, in fact, stronger bounds would already prove �the whole thing,� that is, TC 6= NC1.

Theorem 10.3. [10, 44] Let G be the set of 3x3 matrices of F2. Suppose that the product
of n elements in G can be computed by TCs of size nk and depth d. Then for any ε the
product can also be computed by TCs of size d′n1+ε and depth d′ := cdk log 1/ε.

The same result applies to any constant-size group G � we state it for matrices for
concreteness.

Proof. Exploiting the associativity of the problem, we compute the product recursively
according to a regular tree. The root is de�ned to have level 0. At Level i we compute ni
products of (n1+ε/ni)

1/k matrices. At the root (i = 0) we have n0 = 1.
By the assumption, each product at Level i has TCs of size n1+ε/ni and depth d. Hence

Level i can be computed by TCs of size n1+ε and depth d.
We have the recursion

ni+1 = ni · (n1+ε/ni)
1/k.

The solution to this recursion is ni = n(1+ε)(1−(1−1/k)i), see below.
For i = ck log(1/ε) we have ni = n(1+ε)(1−ε2) > n; this means that we can compute a

product of ≥ n matrices, as required.
Hence the total depth of the circuit is d · ck log(1/ε), and the total size is the depth times

n1+ε.
It remains to solve the recurrence. Letting ai := logn ni we have the following recurrence

for the exponents of ni.

a0 = 0

ai+1 = ai(1− 1/k) + (1 + ε)/k = aiβ + γ

where β := (1− 1/k) and γ := (1 + ε)/k.
This gives

ai = γ
∑
j≤i

βj = γ
1− βi+1

1− β
= (1 + ε)(1− βi+1).

QED

Were the recursion of the form a′i+1 = a′i + (1 + ε)/k then obviously a′ck would already be
≥ 1 + ε. Instead for ai we need to get to ck log(1/ε).
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10.3 Impossibility results for AC

In this section we prove impossibility results for ACs, matching several settings of parameters
mentioned earlier (cf. section �7.3).

To set the stage, let's prove strong results for depth 2, that is, DNFs.

Exercise 10.4. Prove that Majority requires DNFs of size ≥ 2cn. Hint: What if you have a
term with < n/2 variables?

As discussed, 2cn bounds even for depth 3 ACs are unknown, and would imply major
separations. The following is close to the state-of-the-art for depth d.

Theorem 10.4. [147, 166] Let C be an AC of depth d and size s computing Majority on n
bits. Then logd s ≥ c

√
n.

Recall from section �7.3 that a stronger bound for an explicit function would have major
consequences; in particular the function cannot be in L.

10.3.1 Impossibility results by polynomial method (a.k.a. low-degree
approximation)

The proof uses the simulation of circuits by low-degree polynomials which we saw in Theorem
6.5. Speci�cally, we use the following corollary:

Corollary 10.1. Let C : [2]n → [2] be an alternating circuit of depth d and size s. Then
there is a polynomial p over F2 of degree logd s/ε such that Px[C(x) 6= p(x)] ≤ ε.

Proof. Theorem 6.5 gave a distribution P on polynomials s.t. for every x we have

PP [C(x) 6= P (x)] ≤ ε.

Averaging over x we also have

Px,P [C(x) 6= P (x)] ≤ ε.

Hence we can �x a particular polynomial p s.t. the probability over x is ≤ ε, yielding the
result. QED

We then show that Majority cannot be approximated by such low-degree polynomials.
The key result is the following:

Lemma 10.1. Every function f : [2]n → [2] can be written as f(x) = p0(x) +p1(x) ·Maj(x),
for some polynomials p0 and p1 of degree ≤ n/2. This holds for every odd n.
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Proof. Let M0 be the set of strings with weight ≤ n/2. We claim that for every function
f : M0 → [2] there is a polynomial p0 of degree ≤ n/2 s.t. p0 and f agree on M0.

To verify this, consider the monomials of degree ≤ n/2. We claim that (the vectors
corresponding to) their truth tables over M0 are linearly independent. This means that any
polynomial gives a di�erent function over M0, and because the number of polynomials is the
same as the number of functions, the result follows. QED

Exercise 10.5. Prove the claim in the proof.

Proof of Theorem 10.4. Apply Corollary 10.1 with ε = 1/10 to obtain p. Let S be the
set of inputs on which p(x) = C(x). By Lemma 10.1, any function f : S → [2] ca be written
as

f(x) = p0(x) + p1(x) · p(x).

The right-hand size is a polynomial of degree ≤ d′ := n/2 + logd(cs). The number of
such polynomials is the number of possible choices for each monomial of degree i, for any i
up to the degree. This number is

d′∏
i=0

2(ni) = 2
∑d′
i (ni).

On the other hand, the number of possible functions f : S → [2] is

2|S|.

Since a polynomial computes at most one function, taking logs we have

|S| ≤
d′∑
i

(
n

i

)
.

The right-hand side is at most 2n(1/2 + c logd(s)/
√
n), since each binomial coe�cient is

≤ c2n/
√
n.

On the other hand, |S| ≥ 0.9 · 2n.
Combining this we get

0.9 · 2n ≤ 2n(1/2 + c logd(s)/
√
n).

This implies
0.4 ≤ c logd(s)/

√
n,

proving the theorem. QED

Exercise 10.6. Explain why Theorem 10.4 holds even if the circuits have Parity gates (in
addition to Or and And gates).

If as in the above exercise we allow for parity gates, Theorem 10.4 is the strongest known
bound. Stronger bounds are only known for functions computable in classes related to
exponential time [186].

However, for AC a sharper technique is known that allows us to replace the
√
n in

Theorem 10.4 with n for several functions such as parity. This is presented next.
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10.3.2 Switching lemmas

A restriction ρ is an assignment of the variables to {0, 1, ∗}, i.e., some variables are replaced
with constants, while those assigned to ? are left �alive.� We will take random restriction
where each unrestricted variable is set to a uniform bit. For a restriction ρ with s stars and
f : [2]n → [2] we denote by fρ : [2]s → [2] the restricted function. The switching lemma
shows that important classes of functions simplify dramatically when �hit� by a random
restriction.

Lemma 10.2. Let C : [2]n → [2] be the Or of functions fi each on w bits. Let ρ be a
random restriction with s stars. For the probability that fρ is not a decision tree of depth d
is ≤ (cws/n)d.

For example, f can be a DNF or a CNF with terms of size w.
One can apply the switching lemma several times to collapse an AC to low-depth decision

tree. We trade optimization for simplicity of exposition.

Corollary 10.2. Let C : [2]n → [2] be an AC of depth d size s. The ρ be a random
restriction with ncd stars. The probability that Cρ is not a decision tree of depth log s is
≤ s2−n

cd .

Proof. Set w := log s. We view ρ as successive applications of restrictions whose number of
stars is square root of the number of variables. View the circuit as having depth d+1 and the
input gates have fan-in 1 ≤ w. The �rst application of Lemma 10.2 gives error ≤ (cw/

√
n)w.

In the good case, the input gates now are decision trees of depth ≤ w. We can write this
as a CNF or DNF with terms of size ≤ w, and merge the output gate with the gates in the
next level in the circuit, which are now computing Ors (or Ands) of functions on ≤ w bits.
The next application of Lemma 10.2 gives error ≤ (cw/n1/4)w, and so on. QED

One can use the switching lemma to prove exponential lower bounds to compute explicit
functions by small-depth ACs. The simplest example is parity, given next. In this case, we
also prove an exponentially strong correlation bound.

Corollary 10.3. The correlation between parity and an AC of depth d and size s is ≤ s2−n
cd .

Proof. The correlation between parity on m bits and decision trees of depth < m is zero.
View a uniform input as �rst picking a restriction, and then �lling the stars. By Corollary
10.2, after picking the restriction the circuit is a decision tree of depth log s, which is strictly
less than the number of remaining starts, except with probability s2−n

cd . QED

Exercise 10.7. State and prove via a reduction from Corollary 10.3 an impossibility result
for Majority. Does a strong correlation bound hold as well?
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10.3.3 Proof of Lemma 10.2

The simplest case: Or of n bits Here f is simply the Or of n bits x1, x2, . . . , xn. In
the restriction some of the bits may become 0, others 1, and others yet may remain un�xed,
i.e., assigned to stars. Those that become 0 you can ignore, while if some become 1 then the
whole circuit C becomes 1.

We will show that the number of restrictions for which the restricted circuit C|ρ requires
decision trees of depth ≥ d is small. To accomplish this, we are going to encode/map such
restrictions using/to a restriction... with no stars (that is, just a 0/1 assignment to the
variables). The gain is clear: just think of a restriction with zero stars versus a restriction
with one star. The latter are more by a factor about the number n of variables.

A critical observation is that we only want to encode restrictions for which C|ρ requires
large depth. So ρ does not map any variable to 1, for else the Or is 1 which has decision
trees of depth 0.

The way we are going to encode ρ is this: Simply replace the stars with ones. To go back,
replace the ones with stars. We are using the ones in the encoding to �signal� where the
stars are.

Hence, the number of bad restrictions is at most 2n, which is tiny compared to the number(
n
s

)
2n−s of restrictions with s stars.

The medium case: Or of functions on disjoint inputs So, again, let's take a random
restriction ρ with exactly s stars. Some of the functions may become 0, others 1, and others
yet may remain un�xed. Those that become 0 you can ignore, while if some become 1 then
the whole circuit becomes 1.

As before, we will show that the number of restrictions for which the restricted circuit C|ρ
requires decision trees of depth ≥ d is small. To accomplish this, we are going to encode/map
such restrictions using/to a restriction with just s− d stars, plus a little more information.
As we saw already, the gain in reducing the number of stars is clear. In particular, standard
calculations show that saving d stars reduces the number of restrictions by a factor (cs/n)d.
The auxiliary information will give us a factor of wd, leading to the claimed bound.

As before, recall that we only want to encode restrictions for which C|ρ requires large
depth. So no function in C|ρ is 1, for else the circuit is 1 and has decision trees of depth 0.
Also, you have d stars among inputs to functions that are un�xed (i.e., not even �xed to 0),
for else again you can compute the function reading less than d bits. Because the functions
are un�xed, there is a setting for those d stars (and possibly a few more stars � that would
only help the argument) that make the corresponding functions 1. We are going to pick
precisely that setting in our restriction ρ′ with s− d stars. This allows us to �signal� which
functions had inputs with the stars we are saving (namely, those that are the constant 1).
To completely recover ρ, we simply add extra information to indicate where the stars were.
The saving here is that we only have to say where the stars are among w symbols, not n.

The general case: Or of functions on any subset of w bits ...isn't really di�erent.
First, the number of functions does not play a role, so you can think you have functions on
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any possible subset of w bits, where some functions may be constant. The idea is the same,
except we have to be slightly more careful because when we set values for the stars in one
function we may also a�ect other functions. The idea is simply to �x one function at the
time. Speci�cally, starting with ρ, consider the �rst function f that's not made constant by
ρ. So the inputs to f have some stars. As before, let us replace the stars with constants that
make the function f equal to the constant 1, and append the extra information that allows
us to recover where these stars were in ρ.

We'd like to repeat the argument. Note however we only have guarantees about C|ρ,
not C|ρ with some stars replaced with constants that make f equal to 1. We also can't just
jump to the 2nd function that's not constant in C|ρ, since the �signal� �xing for that might
clash with the �xing for the �rst � this is where the overlap in inputs makes things slightly
more involved. Instead, because C|ρ required decision tree depth at least d, we note there
have to be some assignments to the m stars in the input to f so that the resulting, further
restricted circuit still requires decision tree depth ≥ d − m (else C|ρ has decision trees of
depth < d). We append this assignment to the auxiliary information and we continue the
argument using the further restricted circuit.

10.3.4 The switching lemma from [58]

Lemma 10.3. Let f : [2]n → [2] be a k-CNF. Let ρ be a random restriction with P[∗] = 1/nc.
The probability that fρ is not ck-local is ≤ 1/nk.

Proof. Induction on k. For k = 1, f is an And. If the And is on ≥ ck log n bits then fρ will
be constant with the desired probability. If the And is on ≤ ck log n bits then the prob. that
fρ depends on ≥ ck bits is

≤
(
ck log n

ck

)
n−c·ck ≤ 1/nck . (10.1)

For the induction step, suppose there are ≥ ck log n Or gates with disjoint inputs. Since
each Or gate is 0 after the restriction w.p. ≥ 1/ck, the result follows.

Otherwise, there is a set C of ≤ ck log n variables that touches every Or gate. For every
assignment to these variables, we can apply the induction hypothesis, and do a union bound.
Also, like in equation (10.1), the prob. that ≥ ck variables in C are set to ∗ by ρ is ≤ 1/nck .
QED

10.4 Myth creation: The switching lemma

I must admit I had a good run (private communication)

The history of science is littered with anecdotes about misplaced credit. Because it does not
matter if it was A or B who did it; it only matters if it was I or not I. The only point of
this section is the disproportionate amount of credit that the work has received within and
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without our community (typically due to inertia and snowball e�ects rather than malice).
Of course, at some level this doesn't matter. You can call Chebichev's polynomials rainbow
sprinkles and the math doesn't change. And yet at some other level maybe it does matter a
little, for science isn't yet a purely robotic activity.

Random restrictions have been used in complexity theory since at least the 60's [171].
The �rst dramatic use in the context of AC0 is due to [58, 5]. These works proved a switching
lemma the amazing fact that a DNF gets simpli�ed by a random restriction to the point
that it can be written as a CNF, so you can collapse layers and induct. (An exposition is
given below.) Using it, they proved super-polynomial lower bounds for AC0. The proof in
[58], presented in section 10.3.4, is very nice and if I want to get a quick intuition of why
switching is at all possible, I often go back to it. [5] is also a brilliant paper, and long,
unavailable online for free, �lled with a logical notation which makes some people twitch.
The �rst symbol of the title says it all, and may be the most obscene ever chosen:

Σ1
1.

Subsequently, [205] proved exponential lower bounds of the form 2n
c
, with a re�ned analysis

of the switching lemma. The bounds are tight, except for the constant c which depends on
the depth of the circuit. Finally, the star of this section [78, 79] obtained c = 1/(depth− 1).

Yao's paper doesn't quite state that a DNF can be written exactly as a CNF, but it
states that it can be approximated. Hastad's work is the �rst to prove that a DNF can be
written as a CNF, and in this sense his statement is cleaner than Yao's. However, Yao's
paper states explicitly that a small circuit, after being hit by a restriction, can be set to
constant by �xing few more bits.

The modern formulation of the switching lemma says that a DNF can be written as a
shallow decision tree (and hence a small CNF). This formulation in terms of decision trees is
actually not explicit in Hastad's work. Beame, in his primer [28], credits Cai with this idea
and mentions several researchers noted Hastad's proof works in this way.

Another switching lemma trivia is that the proof in Hastad's thesis is actually due to
Boppana; Hastad's original argument -- of which apparently no written record exists -- was
closer to Razborov's later proof.

So, let's recap. Random restrictions are already in [171]. The idea of switching is already
in [58, 5]. You already had three analyses of these ideas, two giving superpolynomial lower
bounds and one [205] giving exponential. The formulation in terms of decision trees isn't in
[79], and the proof that appears in [79] is due to Boppana.

Still, I would guess [79] is more well known than all the other works above combined.
[205] did have a following at the time -- I think it appeared in the pop news. But hey -- have
you ever heard of Yao's switching lemma?

The current citation counts o�er mixed support for my thesis:
FSS: 1351
Y: 732
H - paper "Almost optimal...:" 867
H - thesis: 582
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But it is very hard to use citation information. The two H citations overlap, and papers
are cited for various reasons. For example FSS got a ton of citations for the connection to
oracles (which has nothing to do with switching lemmas).

Instead it's instructive to note the type of citations that you can �nd in the literature:

Hastad's switching lemma is a cornerstone of circuit complexity [No mention of
FSS, A, Y]

Hastad`s Switching Lemma is one of the gems of computational complexity [Notes
below in passing it builds on FSS, A, Y]

The wikipedia entry is also telling:

In computational complexity theory, Hastad's switching lemma is a key tool
for proving lower bounds on the size of constant-depth Boolean circuits. Using the
switching lemma, Johan Haåstad (1987) showed that... [No mention of FSS,A,Y]

I think that 99% of the contribution of this line of research is the amazing idea that random
restrictions simplify a DNF so that you can write it as a CNF and collapse. 90% of the
rest is analyzing this to get superpolynomial lower bounds. And 90% of whatever is left is
analyzing this to get exponential lower bounds.

Going back to something I mentioned in the �rst post, I want to emphasize that Hastad
during talks makes a point of reminding the audience that the idea of random restrictions
is due to Sipser, and of Boppana's contribution. And I also would like to thank him for his
help with this post.

OK -- so maybe this is so, but it must then be the case that [79] is the �nal word on this
stu�, like the ultimate tightest analysis that kills the problem. Actually, it is not tight in
some regimes of interest, and several cool works of past and recent times address that. In
the end, I can only think of one reason why [79] entered the mythology in ways that other
works did not, the reason that I carefully sidestepped while composing this post: å.

Perhaps one reason behind the aura of the switching lemma is that it's hard to �nd
examples. It would be nice to read: If you have this extreme DNF here's what happens, on
the other hand for this other extreme DNF here's what happens, and in general this always
works and here's the switching lemma. Examples are forever � Erdos. Instead the switching
lemma is typically presented as blam!: an example-free encoding argument which feels deus
ex machina, as in this crisp presentation by Thapen. For a little more discussion, I liked
Bogdanov's lecture notes. Above I have given a slightly di�erent exposition of the encoding
argument.

10.5 ACs can sample

We showed in the earlier section that ACs cannot compute parity and majority. However,
ACs can sample input-output pairs of these functions. These results have applications and
again point to the unsuspected power of these circuits. Throughout we assume that the
inputs to the circuits is uniform.
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Exercise 10.8. Give a 2-local map C : [2]n → [2]n+1 whose output distribution is (X, parity(X))
for uniform X ∈ [2]n.

Sampling (X,majority(X)) by ACs is more involved and beautiful, and is only known to
be possible up to a small error.

Exercise 10.9. Try to sample (X,majority(X)) by ACs for a few minutes. Write down
what you tried.

The �rst step is sampling a uniform permutation.

Lemma 10.4. There is an AC whose output distribution is 2−n
c
close to a uniform permu-

tation π over [n], represented as n blocks of c log n bits where block i has π(i) in binary.

Exercise 10.10. Assume Lemma 10.4. For any i ≤ n give an AC whose output distribution
is 2−n

c
-close to a uniform n-bit strings of weight i. Give an AC whose output distribution is

2−n
c
-close to (X,majority(X)) for uniform X ∈ [2]n.

Proof of Lemma 10.4. The main technique is known as �dart throwing:� we view the
input random bits as random pointers p1, p2, . . . , pn into m � n cells. We then write i in
the pi-th cell (empty cells get �∗�). If there are no collisions, the ordering of [n] in the cells
gives a random permutation of [n]. However, it is not clear how to explicitly write out this
permutation using small depth, because to determine the image of i one needs to count how
many cells before pi are occupied, which cannot be done in small depth.

The key insight is to view the cells as representing the permutation in a di�erent format,
one from which we can explicitly write out the permutation in small depth. The format is
known as the canonical form for the cyclic notation. We now brie�y review it. Just like
the standard format, the alternative format represents a permutation via an array A[1..n]
whose entries contain all the elements [n]. However, rather than thinking of A[i] as the
image of i, we think of the entries of A as listing the cycles of the permutation in order.
Each cycle is listed starting with its smallest element, and cycles are listed in decreasing
order of the �rst element in the cycle. This format allows for computing the permutation
e�ciently: the image of i is the element to the right of i in A, unless the latter element is
the beginning of a new cycle, in which case the image of i is the �rst element in the cycle
containing i. Identifying the �rst element of a cycle is easy, because it is smaller than any
element preceding it in A. The bene�t of this format is that it works even if the array A has
m� n cells, of which m− n are empty and marked by �∗.�

One can now verify that computing the image of i can be done in AC. Here in particular
we use the fact that such circuits can, given an array A and an index i, compute the least
j > i such that A[j] is not �∗�. This can be accomplished by trying all j in parallel, noting
that one can determine if a �xed j is the least j > i such that A[j] is not �∗� using one
unbounded fan-in And.

To conclude the proof of the lemma, generate ` uniform and independent sets of pointers
pi1, . . . , p

i
n, i = 1, . . . , `, where each pointer has range [m] for m the smallest power of 2 larger

than 2n2 (thus each pointer can be speci�ed by logm bits).
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If there exists i such that the pointers pi1, . . . , p
i
` are all distinct (i.e., there are no colli-

sions), then run the above algorithm on the output corresponding to the �rst such i. This
results in a random permutation.

Since the pointers are chosen independently, the probability that there is no such i is

Pr[∀i∃j, k ≤ n : pij = pik] = Pr[∃j, k ≤ n : p1
j = p1

k]
` ≤ (1/2)`.

Choosing ` := n proves the lemma. QED

10.6 ACC

We denote AC augmented with gates computing mod m by AC[m] . ACC (alternating
circuits with counters) refers to any m. We also denote by AC[m] the class of functions
computable by AC[m] circuits of size nd and depth d for some constant d, and similarly for
ACC.

Techniques based on polynomials, such as those discussed in section 10.3.1 are e�ective
to prove impossibility results against AC[m] if m is prime. Exercise 10.6 refers to the
fundamental case m = 2. But they break down when m is composite. It is consistent with
our knowledge that any function in Exp has ACC of depth c and size nc with mod 6 gates.
It is open if Majority has such circuits.

For any m, AC[m] can be simulated by polynomials. The simulation is incomparable
to the one we saw previously for special cases of m such as m = 2. In the new simulation
We work with polynomials over the integers and then map the output to a boolean value.
Equivalently, we can think of the polynomial as a depth-2 circuit. On the other hand, this
new simulation works for every input as opposed to most inputs.

Lemma 10.5. Any AC[d] of size nd and depth d has an equivalent depth-2 circuit of size
2logcd n where the output is a symmetric function (i.e., only depends on the number of bits
that are 1 in the input to that gate) and the other gates are And with fan-in ≤ logcd n.

As far as we know, general circuits are equivalent to ACC! Yet there is one thing that
we can say about functions computable in ACC that we don't know for PCkt. We can solve
ACC-Sat better than brute-force search. Using this, and Lemma 10.5, and diagonalization,
one can prove the following result, which we don't know how to prove in other ways.

Theorem 10.5. NExp 6= ACC.

The technique involve guessing circuits so it does not seem applicable to functions in NP.

10.7 Notes

Lemma 10.4 is from [123, 74]. Our presentation follows [194].
Lemma 10.5 is from [207, 32] .
Theorem 10.5 is from [203]. One step of the original proof was somewhat indirect and it

was streamlined later in [96].
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Chapter 11

Proofs

The notion of proof is pervasive. We have seen many proofs in this book until now.
But the notion extends to others realms of knowledge, including empirical science, law, and
more. Complexity theory has contributed a great deal to the notion of proof, with important
applications in several areas such as cryptography.

11.1 Static proofs

As remarked in section 5.1.1, we can think of problems in NP as those admitting a solution
that can be veri�ed e�ciently, namely in P. Let us repeat the de�nition of NP using the
suggestive letter V for veri�er.

De�nition 11.1. A function f : X ⊆ [2]∗ → [2] is in NP i� there is V ∈ P (called �veri�er�)
and d ∈ N s.t.:

f(x) = 1⇔ ∃y ∈ [2]|x|
d

: V (x, y) = 1.

We are naturally interested in fast proof veri�cation, and especially the complexity of V .
It turns out that proofs can be encoded in a format that allows for very e�cient veri�cation.
This message is already in the following.
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Theorem 11.1. For any input length n, V in De�nition 11.1 can be taken to be a 3CNF of
size nd.

That is, whereas when de�ning NP as a proof system we considered arbitrary veri�ers
V in P, in fact the de�nition is unchanged if one selects a very restricted class of veri�ers:
small 3CNFs.

Proof. This is just a restatement of Theorem 5.1. QED

This extreme reduction in the veri�er's complexity is possible because we are allowing
proofs to be long, longer than the original veri�er's running time. If we don't allow for that,
such a reduction is not known. Such �bounded proofs� are very interesting to study, but we
shall not do so now.

Instead, we ask for more. The 3CNF in the above theorem still depends on the entire
proof. We can ask for a veri�er that only depends on few bits of the proof. Taking this to
the extreme, we can ask whether V can only read a constant number of bits from y. Without
randomness, this is impossible.

Exercise 11.1. Suppose V in De�nition 11.1 only reads ≤ d bits of y, for a constant d.
Show that the corresponding class would be the same as P.

Surprisingly, if we allow randomness this is possible. Moreover, the use of randomness is
fairly limited � only logarithmically many bits � yielding the following central characteriza-
tion.

Theorem 11.2. A function f : X ⊆ [2]∗ → [2] is in NP i� there is V ∈ P and d ∈ N s.t.:
f(x) = 1⇒ ∃y ∈ [2]|x|

d
: Pr∈[2]d log |x| [V (x, y, r) = 1] = 1,

f(x) = 0⇒ ∀y ∈ [2]|x|
d

: Pr∈[2]d log |x| [V (x, y, r) = 1] < 0.01,
and moreover V reads ≤ d bits of y.

Exercise 11.2. Prove the �only if� in Theorem 11.2 in the speci�c case f = 0.01-Gap-3Sat.

Given this exercise, the �only if� direction for any problem in NP follows from the ad-
vanced result that any problem in NP can be map reduced to 0.01-Gap-3Sat (which is
essentially Theorem 4.10, except we did not claim map reductions or a speci�c constant
there).

Exercise 11.3. Prove the �if� in Theorem 11.2.

11.2 Zero-knowledge

In Theorem 11.2 the veri�er gains �constant con�dence� about the validity of the proof,
just be inspecting a constant number of bits. Hence the veri�er �learns� at most a constant
number of bits of the proof. This is remarkable, but we can further ask if we can modify
the proof so that the veri�er �learns nothing� about the proof. Such proofs are called zero
knowledge and are extensively studied and applied.
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We sketch how this is done for Gap-3Color, which is also NP-complete. Rather than a
single proof y, now the veri�er will receive a random proof Y . This Y is obtained from a 3
coloring y by randomly permuting colors (so for any y the corresponding Y is uniform over
6 colorings). The veri�er will pick a random edge and inspect the corresponding endpoints,
and accept if they are di�erent.

The veri�er learn nothing because all that they see is two random di�erent color. One
can formalize �learning nothing� by noting that the veri�er can produce this distribution
by themselves, without looking at the proof. (So why does the veri�er gain anything from
y? The fact that a proof y has been written down means that colors have been picked so
that every two endpoints are uniform colors, something that the veri�er is not easily able to
reproduce.)

This gives a zero-knowledge proof for veri�ers that follow the protocol of just inspecting
an edge. In a cryptographic setting one has to worry about veri�ers which don't follow the
protocol. Using cryptographic assumptions, one can force the veri�ers to follow the protocol
by considering an interactive proof: First a proof y is committed to but not revealed, then
the veri�er selects an edge to inspect, and only then the corresponding colors are revealed,
and only those. This protocol lends itself to a physical implementation.

11.3 Interactive proofs

We now consider interactive proofs. Here the veri�er V engages in a protocol with a prover
P . Given an input x to both V and P , the veri�er asks questions, the prover replies, the
veri�er asks more questions, and so on. The case of NP corresponds to the prover simply
sending y to V .

It turns out that it su�ces for the veri�er to send uniformly random strings Q1, Q2, . . .
bits to P . This leads to a simple de�nition.

De�nition 11.2. A function f : X ⊆ [2]∗ → [2] admits an e�cient interactive proof,
abbreviated IP, if there is V ∈ P and d ∈ N such that for every x ∈ [2]n, letting b := nd:

• If f(x) = 1 then ∃P : [2]∗ → [2]b such that

V (P (Q1), P (Q1, Q2), . . . , P (Q1, Q2, . . . , Qb)) = 1

for every Q1, Q2, . . . , Qb ∈ [2]b.

• If f(x) = 0 then ∀P : [2]∗ → [2]b we have

PQ1,Q2,...,Qb∈[2]b [V (P (Q1), P (Q1, Q2), . . . , P (Q1, Q2, . . . , Qb)) = 1] ≤ 1/3.

The following amazing result shows the power of interactive proofs, compared to non-
interactive proofs. We can think of NP as �reading a book� and IP as �going to class and
asking questions.� We don't yet know how to replace teachers with books.
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Theorem 11.3. [119, 157] IP = PSpace.

In the rest of this section we present the main ideas in the proof of 11.3, establishing a
weaker result. In particular we show that IP contains problems not known to be in NP.

Theorem 11.4. Given a �eld F, an arithmetic circuit C(x1, x2, . . . , xv) over F computing a
polynomial of degree d, and an element s ∈ F, deciding if∑

x1,x2,...,xv∈[2]

C(x1, x2, . . . , xv) = s (11.1)

is in IP, whenever (1− d/q)v ≥ 2/3.

Proof. If v = 1 then V can decide this question by itself, by evaluating the circuit. For
larger v we give a way to reduce v by 1.

As the �rst prover answer, V expects a polynomial p of degree d in the variable x, which
is meant to be

s′(x) :=
∑

x2,x3,...,xn∈[2]

C(x, x2, x3 . . . , xn).

V checks if p(0) + p(1) = s, and if not rejects. Otherwise, it recursively runs the protocol to
verify that ∑

x2,x3,...,xn∈[2]

C(Q1, x2, x3, . . . , xn) = p(Q1). (11.2)

This concludes the description of the protocol. We now verify its correctness.
In case equation (11.1) is true, P can send polynomials that cause V to accept.
In case equation (11.1) is false, s′(0) + s′(1) 6= s. Hence, unless V rejects right away

because p(0) + p(1) 6= s, we have p 6= s′. The polynomials p and s′ have degree ≤ d. Hence
by Lemma 2.3

PQ1 [p(Q1) 6= s′(Q1)] ≥ 1− d/q.

When this event occurs, equation (11.2) is again false, and we can repeat the argument.
Overall, the probability that we maintain a false statement throughout the protocol is ≥
(1− d/q)v. QED

Corollary 11.1. Given a 3CNF formula φ and k ∈ N, deciding if φ has exactly k satisfying
assignments is in IP.

The proof uses a far-reaching technique: arithmetization. We construct an arithmetic
circuit Cφ over a �eld F which agrees with φ on boolean inputs, but that can then be
evaluated over other elements of the �eld.

Exercise 11.4. Prove Corollary 11.1.

The study of interactive proofs is rich. Many aspects are of interest, including:
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• The e�ciency of the prover (does it have to be unbounded, randomized, etc.), and of
the veri�er.

• The number of rounds.

• The tradeo� betwen the error and the other parameters.

11.4 Interactive proofs for muggles
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Chapter 12

Data structures

Data structures aim to maintain data in memory so as to be able to support various opera-
tions, such as answering queries about the data, and updating the data. The study of data
structures is fundamental and extensive. We distinguish and study in turn two types of data
structure problems: static and dynamic. In the former the input is given once and cannot
modi�ed by the queries. In the latter queries can modify the input; this includes classical
problems such as supporting insert, search, and delete of keys.

12.1 Static data structures

De�nition 12.1. A static data-structure problem is simply a function f : [2]n → [q]m. A
data structure for f with space s, word size w and time t is a way to write f as

f(x) = h(g(x))

where g : [2]n → [2w]s, h : [2w]s → [q]m, and each output bit of h depends on ≤ t input
words (we think of s as divided into words of length w).

Here we have n bits of input data about which we would like to answer m queries. Often
the queries and or the word size are boolean, i.e., 2w = q = 2. Another typical setting
is q = 2w. The data structure aims to accomplish this by storing the input into s bits of
memory. This map is arbitrary, with no bound on resources. But after that, each query
can be answered very fast, by reading only t words. In general, these words can be read
adaptively. But for simplicity we focus on the case in which the locations are �xed by the
data structure and the same for every input x ∈ [2]n.

Exercise 12.1. Consider the data structure problem f : [2]n → [2]m where m = n2 and
query (i, j) ∈ {1, 2, . . . , n}2 is the parity of the input bits from i to j.

Give a data structure for this problem with s = n, w = 1, and t = 2.

Exercise 12.2. Show that any data-structure problem f : [2]n → [2]m has a data structure
with w = 1 and the following parameters:
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(1) s = m and t = 1, and
(2) s = n and t = n.

Exercise 12.3. Prove that for every n and m ≤ 2n/2 there exist functions f : [2]n → [2]m

s.t. any data structure with space s = m/2 and w = 1 requires time t ≥ n− c.

By contrast, next we present the the best known impossibility result.

De�nition 12.2. A function f : [2]n → [q]m is d-wise uniform if any d output coordinates
are uniform when the input to f is uniform.

Theorem 12.1. [163] Let f : [q]d → [q]q be d-wise uniform. Let q be a power of 2 and
c log q ≤ d ≤ qc. Then any data structure with w = log q using space s (which recall is
measured in words of w bits) and time t has:

t ≥ c
log q

log(s/d)
.

Interpreting the input as coe�cients of a degree d− 1 univariate polynomial over Fq and
outputting its evaluations shows that such functions exists, and are in P. Below we give a
surprising data structure that nearly matches the theorem.

To match previous parameters note that n = d log q = dw, and m = log q. Hence the
bound is t ≥ c(logm)/ log(sw/n). Note that sw is the space of the data structure measured
in bits. It follows that if sw is linear in n then t ≥ c logm. This result remains non-trivial
for s slightly super-linear. But remarkably, if sw = n1+c then nothing is known (for m power
in n one only gets t ≥ c).

Proof. The idea in the proof is to �nd a subset S of less than d memory cells that still allows
us to answer ≥ d queries. This is impossible, since we can't generate d uniform outputs from
less than d memory cells.

Let p := 1/q1/4t. Include each memory bit in S with probability p, independently. By
Theorem 2.8, P[|S| ≥ cps] ≤ 2−cps.

We are still able to answer a query if all of its memory bits fall in S. The probability
that this happens is pt = 1/q1/4. We now claim that with probability ≥ 1/qc, we can still
answer

√
q queries. Indeed, let B be the number of queries we cannot answer. We have

E[|B|] ≤ q(1− q1/4). And so

P[B ≥ q(1− 1/
√
q)] ≤ 1− q1/4

1−√q
≤ 1− qc.

Thus, if the inequality 2−cps ≤ 1/qc holds then there exists a set S of cps bits with which
we can answer ≥ √q > d queries. Hence we reach a contradiction if

c log q ≤ cps < d.

Because d > c log q by assumption, and increasing s only make the problem easier, we reach
a contradiction if cps < d, and the result follows. QED
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Next we show a conceptually simple data structure which nearly matches the lower bound.
For simplicity we focus on data structures which use space qε � recall in this case the previous
result does not give anything. We will show this is for good reasons, there are data structures
where the time is constant. We will only show cεd-wise independence, as opposed to d-wise,
but the proof techniques next and above generalize to other settings of parameters.

Theorem 12.2. There is a map f : [q]d → [q]q which is cεd-wise uniform and has a data
structure with w = log q space s = dqε and time cε, for any ε and q which is a power of 2.

To give a sense of the parameters, let for example q = d10.

Proof. We �ll the memory with s evaluations of the input polynomial. Then we pick a
random bipartite graph with s nodes on the left and q nodes on the right. Every node on the
right side has degree g. We answer each query by summing the corresponding cells in s. Let
d′ := d/g. To show d′-wise uniformity it su�ces to show that for any subset R ⊆ [q] on the
right-hand side of size d′, the sum of the corresponding memory cells is uniform in Fq. For
this in turn it su�ces that R has a unique neighbor. And for that, �nally, it su�ces that R
has a neighborhood of size greater than g|R|

2
(because if every element in the neighborhood

of R has two neighbors in R then R has a neighborhood of size < g|R|/2).
Note here we are using that the neighborhood has size ≤ gd′ = d, and so the memory is

d-wise uniform.
We pick the graph at random and show that it has the latter property with non-zero

probability. We write N(R) for the set of neighbors of R. We have:

Pr [∃R ⊆ [q], |R| ≤ d′, s.t. |N(R) ≤ g|R|/2]

= Pr

[
∃i ≤ d′,∃R ⊆ [q], |R| = i, and ∃T ⊆ [s], |T | ≤ gi

2
s.t. N(R) ⊆ T

]
≤

d′∑
i=1

(
q

i

)(
s

gi/2

)(
gi/2

s

)gi
≤

d′∑
i=1

(eq
i

)i( es

gi/2

)gi/2(
gi/2

s

)gi
=

d′∑
i=1

(
e1+g/2q

i

)i(
gi/2

s

)gi/2

=
d′∑
i=1

e1+g/2q

i

(
gi/2

s

)g/2
︸ ︷︷ ︸

C


i

.

It su�ces to have C ≤ 1/2, so that the probability is strictly less than 1, because
∑k

i=1 1/2i =
1− 2−k. Recall that gi ≤ d. Hence if s = dqε then g = cε su�ces for large enough q. QED

137



12.1.1 Succinct data structures

Succinct data structures are those where the space is close to the minimum, n. Speci�cally,
we let s = n + r for some r = o(n) called redundancy. Unsurprisingly, stronger bounds can
be probed in this setting. But, surprisingly, again these stronger bounds were shown to be
tight. Moreover, it was shown that improving the bounds would imply stronger circuit lower
bounds.

To illustrate, consider the ECC problem f : [2]n → [2]m where f is an error-correcting
code (with constant relative distance) and m is linear in n.

Theorem 12.3. [60] Any data-structure for the ECC problem with w = 1 using space n+ r
requires time ≥ cn/r.

This is nearly matched by the following result.

Theorem 12.4. [197] There is an ECC problem s.t. for any r it has a data structure with
w = 1, space n+ r, and time c(n/r) log3 n.

Moreover, it was shown that proving a time lower bound of (n/r) logc n would imply new
circuit lower bounds. The latter result refers to bounds on the number of wires in circuits
with arbitrary gates. But the following connection with the standard circuit model is also
known.

Theorem 12.5. [197] Let f : [2]n → [2]am be a function computable by bounded fan-in
circuits with bm wires and depth b logm, for constants a, b. Then f has a data structure
with space n+ o(n) and time no(1).

Hence, proving nε time lower bounds for succinct data structures would give functions
that cannot be computed by linear-size log-depth circuits, cf. 9.3.

12.1.2 Succincter: The trits problem

In this section we present a cute and fundamental data-structure problem with a shocking
and counterintuitive solution. The trits problem is to compute f : [3]n → ([2]2)n where on
input n �trits� (i.e., ternary elements) (t1, t2, . . . , tn) ∈ [3]n f outputs their representations
using two bits per trit.

Example 12.1. For n = 1, we have f(0) = 00, f(1) = 01, f(2) = 10.

Note that the input ranges over 3n elements, and so the minimum space of the data
structure is s = dlog2 3ne = dn log2 3e ≈ n · 1.584 . . . This will be our benchmark for space.
One can encode the input to f as before using bits without loss of generality, but the current
choice simpli�es the exposition.
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Simple solutions:

• The simplest solution (cf. 12.2) to this problem is to use 2 bits per ti. With such an
encoding we can retrieve each ti ∈ [3] by reading just 2 bits (which is optimal). The
space used is s = 2n and we have linear redundancy.

• Another solution (cf. again 12.2) to this problem is what is called arithmetic coding :
we think of the concatenated elements as forming a ternary number between 0 and
3n − 1, and we write down its binary representation. To retrieve ti it seems we need
to read all the input bits, but the space needed is optimal.

• For this and other problems, we can trade between these two extreme as follows. Group
the ti's into blocks of t. Encode each block with arithmetic coding. The retrieval time
will be ct bits and the needed space will be (n/t)dt log2 3e ≤ n log2 3 +n/t (assuming t
divides n). This is block-wise arithmetic coding. It provides a power trade-o� between
retrieval time and redundancy. (Using number-theoretic results on logarithmic forms,
one can show [193] that this last inequality is tight up to changing n/t into n/tc.)

The shocking solution: An exponential (!) trade-o�

We now present an exponential trade-o�: retrieval time ct bits and redundancy n/2t + c. In
particular, if we set t = c log n, we get retrieval time O(log n) and redundancy O(1). More-
over, the bits read are all consecutive, so with word size w = log n this can be implemented
in constant time. To repeat, we can encode the trits with constant redundancy and retrieve
each in constant time. This solution can also be made dynamic.

Theorem 12.6. [140, 52] The trits problem has a data structure with space n log2 3+n/2t+c
(i.e., redundancy n/2t + c) and time ct, for any t and with word size w = 1. For word wise
w = log n the time is constant.

Next we present the proof.

De�nition 12.3 (Encoding and redundancy). An encoding of a set A into a set B is a one-to-
one (a.k.a. injective) map f : A→ B. The redundancy of the encoding f is log2 |B|−log2 |A|.

The following lemma gives the building-block encoding we will use.

Lemma 12.1. For all sets X and Y , there is an integer b, a set K and an encoding

f : (X × Y )→
(
[2]b ×K

)
such that (1) f has redundancy ≤ c/

√
|Y |, and (2) x ∈ X can be recovered just by reading

the b bits in f(x, y).

Note that (1) says that b + log |K| − log |X| − log |Y | ≤ c/
√
|Y |. For (2) to hold we must

have b ≥ log |X|. Combining this with the previous expression we obtain log |K| − log |Y | ≤
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c/
√
|Y |. In particular we get that |K| ≤ 2c ·|Y | (in fact it will be the case that |K| ≤ c·

√
|Y |,

but the looser bound is su�cient).
The basic idea for proving the lemma is to break Y into C ×K and then encode X ×C

by using b bits:
X × Y → X × C ×K → [2]b ×K.

There is however a subtle point. If we insist on always having |C| equal to, say,
√
|Y | or

some other quantity, then one can cook up sets that make us waste a lot (i.e., almost one
bit) of space. The same of course happens in the more basic approach that just sets Y = K
and encodes all of X with b bits. The main idea will be to �reason backwards,� i.e., we will
�rst pick b and then try to stu� as much as possible inside [2]b. Still, our choice of b will
make |C| about

√
|Y |.

Proof. Pick any two sets X and Y , where |Y | > 1 without loss of generality. De�ne

b :=
⌈
log2

(
|X| ·

√
|Y |
)⌉

, and let B := [2]b. To simplify notation, de�ne d := 2b/|X|. Note
c
√
|Y | ≤ d ≤ c

√
|Y |.

How much can we stu� into B? For a set C of size |C| = b|B|/|X|c, we can encode
elements from X×C in B. The redundancy of such an encoding can be bounded as follows:

log |B| − log |X| − log |C|

= log
2b

|X|
− logb 2b

|X|
c

= log d− logbdc
≤ log d− log(d− 1)

= log

(
1 +

1

d− 1

)
≤ c

d− 1

≤ c√
|Y | − 1

≤ c√
|Y |

.

To calculate the total redundancy, we still need to examine the encoding from Y to
C × K. Choose K of size |K| = d|Y |/|C|e, so that this encoding is possible. With a
calculation similar to the previous one, we see that the redundancy is:
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log |C|+ log |K| − log |Y |

= logd|Y |
|C|
e − log

|Y |
|C|

≤ log

(
1 +
|C|
|Y |

)
≤c |C|
|Y |

≤c
b 2b

|X|c
|Y |

≤c 2b

|X| · |Y |

≤c2(log |X|·
√
|Y |)+1/(|X| · |Y |) ≤ c

√
|Y |
|Y |

= c
1√
|Y |

.

The total redundancy is then c/
√
|Y |, which gives (1).

For (2), it is clear from the construction that any x ∈ X can be recovered from the
element of B only. QED

Proof of Theorem 12.6. Break the ternary elements into blocks of size t: (t′1, t
′
2, . . . , t

′
n/t) ∈

T1 × T2 × . . . × Tn/t, where Ti = [3]t for all i. The encoding, illustrated in Figure 1, is
constructed as follows, where we use fL to refer to the encoding guaranteed by Lemma Lemma
12.1.

Compute fL(t′1, t
′
2) = (b1, k1) ∈ B1 ×K1.

For i = 2, . . . , n/t− 1 compute fL(ki−1, t
′
i+1) := (bi, ki) ∈ Bi ×Ki.

Encode kn/t−1 in binary as bn/t using arithmetic coding.
The �nal encoding is (b1, b2, . . . , bn/t). We now compute the redundancy and retrieval time.

Redundancy: From (1) in Lemma 12.1, the �rst n/t − 1 encodings have redundancy
c3−t/2 ≤ 1/2ct. For the last (arithmetic) encoding, the redundancy is at most 1. So the

total redundancy is at most
(n
t
− 1
)
· 1

2ct
+ 1 =

n

2ct
+ c. One can visualize this as a �hybrid

argument� transforming a product of blocks of ternary elements into a product of blocks of
binary elements, one block at the time.

Retrieval Time: Say that we want to recover some tj which is in block t′i. To recover
block t′i, Lemma 12.1 guarantees that we only need to look at bi−1 and bi. This is because
ki−1 can be recovered by reading only bi, and t′i can be recovered by reading ki−1 and bi−1.
Thus to complete the proof it su�ces to show that each bi has length ct.

This is not completely obvious because one might have thought that theKi become larger
and larger, and so we apply the lemma to larger and larger inputs and the Bi get large too.
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However, recall that each |Ki| ≤ c|Ti| = c3t from the comment after the statement of Lemma
12.1. Hence, every time we apply the lemma on an input of size at most s ≤ 3ct. Since the
lemma wastes little entropy (by (1) in Lemma 12.1), none of its outputs can be much larger
than its input, and so |Bi| = 2ct. QED
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Figure 12.1: Succinct Encoding

12.2 Dynamic data structures

We now study dynamic data structures. As we mentioned, here the input is not �xed but
can be modi�ed by the queries.

De�nition 12.4. Fix an error-correcting code ECC : [2]n → [2]m where m ≤ cn and
∆(ECC(x),ECC(y)) ≥ c for any x 6= y in [2]n. Here ∆(u, v) is the relative distance, the
fraction of bit positions where u and v di�er.

The ECC problem asks to support operations, starting with the all-zero message:
M(i, b) for i ∈ {1, 2, . . . , n} and b ∈ [2] which sets bit i of the message to b, and
C(i) for i ∈ {1, 2, . . . ,m} which returns bit i of the codeword corresponding to the current

message.

The time of a dynamic data structure is the maximum number of read/write operations
in memory cells required to support an operation.

Theorem 12.7. The ECC problem requires time t ≥ c logw n ≥ (c log n)/ log log n for cell
size w := log n.
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One might wonder if stronger bounds can be shown for this problem. But in fact there
exist codes for which the bounds are nearly tight.

Theorem 12.8. [197]There exists codes for which the ECC problem can be solved in time
c log2 n with cell size w = 1.

The technique in the proof of Theorem 12.7 is from [57] and can be applied to many
other natural problems, leading to tight results in several cases, see Exercise ??. It is not
far from the state-of-the art in this area, which is log1+c n [111].

Proof of Theorem 12.7. Pick x ∈ [2]n uniformly and i ∈ {1, 2, . . . ,m} uniformly, and
consider the sequence of operations

M(1, x1),M(2, x2), . . . ,M(n, xn), C(i).

That is, we set the message to a uniform x one bit at a time, and then ask for a uniformly
selected bit of the codeword ECC(x), which we also denote by Cx = Cx(1), Cx(2), . . . , Cx(n).

We divide the n operations M(i, xi) into consecutive blocks, called epochs. Epoch e
consists of n/w3e operations. Hence we can have at least E := c logw n epochs, and we can
assume that we have exactly this many epochs (by discarding some bits of n if necessary).

The geometrically decaying size of epochs is chosen so that the number of message bits
set during an epoch e is much more than all the cells written by the data structure in future
epochs.

A key idea of the proof is to see what happens when the cells written during a certain
epoch are ignored, or reverted to their contents right before the epoch. Speci�cally, after the
execution of the M operations, we can associate to each memory cell the last epoch during
which this cell was written. Let De(x) denote the memory cells of the data structure after
the �rst n operations M , but with the change that the cells that were written last during
epoch e are replaced with their contents right before epoch e. De�ne Ce

x(i) to be the result
of the data structure algorithm for C(i) on De(x), and Ce

x = Ce
x(1), Ce

x(2), . . . , Ce
x(n).

Let t(x, i, e) equal 1 if C(i), executed after the �rst n operations M , reads a cell that was
last written in epoch e, and 0 otherwise. We have

t ≥ max
x,i

∑
e

t(x, i, e) ≥ Ex,i
∑
e

t(x, i, e) =
∑
e

Ex,it(x, i, e) ≥
∑
e

Ex∆(Cx, C
e
x), (12.1)

where the last inequality holds because Ce
x(i) 6= Cx(i) implies t(x, i, e) ≥ 1.

We now claim that if t ≤ w then Ex∆(Cx, C
e
x) ≥ c for every e. This concludes the proof.

In the remainder we justify the claim. Fix arbitrarily the bits of x set before Epoch e.
For a uniform setting of the remaining bits of x, note that the message ranges over at least

2n/w
3e

codewords. On the other hand, we claim that Ce
x ranges over much fewer strings. Indeed,

the total number of cells written in all epochs after e is at most

t
∑
i≥e+1

n/w3i ≤ ctn/w3(e+1).
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We can describe all these cells by writing down their indices and contents using B :=
ctn/w3e+2 bits. Note that this information can depend on the operations performed dur-
ing Epoch e, but the point is that it takes few possible values overall. Since the cells last
changed during Epoch e are reverted to their contents before Epoch e, this information
su�ces to describe De(x), and hence Ce

x. Therefore, C
e
x ranges over ≤ 2B strings.

For each string in the range of Ce
x at most two codewords can have relative distance ≤ c,

for else you'd have two codewords at distance ≤ 2c, violating the distance of the code.
Hence except with probability 2 · 2B/2n/w3e

over x, we have ∆(Cx, C
e
x) ≥ c. If tM ≤ w

then the �rst probability is ≤ 0.1, and so Ex∆(Cx, C
e
x) ≥ c, proving the claim. QED

Exercise 12.4. Explain how to conclude the proof given the claim.

12.3 Notes

The exposition of the trits problem is from [188].
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Chapter 13

Pseudorandomness

Suppose I say to you that I've tossed coin 40 times and got this sequence of heads (0)
and tails (1):

0101010101010101010101010101010101010101..

You'd probably think this can't be true. But suppose instead I claim that I got

1000111110100010011110100101111101100100.

Maybe you would think this is possible then? But why do we feel this way? For a fair
coin, the two strings have the same probability of 2−20!

This example leads to a very interesting question: What is randomness? Of course, we've
been using randomness all along since the �rst chapter. Still, let's step back and consider
three possible answers:

1. Classical: Each string has the familiar probability. This viewpoint is useful in math-
ematics but the example above shows that it doesn't capture our intuitive notion of
randomness.

2. Intrinsic (or ontological): A string is the less random the shorter description it has.
The �rst string has the short program �Print 01 for 20 times,� while the shortest pro-
gram for the second seems to be �Print 1000111110100010011110100101111101100100.�

3. Behaviouristic: Randomness is in the eyes of the beholder: A string R is random for
f if f can't distinguish it from a truly random string. In other words, R fools f into
thinking that R is random.
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The last answer seems the most useful, and we now make it precise.

De�nition 13.1. A distribution R over [2]n ε-fools (or is ε-pseudorandom for) a function
f : [2]n → [2] if |E[f(R)] − E[f(U)]| ≤ ε, where U is uniform in [2]n. A function f ε-breaks
(or tells, distinguishes) distributions D and E if |E[f(D)]− E[f(E)]| ≥ ε. If E is omitted it
is assumed to be the uniform distribution.

We are naturally interested in distributions that are pseudorandom yet have very little
entropy. As in Chapter 3, counting arguments show that very little entropy is needed for
non-explicit distributions, about logarithmic in the number of tests to be fooled. But our
ability to explicitly construct such distributions is limited by the grand challenge:

Claim 13.1. Let distribution R over [2]n 1/2-fool a set F of functions. Suppose the support
of R is < 2n/2. Then the indicator function g : [2]n → [2] of the support of R is not in F .

Proof. We have E[g(U)] < 1/2 while E[g(R)] = 1. To spell it out, g is not 1/2-fooled and
so cannot be in F . QED

For example, if F = PCkt and R can be sampled in P then g ∈ NP.
The above claim can be strengthened. In general, constructing such distribution can be

thought of a re�ned impossibility results that is closely related to average-case hardness.
To simplify the following discussion, we introduce the notion of pseudorandom generator

which makes it easier to talk about the entropy of the distribution and its explicitness.

De�nition 13.2. An algorithm G is a pseudorandom generator that ε-fools a class F of
functions (or a generator for F with error ε) with seed length s (a function of both n and ε)
if on input n and ε, and a uniform seed U of length s(n, ε), G outputs a distribution on n
bits that ε-fools any function in F on inputs of length n. The stretch is n− s(n, ε).

Note that we use n to denote the output length of G, because it is the input length for a
test that's trying to tell G from random. Also, we typically have the output length of G much
longer than the input length. For some applications, it su�ces if G is computable in power-
time in the output length, which can be exponential in the input length. We shall simply
say that G is explicit in this case. However many generators we present below, especially
those for restricted models, are explicit in a stronger sense: Given an input and index to the
output, the corresponding output bit can be computed in P.

Exercise 13.1. Suppose there is a > 0 and an explicit generator with seed length s(n) =
a log n that 0.1-fools circuits of size n, for a constant a. Prove that P = BPP.

Note that to eliminate one parameter we set the size of the circuit test equal to the output
length of G. Recall from De�nition 2.4 that input gates are not counted towards size; the
circuit may simply ignore most of its input bits, which makes sense since very few input bits
su�ce, information-theoretically, to tell the output of G from uniform.

Given Claim 13.1, there are two main avenues for research, closely paralleling the devel-
opment of earlier chapters. The �rst is proving unconditional results for restricted models,
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like AC. Actually, pseudorandomness being a more re�ned notion of impossibility, even very
simple models like local functions are non-trivial, and results for them very useful. The
second is proving reductions, that is linking the existence of PRGs to other conjectures.
Interestingly, some of the techniques are general and apply in both settings.

13.1 Basic PRGs

In this section we present PRGs for several basic classes of tests. Besides being basic, these
tests are the backbone of several other constructions, and somewhat surprisingly su�ce to
fool apparently stronger classes of tests.

13.1.1 Local tests

The simplest model to consider is perhaps that of local functions. A distribution over [2]n

is k-wise uniform if every k bits are uniform in [2]k (equivalently, any k-local function is
0-fooled).

Exercise 13.2. Given an explicit 1-wise uniform generator with seed length s(n) = 1.

Theorem 13.1. There are explicit k-wise uniform generators with seed length s = ck log n.

Proof. Wlog assume n is a power of 2 and let F be the �eld of size n. More generally, the
range of G will be Fn, and the distribution of any k coordinates will be uniform over Fk.
View the input as coe�cients ai i ∈ [k] of a polynomial p of degree k − 1. De�ne the i
output element of G to be p(i). Any k-tuple of �eld elements is uniform, for if two di�erent
polynomials give the same tuple then their di�erence is a non-zero polynomial of degree k−1
with ≥ k roots, violating Lemma 2.3. (We can assume k ≤ n for else the theorem is trivial.)
QED

The bound on s is almost tight for small k. To see this, think of the support as {−1, 1}n,
and write down a 2s×n matrix where row x is G(x). For even k, and for any T ⊆ [n] of size
k/2, consider the 2s-long vector vT obtained by multiplying together the columns indexed
in T . Note that the vT are orthonormal, hence independent, and so 2s ≥

(
n
k/2

)
, whence

s ≥ ck log(2n/k).
Polylog-wise uniformity su�ces to fool AC.

Theorem 13.2. Any log(m/ε)cd-wise uniform distribution over [2]n ε-fools AC of size m and
depth d.

In particular, there are explicit generators that ε-fool such circuits with seed length
log(m/ε)cd. We give generators with this seed length below, via a slightly di�erent route.
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13.1.2 Low-degree polynomials

Another natural model is that of low-degree polynomials. Chapter 6 and Chapter 10 give
several applications, and we encounter more below in section 13.1.3.

Theorem 13.3. There are explicit generators that ε-fool degree-1 polynomials over F2 with
seed length s = c log(n/ε).

Exercise 13.3. Prove Theorem 13.3 using the construction in the proof of Lemma 6.6.

To fool polynomials of degree d > 1, we can take the xor of d independent copies of
generators for degree 1. This is known to work for d < log n, and is unknown beyond that.

Theorem 13.4. The sum of d generators that ε-fool degree-1 polynomials over F2, on
independent seeds, fools degree-d polynomials with error ≤ cε1/2

d−1
.

Question 13.1. Does this work for d > log n?

13.1.3 Expander graphs and combinatorial rectangles: Fooling AND
of sets

In this subsection we construct a PRG to fool the And of (the indicator functions) of sets.
This basic construction ties together many things we have seen and showcases techniques
which allow to build even more powerful PRGs. Also, it su�ces for the time-e�cient simu-
lation of BPP in PH, Item (2) in Theorem 6.3.

Theorem 13.5. There are explicit generators G that ε-fool the product of t subsets of
[2]m with seed length m + c(log t) log(mt/ε): For any functions fi : [2]m → [2] we have
|E[
∏

i fi(Ui)]− E[
∏

i fi(Xi)]| ≤ ε where (X1, X2, . . . , Xt) = G(U) for uniform U ∈ [2]s.

Except for the extra log t factor, the seed length is good.

Exercise 13.4. Prove Item (2) in Theorem 6.3 assuming Theorem 13.5.

The fundamental case of t = 2 is known as expander graphs.

Exercise 13.5. [Where is the graph, and why is it expanding?] Let L and R be two disjoint
sets with M := 2m nodes each, and de�ne the graph on vertices L ∪ R and edges (x, y)
from L to R for any output (x, y) = G(z). Prove that any set X ⊆ L of αM nodes has
≥ (1− ε/α)M neighbors in R.

For expander graphs, explicit constructions with seed length m+c log 1/ε are known. We
give below a simpler construction with seed length m + c log(m/ε). Expander graphs have
many applications. A simple example is that the general case t > 2 is obtained from the
t = 2 case via recursion.
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Recursion

To fool 2t sets, �rst run the generator for 2 sets with error ε/c to get two seeds for generators
for t sets with error ε/c. Then, run twice the generator for t sets on those seeds. Speci�cally,
given 2t functions fi, let g1 : [2]mt → [2] be the product of the �rst t, and g2 the product of
the last t. Let Gt be a generator for the product of t functions. We have:

|E[g1(U) · g2(U)]− E[g1(G(S1)) · g2(G(S2))]| ≤ ε/2.

To see this, de�ne the �hybrid� distribution H = g1(G(S1))·g2(U), and note that the distance
of E[H] from each of the expectations inside the absolute value is ≤ ε/c, and use the triangle
inequality.

Now the key idea is that we can think of g1 composed with G as another function h1, and
similarly for g2. We can fool h1 · h2 with the generator for two sets with error ε/2, obtaining
a generator for t sets with error ε/2 + ε/2 = ε, as desired.

To analyze the seed length, denote it by s(m, t, ε) for parameters m, t, and ε. The
de�nition above gives the recursion

s(m, 2t, ε) ≤ s(s(m, t, ε/c), 2, ε/c) ≤ s(m, t, ε/c)+c log s(m, t, ε/c)/ε ≤ s(m, t, ε/c)+c log(mt/ε).

The second inequality is by the base t = 2 case, and the next is because seed mt always
su�ces, trivially. Iterating log2 t times, we obtain seed length

≤ s(m, 2, ε/tc) + c log(t) log(mt/ε)

which is as desired, using again the base case.

Expander graphs

The generator for the base case outputs (U,U+D) where U is uniform andD is a distribution
that ε-fools linear polynomials over F2 (!). By Theorem 13.3 the seed length is as desired.
To analyze, it is natural to write the functions f1 and f2 in terms of polynomials. For slight
convenience we think of the inputs in {−1, 1} instead of {0, 1}, so that multiplication of
input bits corresponds to xoring and degree-1 polynomials. So in particular we will write
U ·D for U +D.

Exercise 13.6. For α ⊆ [n], we write xα for
∏

i∈α xi. Let f : {−1, 1}n → R be a function.
(1) Show that f can be written as f(x) =

∑
α f̂αx

α, where f̂α ∈ R. Guideline: First
write f(x) =

∑
a∈{−1,1} f(a)Ia(x), where Ia(x) = 1 if x = a and 0 otherwise.

(2) Show that f̂∅ = E[f(U)].
(3) Show that

∑
α f̂

2
α = E[f 2(U)].

Writing f = f1 and g = f2 we need to bound |E[f(U)f(U ·D)]−E[f(U)]E[g(U)]|. Using
Exercise 13.6, the second summand is f̂∅ĝ∅. The �rst is

Ex←U,D[
∑
α,β

f̂αĝβx
α(x ·D)β].
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Because (x ·D)β = xβ ·Dβ, the terms with α 6= β give 0. So we can rewrite it as

ED[
∑
α

f̂αĝαD
α].

Putting this together, we remove the α = ∅ term, and our goal is to bound

|ED[
∑
α 6=∅

f̂αĝαD
α]|.

This is at most∑
α6=∅

|̂fα|·|ĝα|·|ED[Dα]| ≤ ε
∑
α

|̂fα|·|ĝα| ≤ ε

√∑
α

f̂ 2
α ·
√∑

α

ĝ2
α = ε

√
E[f 2(U)]·

√
E[g2(U)] ≤ ε.

Here we used Exercise 13.6 and the inequality
∑

i aibi ≤ (
∑

i a
2
i )(
∑

i b
2
i ). In the last step

we used that the range of f and g is [2].

13.2 PRGs from hard functions

In this section we present a general paradigm to construct PRGs from hard functions. We
begin with a general claim showing that PRGs with non-trivial seed length s(n) = n− 1 are
in fact equivalent to correlation bounds.

Claim 13.2. We have:
(1) If C : [2]n+1 → [2] ε-breaks G(x) := xf(x) then there is b ∈ [2] s.t. C ′b : [2]n → [2]

de�ned as C ′b(x) := C(xb)⊕ b has correlation Ee[C ′b(x)⊕ f(x)] ≥ ε.
(2) Conversely, suppose C : [2]n → [2] has ε-correlation with f . Then C ′ : [2]n+1 → [2]

de�ned as C ′(x, b) := C(x)⊕ b ε-breaks xf(x).

Proof of (1). Pick b uniformly and write

Ex,be[C ′b(x)⊕ f(x)] =
1

2
|ExC(xf(x))− ExC(xf(x))| = |ExC(xf(x))− EC(U)|.

So there is b s.t. the LHS is at least the RHS. This establishes the �rst claim. QED

Exercise 13.7. Prove (2) in Claim 13.2.

The contrapositive of (1) is that functions with small correlation immediately imply a
1-bit of stretch generator. Naturally, we'd like to increase the stretch. A natural idea is
repetition: From a pseudorandom distribution D over [2]n, we construct Dk := D,D, . . . , D
over [2]k·n.

Claim 13.3. If f ε-distinguishes Dk and Ek then a restriction of f ε/k-distinguishes D and
E.

150



Proof. Via the �hybrid method,� a.k.a. the triangle inequality, cf. proof of Theorem 13.5.
De�ne Hi := D0D1 · · ·Di−1EiEi+1 · · ·Ek−1 over nk bits for i ∈ [k], where each factor in the
RHS is over n bits. Note that H0 is Ek and Hk is Dk. Write

ε ≤ |E[f(H0)] − E[f(Hk−1)]| = |
∑

i∈[k] E[f(Hi)] − E[f(Hi+1)]| ≤
∑

i∈[k] |E[f(Hi)] −
E[f(Hi+1)]|.So one of the terms on the RHS is ≥ ε/k. The corresponding distributions
Hi and Hi+1 di�er in only one factor. We can �x all others and the claim follows. QED

Note we went from ε to ε/k. This means the claim is only applicable when ε is fairly
small. In general, this loss cannot be avoided:

Exercise 13.8. Give D that is 0.1-pseudorandom (for say PCkt) but Dk is not even 0.9
pseudorandom, for suitable n, k. Now strengthen this to D of the form xf(x), for some
boolean function f .

However, repetition works for resamplable functions, like parity. These are functions for
which given any �correct� pair (x, h(x)) we can generate uniform pairs (y, h(y)), and similarly
for incorrect (x, h(x)⊕ 1) pairs � using the same distribution.

De�nition 13.3. A function h : [2]n → [2] is resampled by a distribution F on functions
from [2]n+1 to [2]n+1 if for every x ∈ [2]n and b ∈ [2], F (x, h(x)⊕ b) outputs (y, h(y)⊕ b) for
uniform y ∈ [2]n.

Claim 13.4. Suppose h : [2]n → [2] is balanced (i.e., P[h(U) = 1] = 1/2) and resampled by
F . Let D = (X, h(X)). Suppose f ε-breaks Dk. Then f(G,G, . . . , G) ε/2-breaks D, where
each occurrence of G is either an occurrence of F or a �xed value.

Proof. We can sample Un+1 by �rst tossing a coin b, and then outputting (X, h(X) ⊕ b).
Hence we can �x coins b1, . . . , bk s.t.

|E [f ((X1, h(X1)), (X2, h(X2)), . . . , (Xk, h(Xk)))]− E [f ((X1, h(X1)⊕ b1), (X2, h(X2)⊕ b2), . . . , (Xk, h(Xk)⊕ bk))]| ≥ ε.

The coordinates where bi = 0 are the same. So we can �x those and obtain a restriction f ′

of f s.t. for some j ≤ k∣∣E [f ′ ((X1, h(X1)), (X2, h(X2)), . . . , (Xj, h(Xj)))]− E
[
f ′
(
(X1, h(X1)), (X2, h(X2)), . . . , (Xj, h(Xj))

)]∣∣ ≥ ε.

Now we use this to break D. As in the proof of Claim 13.2 it su�ces to tell D from
D := (X, h(X)). On input z ∈ [2]n+1, we compute

f ′(F (z), F (z), . . . , F (z)).

QED

Claim 13.5. Parity on n bits is resamplable by AC of size nc and depth c.

Exercise 13.9. Prove this.
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Combining the results in this section with the correlation of ACs and parity � Corollary
10.3 � we obtain a PRG with seed length n−n/ logcd n that fools ACs of size nd and depth d
on n bits. In the next section, leveraging the exponentially-small correlation bounds between
ACs and parity, we will obtain a much shorter, logarithmic seed length for ACs.

However, for other classes of circuits like AC[2] such strong correlation bounds are not
known. For these classes, the results in this section give the best-known explicit generator.
For example, for AC[3] we can again use that parity has correlation ≤ 1/100 with such
circuits, and obtain a generator stretching n − n/ logcd bits to n. For AC[2] one can work
with a di�erent function and again obtain that stretch. Even stretching n/2 bits to n bits is
not known.

Question 13.2. Give an explicit generator with seed length 0.9n for AC[2] circuits of size
nc and depth c on n bits.

13.2.1 Turning correlation bounds into stretch: Families of sets
with small intersections

The repetition PRG outputs values of a hard function h on independent inputs. We now
study a powerful technique which instead outputs values from dependent inputs. This gives
a better trade-o� between seed and output length. It is a derandomized analogue of Claim
13.3. Rather then picking independent inputs as in the repetition generator, we select them
based on a collection of subsets of [u], where u is the seed length.

De�nition 13.4. Let S = {Ti : i ∈ [|S|]} be collection of subsets of [u] of size `. Then the
bounded-intersection generator

BIGS : [2]u →
(
[2]`
)|S|

is de�ned as BIGS(x) := xT1 , xT2 , . . . , xT|S| .

For a distribution H on functions from [2]` → [2] and a generator G : [2]u →
(
[2]`
)|S|

we
write H ◦ G(σ) for the result H(x1), H(x2), . . . , H(x|S|) of applying H to the outputs of G,
where G(σ) = (x1, x2, . . . , x|S|) and the occurrences of H denote independent samples.

For example, if H is a uniform function then H ◦BIGS is uniform over [2]|S|. The next key
result shows that BIG preserves the indistinguishability of functions, similar to the repetition
generator, as long as the sets in S have small intersections.

Theorem 13.6. Let BIG and S be as in De�nition 13.4. Furthermore, suppose |Ti∩Tj| ≤ w
for any i 6= j in [|S|]. Let V and W be two distributions on functions from [2]` to [2].

Suppose f ε-tells the distributions σ, V ◦BIGS(σ) and σ,W ◦BIGS(σ), over u+ |S| bits.
Then there are w-local functions gi s.t. f(g1, g2, . . . , g|σ|+|S|) ε/|S|-tellsXV (X) fromXW (X),
where X is uniform in [2]`.

Exercise 13.10. Derive Claim 13.3 from Theorem 13.6 for the special case D = (X, V (X))
and E = (X,W (X)).
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Proof. Write D = σ, V ◦GS(σ) and E = σ,W ◦GS(σ). As in the proof of Claim 13.3, de�ne
hybrids Hi := D0D1 · · ·Di−1EiEi+1 · · ·E|σ|+|S|−1 over |σ| + |S| bits. Note that H0 is E and
H|S| is D. So there is i s.t. f distinguishes two adjacent hybrids Hi and Hi+1 with advantage
≥ ε/|S|. We can �x the u − ` bits in the seed σ that are not in set Ti. Now every bit j in
position < i depends on ≤ w bits in Ti, and so can be computed by a distribution Gj on
w-local functions.

The following distribution on circuits tells XV (X) from XW (X): On input (x, b) run f
on

(G0(x), G1(x), . . . , Gi−1(x), b, Gi+1, Gi+2, . . . , G|σ|+|S|−1).

We can �x the Gi to gi and maintain the advantage. QED

To apply Theorem 13.6 we need a collection S with small intersections. We'd like to have
as many sets as possible (that's the output length of the generator) which are as large as
possible (that's the input length to the hard function) which are subsets of as small a set as
possible (that's the seed length) and such that any two have as small intersection as possible
(that's the overhead in the reduction).

The probabilistic method shows that collections with great parameters exist. The fol-
lowing is a simple construction.

Lemma 13.1. [Sets with small intersections] There are explicit collections of qd subsets of
[q2] of size q such that any two sets intersect in ≤ d elements, for any q that is a power of 2
and > d.

Proof. View the universe [u] as F2
q. For a parameter d, the sets correspond to the graphs of

polynomials p of degree < d. (I.e., the set {(x, p(x)) : x ∈ F}.) The number of sets is qd. The
size of each set is q =

√
u. To bound the intersection of two sets, consider the corresponding

polynomials and take the di�erence p, which is non-zero. Any element in the intersection of
the sets corresponds to a zero of p. By Lemma 2.3, the intersection has size ≤ d. QED

To illustrate parameters, we can have m = qd subsets of size ` =
√
q from a universe of

size u = `2 = q with intersections at most d. For example, given m we can set d = logm
and q = logam, and the intersection size is only `1/a while the universe is only quadratic in
the set size, i.e., u = `2.

Corollary 13.1. There are explicit generators G : [2]logcd n → [2]n that 1/ncd-fool ACs of
size n and depth d.

As in 13.1, in this corollary, to eliminate one parameter we set the size of the circuit
equal to the output length of G. The same statement holds if the size is nd instead of n.

Exercise 13.11. Prove 13.1. Explain how the parameters are set and which results you are
combining.

The seed length in 13.1 is about the best we can do given current impossibility results,
and recall once again from 7.3 that stronger impossibility would imply major separations.
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Still, one can ask if PRGs could be built if we had such stronger results. In particular,
one would like to have seed length say c log n instead of logc n. This is the setting that allow
for conclusions such as P = BPP, cf. 13.1. 13.1 doesn't give this, since the universe is always
at least quadratic in the set size, but the following construction does.

Lemma 13.2. [Sets with small intersections, II] For any a and n ≥ ca there is an explicit
collection of n subsets of [ca log n] sets of size ca log n with pairwise intersection ≤ a log n.

Corollary 13.2. Suppose there is ε > 0 and f ∈ E that on inputs of length n has correlation
at most 2−εn with circuits of size 2εn. Then P = BPP.

Exercise 13.12. Prove this; explain how the parameters are set.

13.2.2 Turning hardness into correlation bounds

We can't expect to prove that correlation bounds under uniform are equivalent to impos-
sibility or hardness results, as one can construct pathological functions which are easy to
compute on, say, .75 fraction of the inputs, but impossible to compute on a .76 fraction. So
instead our approach will be to construct functions which have small correlation under the
uniform distribution.

A natural candidate for such a function, starting from a �mildly hard� function f : [2]n →
[2] is f ′ : [2]nk → [2] de�ned as

f ′(x1, . . . , xk) := ⊕ki=1f(xi).

An XOR Lemma is a statement showing that if f has correlation ≤ ε with a certain computa-
tional model (e.g., PCkt), then the correlation of f ′ with a related model decays exponentially
small with the number k of copies. There is a strong information-theoretic intuition why
the XOR Lemma should work. If each occurrence of f(xi) is a random variable Xi with
Ee[Xi] ≤ ε, then indeed Ee[

∑
Xi] = (Ee[X1])k ≤ εk. Analogously, if f has correlation ≤ ε

with small circuits, then f ′ indeed has correlation ≤ εk with small circuits of the special
product form C(x1, . . . , xk) := ⊕ki=1Ci(xi). Intuitively, we can't do better than computing as
in the special for. But is it true?

Exercise 13.13. Consider circuits C made of a single majority gate. Prove that the XOR
lemma is false for C. Feel free to pick n even and de�ne the value of Majority on inputs of
weight n/2 to be 1, and recall

(
n
n/2

)
·
√
n

2n
∈ [c, c].

One can extend this result to AC with a small number of majority gates.

Question 13.3. Does the XOR lemma hold for AC with parity gates, or even constant-degree
polynomials over F2?

But for more powerful models, we can indeed prove the xor lemma, and the proof follows
the information-theoretic intuition above. To connect to this intuition, we consider functions
which may output a uniform bit on some inputs.
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De�nition 13.5. We say that a distribution on functions F : [2]n → [2] is δ−random if F
there exists a subset H ⊆ [2]n with |H| = 2δ2n such that F (x) = U1 (i.e. a coin �ip) for
x ∈ H and F (x) is deterministic (i.e., a �xed value) for x /∈ H.

Thus, a δ-random function has a set of relative size 2δ on which it is information-
theoretically unpredictable. To illustrate the XOR lemma, suppose that f is δ-random.
Then f ′ will be almost a coin �ip. Speci�cally, the probability that the output is not a coin
�ip is (1 − 2δ)k, the probability that no input falls into H. When some input falls into H,
the output is a coin �ip, and no circuit, e�cient or not, can have non-zero correlation.

This intuition can be formalized via the hardcore-set lemma, which allows us to pass
from computational hardness to information-theoretic hardness. Before stating the lemma
we emphasize an important point:

The hardcore-set lemma is only known to hold for computational mod-
els which can compute majority. This is because the proof of correct-
ness uses majority, as will be apparent in section �13.3. So to apply
it, we have to start from an impossibility result for circuits that can
compute majority. As discussed in Chapter 10, we essentially have
no such result. In fact, in some restricted models, the xor lemma is
false (cf. Exercise 13.13). So the results in this section are mostly con-
ditional. Still, they allow us to spin a fascinating web of reductions
between correlation and randomness, pointing to several challenges.

The following hardcore set lemma says that any δ-hard function f : [2]n → [2] has
a hardcore set H ⊆ [2]n of density δ such that f is very hard-on-average on H. Thus, f
looks like a δ-random function to small circuits. We state the result in terms of distinguishing
input-output pairs, as opposed to computing the function. This is equivalent by an argument
similar to Claim 13.2 but is more convenient as it immediately allows us to talk about multiple
inputs, as we also do in the next statement.

Lemma 13.3. For any function f : [2]n → [2] that is δ-hard for size s, and any ε > 0,
there exists a δ-random function g : [2]n → [2] such that X · f(X) and X · g(X) are ε-
indistinguishable for size csε2δ2 for any ε, where X ≡ Un.

In particular, by Claim 13.3,

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size csε2δ2, where the Xi's are uniform and independent.

We can now easily formalize the proof of the xor lemma.

Lemma 13.4. Suppose f : [2]n → [2] is δ-hard for size s. Then f ′ : [2]nk → [2] de�ned as
f ′(x1, . . . , xk) := ⊕ki=1f(xi) has correlation ≤ (1− cδ)k + k/sc with circuits of size δcsc.
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For example, if s = 2n
c
and δ = c, we can take k = cn and have hardness 2−cn. However

the function is on cnc bits, so in terms of the input length n′, f ′ has hardness 2−n
′c
.

Proof. We use Lemma 13.3 with ε := sc. From its conclusion it follows that

X1 · · ·Xk · ⊕if(Xi) and X1 · · ·Xk · ⊕ig(Xi)

are k/sc-indistinguishable for size δcsc. Following the intuition above, the right-hand distri-
bution is (1−cδ)k close to X1 · · ·Xk ·U1. Hence the left-hand distribution is ((1−cδ)k+k/sc)-
close to X1 · · ·Xk · U1 and the result follows from Claim 13.2. QED

13.2.3 Derandomizing the XOR lemma

A drawback of the xor lemma is that the input length of the new function is ≥ kn. This
prevents us from obtaining correlation 2−cn (as opposed to 2−c

√
n) which is important for

the �agship conclusion P = BPP, cf. Corollary 13.2. To remedy this we shall use... PRGs!
Rather than independently, we will pick the k using a generator. We need two properties
from this PRG. First, to behave like repetition, we need BIG (Theorem 13.6). Also, we need
to �hit� the hard-core set, for which we need HIT. We can get both properties by xor-ing the
generators together. The generator is de�ned as

BIG-HIT(σ1, σ2) := BIGS(σ1)⊕ HIT(σ2),

where HIT is a hitter

Lemma 13.5. For every ε and δ there exists an explicit generator HIT : [2]2n → ([2]n)s with
s = 1/εδ s.t. for every set H ⊆ [2]n of size ε, Pσ[HIT(σ)i 6∈ H for every i] ≤ δ.

Proof. Pairwise independence. Consider the �eld F2n . The seed σ speci�es a, b ∈ F and
we output b, a + b, 2a + b, . . .. Let Xi be the indicator variable of HIT(σ)i ∈ H. The
Xi are pairwise independent. Their expectation is εs. Hence the probability to bound is
≤ P[|

∑
Xi − εs| ≥ εs]. Squaring both sides of the inequalities and doing calculations gives

the result. QED

Exercise 13.14. Do the calculations.

Using this, we can amplify hardness 2−cn to correlation ≤ 2−cn. We give an example for
an interesting setting of parameters.

Lemma 13.6. Suppose E has a function f : [2]∗ → [2] that on inputs of length n is 2−cn

hard for circuits of size 2cn. Then E has a function f : [2]∗ → [2] that has correlation ≤ 2−cn

with circuits of size 2cn.
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Note the conclusion implies P = BPP by Corollary 13.2.

Proof. Let ε := 2−cn and δ := 2−cn. De�ne f ′ : [2]cn → [2] as f ′(σ) := ⊕si=1f(xi) where
BIG-HIT(σ) = (x1, x2, . . . , xs), where s = 1/δε and the set system for BIG is from Lemma
13.2.

We use Lemma 13.3 with ε := sc. Let g the corresponding δ-random function. From
Theorem 13.6 it follows that

σ, f ◦G and σ, g ◦G
are εc-indistinguishable for size 1/εc. In particular this holds if we take parities, so

σ,⊕ki=1f(X1) and σ,⊕ki=1g(X1)

are no more distinguishable, where (X1, . . . , Xk) = G(σ). By the hitting property of HIT,
Lemma 13.5, the chance of not hitting the hardcore set is ≤ δ, and we conclude as in the
proof of Lemma 13.4. QED

Exercise 13.15. Actually, this proof doesn't quite follow from Theorem 13.6 as stated.
Explain why and why it isn't an issue.

13.2.4 Encoding the whole truth-table

The results in the previous section give us functions with small correlation starting from
functions on mn bits with with hardness 2−cn, but not quite from worst-case hardness 2−n.

Exercise 13.16. Explain where the previous proofs break down for hardness 2−n.
To start from worst-case hardness we need to encode the entire truth table of the function.

We give a simple code that su�ces for our results.

Theorem 13.7. Suppose there is f ∈ E that on inputs of length n cannot be computed by
circuits of size s(n). Then there is f ′ ∈ E that is 1/nc-hard for circuits of size ncs(cn).

Proof. Let q = n10 and d = n5 and view the truth-table of f as specifying coe�cients over
Fq for a polynomial in ` := n/ log n variables with the degree in each variables being ≤ d.
Note the number of monomial is ≥ d` ≥ 2n, larger than the truth-table of f .

We can identify f with the corresponding polynomial pf . Via interpolation, we can de�ne
pf so that evaluating f can be reduced to evaluating pf .

The new function f ′ is constructed in two steps. First, we consider inputs over F`q. Note
the length of such inputs is ≤ c`q ≤ cn bits, as desired. This gives a non-boolean function.
To make the function boolean, we output bit i of pf , where i is part of the new input. That
is,

f ′(x1, . . . , x`, i) := pf (x1, . . . , x`)i

where xi ∈ Fq and i ∈ [log q].
We'd like to show that if there's a small circuit C computing f ′ on a (1 − 1/nc) frac-

tion of inputs then there's another small circuit computing f everywhere. Let C(x) :=
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C(x, 1) · · ·C(x, log q). First note that the fraction α of x ∈ F`q such that C(x) 6= pf (x) is
≤ 1/nc ≤ c/d`. Because if it's larger, every such x contributes at least one input (x, i) where
C disagrees with f ′, contradicting the assumption.

Using C we give a distribution circuits C ′ which computes pf whp on every given input
y. Pick a uniform line going through y, and run C on this line for d` points. That is, pick
uniform s ∈ F`q and run C(y + 1s), C(y + 2s), . . . , C(y + d`s).

Because each evaluation point is uniform, and d`α ≤ c, with prob. > 1/2 the evaluations
of C will be correct, and equal pf (y + 1s), pf (y + 2s), . . . , pf (y + d`s).

Note that for �xed y and s, pf (y + ts) is a univariate polynomial q in t of degree ≤ d`.
We can compute the coe�cients of q from its evaluations at d` points. (It's a linear system
, with a unique solution by Lemma 2.3 because the degree of is ≤ ` · d < q.)

We can then output q(0) = pf (y).
Finally, we can repeat this cn times and output the most likely value. On every input x

this errs w.p. < 2−n. Hence we can �x the random choices and obtain a �xed circuit that
succeeds on every x. QED

Exercise 13.17. �Put it all together� and prove Theorem 2.16.

13.2.5 Monotone ampli�cation within NP

To increase the hardness of functions in NP we cannot use XOR since NP is not known to
be closed under complement. We will use a combination of many things in this chapter �
including the (unconditional) generator for AC in Corollary 13.1 � to establish the following.

Theorem 13.8. If NP has a balanced function that has correlation ≤ 1/10 with circuits of
size 2n

c
, then NP also has a balanced function with correlation ≤ 2−n

c
with circuits of size

2n
c
.

Several optimizations have been devised, see the Notes. Still, we don't enjoy the same
range as for E:

Question 13.4. Prove Lemma 13.6 for NP instead of E, even starting from hardness δ ≥ c.

13.2.6 Proof of Theorem 13.8

Rather than XOR, to amplify we use the Tribes function, a monotone read-once DNF.

De�nition 13.6. The Tribes function on k bits is:

Tribes(x1, . . . , xk) := (x1 ∧ . . . ∧ xb) ∨ (xb+1 ∧ . . . ∧ x2b) ∨ . . . ∨ (xk−b+1 ∧ . . . ∧ xk)

where there are k/b clauses each of size b, and b is the largest integer such that (1−2−b)k/b ≥
1/2. Note that this makes b ≤ c log k.

The property of xor that we used is that if one bit is uniform, then the output is uniform.
We use an analogous property for tribes, that if several bits are uniform, then the output is
close to uniform.
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Lemma 13.7. Let Np be a noise vector where each is 1 independently with probability p.
Then Ex,Npe[Tribes(x)⊕ Tribes(x⊕Np)] ≤ 1/kcp .

We shall take k exponentially large. The resulting function is still in NP as we can use
non-determinism to pick a clause. We use the generator BIG-AC(σ) = (x1, x2, . . . , xs), which
is like BIG-HIT except that HIT is replaced with the generator in Corollary 13.1, for circuits
of size (k2n)c. Note its seed length is nc for k ≤ 2n

c
.

De�ne f ′ : [2]2n → [2] as f ′(σ) := Tribes ◦ (f(x1), . . . , f(xs)) where BIG-AC(σ) =
(x1, x2, . . . , xs), and the set system for BIG is from Theorem 3.1. Following the proof of
Lemma 13.6, use Lemma 13.3 with ε := sc. Let g the corresponding δ-random function.
From Theorem 13.6 it follows that

σ, f ◦ BIG-AC and σ, g ◦ BIG-AC

are εc-indistinguishable for size 1/εc. In particular this holds if we take Tribes of the output,
i.e.What remains to show is that

σ,Tribes◦g ◦ BIG-AC

is close to uniform. That is, we have to show that with high probability over σ, just over
the choice of g, the value Tribes◦g ◦ BIG-AC is close to a uniform bit.

It su�ces to bound
Eσ|Ege[Tribes◦g ◦ BIG-AC(σ)]|.

Here the inner expectation is over the random choices in all the s evaluations of g. Up
to a power, this is

≤ EσE2
ge[Tribes◦g ◦BIG-AC(σ)] = Eσ,g,g′e[Tribes◦g ◦BIG-AC(σ)⊕Tribes◦g′ ◦BIG-AC(σ)].

Now the critical step is that Tribes ◦ g is computable by a distribution on AC of size
(s2n)c and depth c. Note that the circuit computes g in brute-force, but the dependence on
s is good. Because BIG-AC fools such circuits with error 2−n

c
, the latter expectation equals

E(x1,...,xs),g,g′e[Tribes◦g◦(x1, . . . , xs)⊕Tribes◦g′◦(x1, . . . , xs)] = Ex,Npe[Tribes(x)⊕Tribes(x⊕Np)],

for p = c. We conclude by Lemma 13.7.

13.3 Hardcore distributions

In this section we put the hardcore set Lemma 13.3 in context, and prove it. Recall that the
lemma establishes that for any hard function there is a distribution which is uniform over a
large set, wrt which circuits have small correlation.

What if we just want any distributions? It turns out that then impossibility results are
actually equivalent to correlation bounds! Consider a set F of functions mapping [2]n to [n],
for example, F could consist of circuits of a certain size. Also, let h be a target function,
e.g., a function we aim to show is hard.
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Corollary 13.3. Suppose for every distribution D on [2]n there is f ∈ F s.t. Ex←De[f(x) +
h(x)] ≥ ε. Then there exist cn/ε2 functions fi ∈ F s.t.

h = Majority(f1, f2, . . . , fcn/ε2).

In particular, for models that are able to compute majority, such as PCkt, we get that
h 6∈ PCkt i� there is a distribution D over [2]n s.t. any f ∈ PCkt has correlation ≤ 1/na

for any a. In other words, superpower correlation bounds for some distribution are necessary
and su�cient for superpower impossibility.

We can give a converse of Corollary 13.3, and in fact even obtain correlation under any
distribution, including uniform distribution.

Claim 13.6. Suppose h = Majority(f1, f2, . . . , ft). Let D be a distribution on inputs. Then
there is i s.t. Ee[(fi + h)(D)] ≥ 1/t.

Exercise 13.18. Prove this. Feel free to assume t is odd for simplicity.

Note that if we �only� had Corollary 13.3 when D is uniform, we could have skipped all
the ampli�cation results in the previous section, and constructed PRGs much more directly.
However, again, in general we can't guarantee that. In fact, one can construct functions that
are very easy over the uniform distribution, say because they are almost always one, but
still are hard to compute, say because there is a small set of inputs that makes the function
hard.

Still, the techniques used to prove Corollary 13.3 are the same used to prove the hardcore
set Lemma 13.3, which, recall, gives correlation bounds for the uniform distribution over
some large set, and that in turn be used to obtain correlation bounds over the uniform
distribution over the entire input space. So we now develop machinery to understand and
prove Corollary 13.3. A useful viewpoint, here and elsewhere, is the equivalence between
having randomness in the input and having it in the model :

Corollary 13.4. There is a distribution over F s.t. EF e[f(x) + h(x)] ≥ α for every x i� for
every distribution D over [2]n there is f ∈ F s.t. Ex←De[f(x) + h(x)] ≥ α.

Exercise 13.19. Prove the �only if� direction.

Corollary 13.4 is a special case of the min-max theorem from game theory, a.k.a. linear-
programming duality, etc, stated next.

Theorem 13.9. Let X and Y be sets, p : X × Y → R, and α ∈ R. Then either
there is a distribution DX on X s.t. EDXp(DX , y) ≥ α for every y ∈ Y , or
there is a distribution DY on Y s.t. EDY p(x,DY ) ≤ α for every x ∈ X.

To see the correspondence, we can let X := [2]n be the set of inputs, and Y := F be the
set of functions, and p(x, f) = e[f(x) = h(x)]. If for every distribution D over [2]n there is
f ∈ F that computes h well over D, the �rst condition in Theorem 13.9 does not hold. So
the second holds.
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Corollary 13.3 follows from Corollary 13.4 and tail bounds (Theorem 2.8), similarly to
the proof of the error-reduction Theorem 2.9 for BPTime.

Proof of 13.3. Use Theorem 13.9 to get a distribution on F . The majority of cn/ε2 samples
from F has error < 2−n by Theorem 2.8. By a union bound we can �x the samples to the
fi. QED

13.3.1 Proof of the hardcore-set Lemma 13.3

At the high-level, this is just min-max and concentration of measure, just like before. How-
ever, the proof is slightly more involved than one might anticipate. We break it up in the
two claims. In the �rst we obtain hardness w.r.t. a �smooth� distribution D: D(x) ≤ d/N
for every x. For example, D could be uniform over a set of size N/d (then D(x) is either
0 or d/N). In the second we obtain a set from a smooth distribution. The straightforward
combination of the claims yields the lemma.

Claim 13.7. Suppose f : [2]n → [2] is 1/d-hard for circuits of size s. Then there is a
distribution D on [2]n s.t. D(x) ≤ d/N for every x, and every circuit C of size s · (ε/ log d)c

has Ex←De[C(x) + f(x)] ≤ ε.

Proof. We use the min-max Theorem 13.9 where one set consists of sets S of N/d inputs,
and the other consists of circuits of size ≤ s, and f(S,C) = Ex∈Se[C(x) + f(x)].

Suppose there is a distribution D over sets of N/d inputs such that for every circuit we
have ED[f(D,C)] = ES←DEx∈Se[C(x) + f(x)] ≤ ε. Let D be the induced distribution over
x and note that D(y) ≤ d/N for every y, and we're done.

Otherwise by the min-max Theorem 13.9 there is a distribution C on circuits of size s
s.t. for any set S of size N/d we have ES←DECe[C(x) + f(x)] ≥ ε. Let S be the set of
inputs on which the inner expectation is ≤ ε/2. Note |S| < (1 − ε/2)N/d, for else the set
S ′ consisting of the N/d elements where the inner expectation is smallest would have only
(N/d)ε/2 elements outside of S, yielding expectation < ε/2 + ε/2 = ε, contradiction. For
every x 6∈ S, picking log(d)/εc samples from C and taking majority gives error probability
≤ ε/2d, using Theorem 2.8 as in the proof of Theorem 2.9. The prob. of not computing
correctly a uniform x ∈ [N ] is at most the prob. that x ∈ S plus the prob. that thesamples
of C give the wrong value: (1 − ε/2)/d + ε/2d = 1/d. This contradicts the hardness of f .
QED

When using the following claim for a hard function h, we can let F be the set of functions
of the type e(h(x)+C(x)) where C is a small circuit. In this way |E|D[f(D)]| is the correlation
of h and C w.r.t. D.

Claim 13.8. Let D be a distribution over [N ] s.t. D(x) ≤ d/N . Let F be a set of ≤ cecε
2N/d2

functions f : [N ]→ {−1, 1}. Suppose for every f ∈ F we have ED[f(D)] ≤ ε.
Then there is a set S ⊆ [N ] of size |S| ≥ cN/d s.t. for every f ∈ F we have Ex∈S[f(x)] ≤

cε.
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Even this second step is not immediate, due to the fact that the set S is constructed
probabilistically and so its size � which is the normalization in the correlation � is not �xed.
So we'll �rst prove concentration around a quantity related to D only, then connect it to |S|.

Proof. Construct S by placing each x ∈ [N ] in S independently with prob. D(x)N/d ∈ [0, 1].
ConsiderX :=

∑
x∈[N ] S(x)f(x), where S is the indicator of set S. The variables S(x)f(x) are

independent and have range [−1, 1]. Also, E[X] = (N/d)ED[f(x)], and so |E[X]| ≤ cεN/d.
By tail bounds, Exercise 2.16:

PS[|
∑
x∈[N ]

S(x)f(x)| ≥ cεN/d] ≤ 2e−cε
2N/d2 .

Also, E[
∑

x∈[N ] S(x)] = N/d]. And so again by tail bounds the probability that |S| ≤ cN/d

is, say, ≤ e−cN/d
2
.

By a union bound, there exists S of size ≥ cN/d s.t. for every f ∈ F we have

|
∑
x∈[N ]

S(x)f(x)| ≤ cεN/d.

Now it's the moment to connect to |S|. Dividing both sides by |S| we have

|Ex∈S[f(x)]| ≤ cε(N/d)/|S| ≤ cε,

as desired. QED

Problem 13.1. Give a �direct� construction of PRGs su�cient to prove P = BPP from
a δ-hard function h in E. Guideline: Use BIG-HIT to generate an n × n matrix of inputs,
evaluate h on every input, and then XOR the rows. Start with δ = c. How small can you
make δ and still have this construction?

13.4 Notes

For more on unconditional pseurandom generators see [81]. For a broader view of pseudoran-
domness, with an emphasis on connections between various objects, see [177]. For Fourier
analysis, see [137].

For expander graphs see [87]. They have many equivalent presentations, for example in
terms of eigenvalues. My presentation is in terms of the mixing lemma, see Section 2.4 in
[87]. In my de�nition I allow for repeated edges. Di�erent notions of explicitness are also
natural. In my de�nition one can output an edge given an index. More stringently, one can
ask, given a node and an index to an incident edge, to compute the corresponding neighbor.
The construction I presented immediately gives the more stringent explicitness as well.

k-wise uniform distributions were studied before complexity theory, cf. [144]. The com-
plexity viewpoint is from [45, 12].
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Generators for degree-1 polynomials originate in [127], with alternative constructions in
[13]. The idea of xoring generators for degree-1 polynomials to fool higher-degree polynomials
is from [34]. It was studied further in [117, 191], with the latter paper proving Theorem 13.4.

Regarding 13.2: A construction computable in time nc �rst appeared in [135], where 13.2
also appears. Alternative constructions computable with small space or with alternations
appeared respectively in [105] and [187]. Still, all these constructions use resources at least
exponential in the seed length, while for several applications such as section ?? one needs
power in the seed length. This stronger explicitness is obtained in [73] building on an idea
presented in [76] of using error-correcting codes. Speci�cally, one can use the polynomial code
from 2.21 in combination with 13.2 for logarithmic-scale collections (for which the former
notion of explicitness is now acceptable).

The XOR lemma was reportedly announced in talks associated with the work [204],
cf. [67]. Hardness ampli�cation within NP was �rst studied in [136] which established corre-
lation about 1/

√
n. Exponentially small correlation was achieved in [82], with optimizations

in [118, 68]. Our exposition follows [82].
Corollary 13.4 and the connection to min-max is from [206]. Hardcore sets were intro-

duced in [90]. They were optimized and shown to be connected to boosting techniques in
machine learning in [104] and subsequent works.

Other proofs of Theorem 2.16 don't use the derandomized xor lemma, or only use it from
constant hardness, and instead rely on results in [90] (see e.g. the original proof [94]) or [172]
(see e.g. [177] or [16]).

Problem 13.1 is similar to a construction in [172], except I use XOR instead of extractors,
cf. Remark 15 in [172].

For more on hitters, see Appendix C in [64].

13.4.1 Myth creation: Polylogarithmic independence fools AC (The-
orem 13.2)

In 1991 [133] constructed a pseudorandom generator for AC (a.k.a. alternating circuits or
AC0 circuits), vastly improving the parameters of the pioneering work [7]. This is one of my
favorite papers ever. (Mini myth creation episode: A large fraction of papers cite [135] for
this result, possibly even the majority. This issue of credit is indeed complicated, since the
1988 conference version of [135] claims ownership for this AC result, and cites an unpublished
manuscript with the same title as [133], but with both authors. One can only guess that the
authors decided that the AC result should only be attributed to Nisan.)

Nisan's distribution, and even the earlier one in [7], is polylog-wise uniform, that is, any
polylog bits are uniform. (The polylog depends on the parameters of the circuit to be fooled
in a standard way which is ignored here.) In fact, these results apply to a natural class of
polylog-wise distributions: If you pick a uniform sparse linear transformation, the output
distribution will be polylog-wise uniform, and Nisan's proof shows that it fools AC.

However, the proof does not show that every polylog-wise distribution fools AC. Later,
Linial and Nisan [116] conjectured that polylog-wise uniformity su�ces to fool AC, which
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would generalize both [7] and [133].
This problem was somewhat notorious but there was no progress until the paper by Bazzi

[27], 15+ years after the conjecture was posed, which proves it for the special case of DNFs.
Bazzi's paper is quite hard to read, and the journal version is also long � 60 pages.

Consequently it was hard to �nd referees, both for the conference and the journal version.
Things must have gotten somewhat desperate, because when it �nally was my turn to be
asked to review the journal version it was deemed appropriate to extract a commitment
from me before I could see the submission, something that has never occurred to me for
any other paper. My back-and-forth with the author during the refereeing process was
then abruptly stopped by, I suspect, the circulation of Razborov's follow up [150] which
dramatically simpli�es the presentation, especially with an idea by Wigderson. It was then
clear that the results were correct and the paper could be accepted, even though I never
claimed to understand Bazzi's proof for the non-monotone case.

The message in the papers [27] and [150] was loud and clear: You can make progress
with just a little duality. From Razborov's paper:

By linear duality, this conjecture is an approximation problem of precisely the
kind considered in [LMN93, BRS91, ABFR94]. Therefore, it is quite remarkable
that the only noticeable progress in this direction was achieved only last year by
Bazzi [Baz07].

At this point it was clear that the general case of AC might not be that hard. Shortly after
Razborov's paper, Braverman [36] indeed proved this, albeit with a quadratic rather than
linear dependence on the depth of the circuit. This dependence was later improved.

As usual we can look at citation count:
[36] 143
[26] 91
But more interestingly the literature is full of citations like:

A breakthrough result by Braverman [No mention of Bazzi or Razborov]

My de�nition of breakthrough result is roughly that of progress on a problem such that many
people have thought about it but have been stuck for a long time. This applies to [26].

Approximate number of years gap:
[116]-[26]: XXXXXXXXXXXXXXXXX
[26]-[150]: XX
[150]-[36]: X
I also think that if a problem was open even for depth 2, then going from 1 to 2 tends

to be more fundamental than going from 2 to d. One can think of situations where this
wouldn't be the case, for example if the depth-2 case was known for a while, and people
were really stuck and couldn't do even depth 3, and that turned out to require a completely
di�erent approach. This isn't the case here.

Consider the following example. Tonight a breakthrough lower bound for depth-3 Ma-
jority circuits comes out. Then in a year this result is extended to any constant depth with
additional but related techniques. Which result, if any, is the breakthrough?
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13.5 Problems

Problem 13.2. Let ACSize(d, s) be the functions computable by explicit ACs of size s and
depth d. Prove that BP · ACSize(d, s) ⊆ ACSize(d+ c, 2logcd s).
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Chapter 14

Communication complexity

This chapter deals with Communication Complexity, which is the study of the amount of
information that needs to be exchanged among two or more parties (or players) which are
interested in reaching a common computational goal.

14.1 Two parties

We start with the model in which there are only 2 parties, A and B. They have the following
properties:

• They collaborate, and

• each party has unlimited computing power.

Their task is to compute a prede�ned function of two inputs

f : X × Y → [2]

where A only knows x ∈ X, and B only knows y ∈ Y . The parties A and B engage in a
communication protocol and exchange bits. At each step, the protocol speci�es whose turn
is to speak, or if the protocol is over. This is a function of the bits exchanged so far. If a
party is to speak, the protocol speci�es which bit is sent, and this is a function of both the
bits exchanged so far and the input to the party who is to speak. If the protocol is over, the
last bit exchanged is the output. We say that the protocol uses d bits if for every input A
and B exchange ≤ d bits. The bits exchanged are called transcript.

We can visualize a protocol via a binary tree (14.1). Each node is labeled with a party
and a function from that party's input to {0, 1}, which speci�es which children to go to.

14.1.1 The communication complexity of equality

Consider the function Equality : [2]n × [2]n → [2], Equality(x, y) = 1 ⇔ x = y. Trivially,
Equality can be computed with communication n + 1: A sends her input to B; B then
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Figure 14.1: Protocol tree

communicates the value of Equality. The same trivial upper bound holds for any function
f :: [2]n × [2]n → [2]. We now prove the following lower bound.

Theorem 14.1. Any protocol for equality must exchange at least n bits.

Before proving this theorem, we cover some properties of protocols.

De�nition 14.1. A rectangle in X × Y is a subset R ⊆ X × Y such that R = A × B for
some A ⊆ X and B ⊆ Y .

An equivalent de�nition is given by the following proposition

Proposition 14.1. R ⊆ X×Y is a rectangle i� (x, y) ∈ R and (x′, y′) ∈ R⇒ (x, y′), (x′, y) ∈
R.

The connection between rectangles and protocols is the following.

Lemma 14.1. Let P be a protocol that uses d bits, let t ∈ [2]d be a transcript. The set of
inputs that induce transcript t is a rectangle.

Proof. Let A ⊆ X × Y be the set of inputs that induce communication t. Suppose that
(x, y), (x′, y′) ∈ A, we want to show that (x, y′) ∈ A (similarly for (x′, y)). We prove by
induction on i that the i-th bit exchanged by P on input (x, y′) is ti. Of course this means
that the protocol exchanges t on input (x, y′) and so (x, y′) ∈ A as desired.

For i = 1, the bit sent by A only depends on x, but we know P (x, y) exchanges t1, so we
are done.

For general i, suppose it is A's turn to speak. The bit she sends is a function of x and
the communication so far. By induction hypothesis the communication so far is t1, . . . , ti−1.
So A cannot distinguish between (x, y) and (x, y′) and will send ti as next bit.

If it is B's turn to speak, we reason in the same way replacing (x, y′) with (x′, y′). QED

Corollary 14.1. Suppose f : X × Y → [2] is computable by a d-bit protocol, then there is
a partition of X × Y in 2d rectangles, where each rectangle is f -monochromatic: all inputs
in the rectangle give the same value of f .
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Figure 14.2: Two ways to partition equality in monochromatic rectangles.

Proof. For each transcript t, consider Rt := the set of inputs that induce t. Rt is a rectangle
by the previous lemma. It is obviously a partition and f -monochromatic. QED

Figure 14.2 shows two ways to partition equality in monochromatic rectangles. We can
now prove the lower bound for equality.

Proof of Theorem 14.1. Assume we can partition X × Y in equality-monochromatic
rectangles. Consider the 2n inputs (e, e) where e ∈ {0, 1}n. Observe that no equality-
monochromatic rectangle can contain both (e, e) and (b, b) if e 6= b, for else (e, b) is in the
rectangle, but since e 6= b this cannot be equality-monochromatic.

Since the rectangles must cover all of the 2n inputs (e, e), we need ≥ 2n rectangles which
implies that any protocol must use at least n bits of communication. QED

14.1.2 The power of randomness

We can de�ne a randomized protocol as a distribution on protocols, cf. section �??. A
function has randomized communication k with error ε if there is a randomized protocol
that on every input computes it correctly w.p. ≥ 1− ε. The equality function demonstrates
the power of randomness in communication:

Theorem 14.2. Equality has randomized protocols with error ε and communication c log 1/ε,
for any ε ≤ 1/2.

Exercise 14.1. Prove this.

14.1.3 Public vs. private coins

14.1.4 Disjointness

The disjointness function Disj : [2]n × [2]n → [2] is de�ned as Disj(x, y) = ∨i∈[n]xi ∧ yi. It
asks to determine if x and y, viewed as subsets of [n], (do not) intersect. This function is of
central importance pretty much for the same reason that 3Sat is: Its simple structure makes
it excellent for reductions, as we shall see in section 14.1.7.
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Theorem 14.3. [99, 149] The randomized communication complexity of Disj with error ε
is ≥ cεn.

The hard distribution D is de�ned as follows for n = 4m − 1. First pick a uniform
partition of [n] into (P,Q, {i}) where P (and Q) is a uniform set of size 2m − 1. Now let
X (resp., Y ) be a uniform subset of P

⋃
{i} (resp. Q

⋃
{i}) of size m. In particular, the

intersection is either empty or a singleton. Note that the distribution is not product; it is
known that the communication is ≤ c

√
n on product distributions.

14.1.5 Greater than

Another well-studied function is Greater-Than, where the parties wish to determine if x > y
as integers.

Theorem 14.4. [134]The randomized communication complexity of greater-than is≤ c log n.

Proof. We sketch the clever protocol. We perform binary search to �nd the most signi�cant
bit where x and y di�er. Each comparison during this binary search corresponds is an equality
problem, which as we saw has small randomized communication complexity (Theorem 14.2).

The naive way to implement this search is to set the error to ≤ c/ log n in Theorem 14.2.
But this won't give overall communication c log n.

Instead, we set the error to constant, and perform binary search with noisy comparisons.
A random-walk-with-backtrack algorithm [54] shows that c log n comparisons su�ce, leading
to the result. The idea is to start each recursive call with a check that the target element is
contained in the current interval, and if not backtrack. QED

The above bound is tight.

Theorem 14.5. [195] The randomized communication complexity of greater-than is ≥
c log n.

14.1.6 Application to TMs

One-tape TMs have e�cient randomized communication protocols. This is essentially the
same as the crossing-sequence argument we saw in Chapter 3.

Theorem 14.6. For a function f : [2]n×[2]n → [2] consider the padded function pf : [2]3n →
[2] de�ned as pf (x0ny) = f(x, y). If pf is computable by an s-state TM in time t then f has
randomized protocols with communication c(log s)t/n and error ≤ 1/2.

Proof. For ∈ [n], de�ne the protocol Pi as follows: A is in charge of the �rst n + i cells
(which include x); B is in charge of last n + (n − i) cells (which include y). They simulate
the TM in turn, communicating log s+ c bits whenever the TM crosses the boundary of the
(n + i)-th cell. These bits represent the state of the machine or a special symbol denoting
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that the computation is over with �nal state s, from which the value of the function can be
determined. The parties carry this simulation for up to (t/n)/(c log s) crossings. If the TM
hasn't stopped they stop and output, say, 0.

The distribution on protocols is PI where I is uniform in [n]. QED

We will soon exhibit functions which require linear randomized communication, recov-
ering the quadratic impossibility results for TMs from Chapter 3. In fact, we will show
stronger results.

14.1.7 Application to streaming

14.2 Number-on-forehead

There are various ways in which we can generalize the 2-party model of communication
complexity to k > 2 parties. The obvious generalization is to let k players compute a k-
argument function f(x1, . . . , xk) where the i-th party only knows the i-th argument xi. This
model is known as �number-in-hand� and useful in some scenarios, but we will focus on a
di�erent, fascinating model which has an unexpected variety of applications: the �Number
on the Forehead� model [42]. Here, again f(x1, . . . , xk) is a Boolean function whose input
is k arguments, and there are k parties. The twist is that the i-th party knows all inputs
except xi, which we can imagine being placed on his forehead. Communication is broadcast.

The grand challenge here is to give an explicit function f :

k︷ ︸︸ ︷
[2]n × ...× [2]n → [2] that

cannot be computed with k := 2 log n parties exchanging k bits. This would have many
applications, one of which is described next.

14.2.1 An application to ACC

Functions computable by small ACC (recall section �10.6) have low communication com-
plexity:

Theorem 14.7. AC[d] on n bits of size nd and depth d have equivalent protocols with logcd n
parties communicating logcd n bits, for any partition of the input bits.

Proof. By Lemma 10.5 it su�ces to prove it for depth-2 circuits consisting of a symmetric
gate on s And gates of fan-in t, where s and t are ≤ logcd n. Fix an arbitrary partition of the
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input in t + 1 sets x1, . . . , xt+1. All that the players need to compute is the number of And
gates that evaluate to 1. Consider any And gate. Since it depends on at most t variables, it
does not depend on the bits in one of the sets, say xj. Then the j-th party can compute this
And without communication. So let us partition the And gates among the parties so that
each party can compute the gates assigned to them without communication. Each party
evaluates all the And gates assigned to them privately and broadcasts the number ≤ s of
these gates that evaluate to 1. This takes a total of ct log s bits. QED

14.2.2 Generalized inner product is hard

In this section we prove an impossibility result for computing the generalized inner product
function GIP : ([2]n)k → [2]:

GIP(x1, . . . , xk) :=
n∑
i=1

k∧
j=1

(xj)i mod 2.

In fact, we shall bound even the correlation Cor(GIP, d − bit k − party) between GIP
and k-party protocols exchanging d bits, de�ned as as the maximum of |Exe[GIP(x) + f(x)]|
for any protocol f with corresponding parameters. Here we use e(z) := (−1)z.

Theorem 14.8. [20] Cor(GIP, d− bit k − party) ≤ 2d · 2−Ω(n/4k).
To prove the theorem we associate to any function a quantity R(f) ∈ R enjoying the

following two lemmas:

Lemma 14.2. Cor(f, d− bit) ≤ 2d ·R(f)1/2k , for any f : X1 × ...×Xk → [2].

Lemma 14.3. R(GIP) ≤ 2−Ω(n/2k).

The combination of these two facts proves Theorem 14.8.

Intuition for R(f): Think of k = 2; we saw that any 2-party d-bit protocol partitions
the inputs in 2d f -monochromatic rectangles. How about we check how well f can be so
partitioned? Instead of picking an arbitrary rectangle, let us pick one in which each side
has length 2, and see how balanced the function is there. If a �good� partition exists, with
somewhat high probability our little rectangle should fall in a monochromatic rectangle, and
we should always get the same values of f . Otherwise, we should get mixed values of f .

Speci�cally, for k = 2,

R(f) := Ee x01,x02
x11, x

1
2

[f(x0
1, x

0
2) + f(x0

1, x
1
2) + f(x1

1, x
0
2) + f(x1

1, x
1
2)] ∈ R.

In general, for any k:

R(f) := Ee
x01,...,x

0
k

x11,...,x
1
k

 ∑
ε1,...,εk∈[2]

f(xε11 , . . . , x
εk
k )

 ∈ R.
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14.2.3 Proof of Lemma 14.2

We prove this theorem via a sequence of claims.

De�nition 14.2. A function gi : X1 × . . .×Xk → [2] is a cylinder in the i-th dimension if
∀(x1, . . . , xk) and x′i we have gi(x1, . . . , xi−1, xi, xi+1, . . . , xk) = gi(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk).

A set S ⊆ X1 × . . . × Xk is a cylinder intersection if ∃ cylinders g1, . . . , gk such that
S = {x :

∏
gi(x) = 1}.

Recall we saw that a 2-party protocol partitions the input in monochromatic rectangles.
The following extension of this fact to k parties is via cylinder intersections.

Claim 14.1. Any d-bit k-party protocol for f :

k︷ ︸︸ ︷
[2]n × ...× [2]n → [2] partitions the inputs

in 2d f -monochromatic cylinder intersections.

Proof. Fix a transcript t, and consider the set At of inputs yielding that transcript. We claim
that At is a cylinder intersection. To see this, consider the cylinder functions gi(x) = 1 ⇔
�From the point of view of the i-th party, x could yield transcript t� ⇔ ∃x′i such that
P (x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) yields transcript t.

Obviously if x is in At then gi(x) = 1 for all i.
To see the converse, take some input x = (x1, . . . , xk) such that gi(x) = 1 for all i. This

means that ∃(x′1, . . . , x′k) such that
(x′1, x2, . . . , xk) yields t;
(x1, x

′
2, . . . , xk) yields t;

... ...
(x1, x2, . . . , x

′
k) yields t.

We must show that x yields t as well, i.e. x ∈ At. This is argued by induction on the bits
in t, using the same �copy and paste� argument that was used for k = 2. QED

Using the notion of cylinder intersections we can now relate an arbitrary protocol to a
special class of protocols p∗. Each protocol p∗ can be written as p∗(x) =

∑
gi(x) mod 2,

where gi is a cylinder in i-th dimension. This corresponds to each party sending just one bit
independently of the others, and the output of the protocol being the XOR of the bits. Note
the communication parameter is not present anymore. We write Cor∗ for the corresponding
correlation, where k is given by the context.

Claim 14.2. Cor(f, d− bit) ≤ 2d · Cor∗(f).

Proof. We use a general trick to turn products

cylinder intersection︷ ︸︸ ︷∏
i

gi(x) = 1 into sums

p∗︷ ︸︸ ︷∑
gi(x) mod 2.

Fix any d-bit protocol, let {x :
∏

i g
1
i (x) = 1}, . . . , {x :

∏
i g

D
i (x) = 1} be the corresponding
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D := 2d f -monochromatic cylinder intersections (by the previous claim). Observe that for a
�xed x,

E
y1,...,yk∈{−1,1}

[
(y1)1+g1(x) · (y2)1+g2(x) · . . . · (yk)1+gk(x)

]
=

{
1 if ∃i : gi(x) = 0
0 if ∀i : gi(x) = 1.

Therefore,

e(p(x)) =
D∑
i=1

r(i) E
y1,...,yk∈{−1,1}

[
(y1)1+gi1(x) · (y2)1+gi2(x) · . . . · (yk)1+gik(x)

]
where r(i) ∈ {−1, 1} is the value of the protocol on the i-th cylinder intersection. Note that
for any x exactly one expectation will be 1, the one corresponding to the cylinder intersection
where x lands. So we have:

Ee[f(x) + p(x)]
= Ex[e(f(x)) · e(p(x))]

= Ex
[
e(f(x)) ·

∑D
i=1 r(i) E

y1,...,yk∈{−1,1}

[
(y1)1+gi1(x) · (y2)1+gi2(x) ·... · (yk)1+gik(x)

]
=
∑D

i=1 Ex,y1,...,yk∈{−1,1}

[
e(f(x)) · r(i) · (y1)1+gi1(x) · (y2)1+gi2(x) ·... · (yk)1+gik(x)

]
≤ D · Ex,y1,...,yk∈{−1,1}

[
e(f(x)) · r(i) · (y1)1+gi∗1 (x) · (y2)1+gi∗2 (x) ·... · (yk)1+gi∗k (x)

]
,

where i∗ is the value of i that gives the largest summand. Now �x y1, . . . , yk to maximize
the expectation, and let J ⊆ {1, . . . , k} be the indices corresponding to yj = −1, i.e.,
j ∈ J ⇒ yj = −1. The last expression above is

D · Ex
[
e(f(x)) ·

∏
j∈J

(−1)1+gi∗j (x)
]

= D · Ex
[
e(f(x) +

∑
j∈J

(1 + gi∗
j (x))

]
≤ D · Cor∗(f).

QED

Claim 14.3. Eex[g(x)] ≤ R(g)1/2k for every function g := X1 × . . .×Xk → [2].

Proof. Recall that for every random variable X: E[X2] ≥ E[X]2. This holds because
0 ≤ E[(X − E[X])2] = E[X2] − E[X]2. Also recall that if X,X ′ are independent then
E[X ·X ′] = E[X] · E[X ′].

We proceed with the �squaring trick.�

Ex1,...,xke[g(x1, . . . , xk)]
2 = Ex1,...,xk−1

[Exke[g(x1, . . . , xk)]]
2 ≤ Ex1,...,xk−1

[Exk e[g(x1, . . . , xk)]
2]

= Ex1,...,xk−1
[Ex0k,x1ke[g(x1, . . . , xk−1, x

0
k) + g(x1, . . . , xk−1, x

1
k)]].

The lemma follows by repeating this k times. QED
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Claim 14.4. For every function f : X1 × . . .×Xk → [2], and every protocol∗ p∗,

R(f ⊕ p∗) = R(f),

where f ⊕ p∗ simply is the function whose output is the XOR of f and p∗.

Proof. Suppose p∗(x) = g1(x) + ...+ gk(x), where gi is a cylinder in the i-th dimension. We
show ∀f,R(f ⊕ gk) = R(f); the same reasoning works for the other coordinates. Note for
every x, ∑

ε1,...,εk∈[2]

(f(xε11 , . . . , x
εk
k ) + gk(x

ε1
1 , . . . , x

εk
k ))

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) +

∑
ε1,...,εk

gk(x
ε1
1 , . . . , x

εk
k )

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) +

∑
ε1,...,εk

gk(x
ε1
1 , . . . , x

0
k)

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) + 2

∑
ε1,...,εk−1

gk(x
ε1
1 , . . . , x

0
k)

=
∑

ε1,...,εk

f(xε11 , . . . , x
εk
k ) mod 2,

where the second equality holds because gk does not depend on xk. QED

The straightforward combination of the claims in this section proves Lemma 14.2.

14.2.4 Proof of Lemma 14.3

We have:

R(GIP) = Ee
x01,...,x

0
k

x11,...,x
1
k

 ∑
ε1,...,εk∈{0,1}

∑
i

∏
j

(x
εj
j )i

 = E
∏
i

e

[ ∑
ε1,...,εk

∏
j

(x
εj
j )i

]

= Ee

[ ∑
ε1,...,εk

∏
j

(x
εj
j )1

]n
= R

(∧
k

)n

,

using in the last equality the fact that any two independent random variables X, Y satisfy
E[X · Y ] = E[X] · E[Y ], and where

∧
k is the AND function on k bits.

To save in notation let us replace (x0
1)1, . . . , (x

0
k)1 with (y0

1, . . . , y
0
k), where (y0

i ) ∈ [2]; and
similarly for (x1

1)1, . . . , (x
1
k)1. So we have:

R(GIP) = Ee
y0
1 ,...,

y0
k

y1
1 ,...,y

1
k

 ∑
ε1,...,εk∈{0,1}

∏
j

y
εj
j

n .
Suppose that y0

1 6= y1
1,. . . ,y

0
k 6= y1

k; then there exists exactly one choice of ε1, . . . , εk making∏
j y

εj
j = 1, and consequently

e

( ∑
ε1,...,εk

∏
j

y
εj
j

)
= e(1) = −1.
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We have y0
1 6= y1

1,. . . ,y
0
k 6= y1

k with probability 2−k. Therefore:

R(GIP) = Ee

[∑∏
j

y
εj
j

]n
≤ (−1 · 2−k + 1 · (1− 2−k))n = (1− 2−k+1)n ≤ e−cn/2

k

.

14.3 E�cient protocols with logarithmically many play-

ers

The impossibility results in the previous sections are e�ective when the number of players
is k ≤ c log n, but useless when k ≥ log n. We now show that this is for a good reason:
there are e�cient protocols for large k. For generalized inner product this is unsurprising,
since the function is almost always 0 for large k. But this is not clear if we replace, say, And
with Majority. In fact, surprisingly there is a general protocol that works for many such
�combined� functions.

Theorem 14.9. [18] Let k ≥ log n + 2. There is a k-party protocol with communication
c log2 n s.t. given a k×nmatrixM (player j sees allM except row j) computes (y0, y1, . . . , yn)
where yi is the number of columns in M with weight i.

In particular, any symmetric function of (the outputs of symmetric functions of the
columns) has protocols with the same e�ciency.

Proof. Each player j communicates the number aj(i) of columns that they see having weight
i.

From this they can compute
bi :=

∑
j

aj(i)

for i ∈ [t].
We claim that the bi uniquely specify the yi, which concludes the proof.
To verify the claim, note we have for i ∈ [t]:

(k − i)yi + (i+ 1)yi+1 = bi.

Assume towards a contradiction that there are yi and y′i for i ∈ [t + 1] that satisfy these
equations, and are non-negative and have the same sum, n, and for some i ∈ [t+ 1] we have
yi 6= yi+1.

Let di := yi − y′i. Subtracting the equations above we get for i ∈ [t]

(k − i)di + (i+ 1)di+1 = 0.

One can verify by induction that the above implies

di = (−1)i
(
k

i

)
d0.
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We know that d0 6= 0 (for else all the di would be 0) and in fact d0 ≥ 1 since it is an integer.
Also note that yi + y′i ≥ |yi − y′i| = |di|.

Hence we obtain the following contradiction

2n =
k∑
i=0

yi + y′i ≥ |di| ≥
k∑
i=0

(
k

i

)
= 2k > 2n.

QED

This striking result has been generalized in multiple ways.

14.3.1 The power of randomness

A non-explicit linear separation is in [30]. An explicit, power separation is in [103]. A
candidate for an explicit linear separation the problem of deciding if xyz = 1G for a group
G. With randomness, this can be solved with constant communication, for any group.

Exercise 14.2. Show this.

Without randomness, there are groups where this requires c log log |G| ≥ c log n commu-
nication, see [198]. An open question in this area is resolving whether bounds like ≥ c log |G|
hold for some group.

14.3.2 Pointer chasing

We consider the basic problem of following a path in a directed graph. We have k layers,
with edges going from nodes in layer i to nodes in layer i + 1 only. The last layer does not
have edges but labels in [2] for each node. The goal is to compute the label at the node
reached from a start node in Layer 1. (Equivalently, instead of labels we can allow for k+ 1
layers with the last layer consisting of two nodes only, and the task is outputting the node
reached.)

It is convenient to work with a version of this problem where we output m labels, and
where the size of each layer grows by a factor b. Note for m = 1 this is a boolean function.
We shall show that the communication is at least b.

Formally, the input to the pointer-chasing function Gm,b
k is a layered graph as above,

where Layer i has mbi nodes, and each node has outdegree 1. In other words, the input are
functions gi for i ∈ [k] where gi : [mbi] → [mbi+1] for i < k − 1, and gk−1 : [mbk−1] → [2].
The next theorem implies that the communication is ≥ ckm.

Theorem 14.10. [201]Let P be a k-party one-way protocol using communication ≤ ckmb.
Then Px[P (x) 6= Gm,b

k ] ≥ cmk .

For example, for m = 1 we require communication ≥ ckb, whereas cb log b su�ces (it's
the input length to the second party). Thus for �xed k this bound is nearly tight. (One can
have a tight bound by considering trees, that is restricting the range of pointers; this slightly
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complicates the exposition.) The total input length is n ≤ kbk−1. Thus for constant k one
needs communication ≥ ckn

1/(k−1). One can work out the dependence on k and show that
the bound remains non-trivial for any k ≤ logc n where n is the total input length.

Proof. We proceed by induction on k. For every k we prove the statement for any setting
of m, b. The base case k = 1 is clear: P (x) is a �xed string, while G is a uniform string in
[2]m. The error probability is ≥ 2−m.

For the induction step, let P use communication t and p := Px[P (x) 6= Gm,b
k ]. Write

x = (x1, y) where x1 is on the forehead of the �rst party. We have

Py
[
Px1 [P (x) ≥ Gm,b

k ] ≥ p/2
]
≥ p/2.

Let Pa be the protocol P where the �rst party always communicates string a, regardless
of y. We claim there exists a s.t.

Py
[
Px1 [Pa(x) = Gm,b

k ] ≥ p/2
]
≥ 2−tp/2.

Note that the probability over x1 is not reduced because the �rst party's message does
not depend on x1.

Now let m′ := mb and de�ne protocol P ′ for Gm′,b
k−1 . On input y, P ′ runs Pa for r times

on inputs (xi, y) for i ∈ [r], where the xi are independent choices for the �rst party's input.
For any of the m′ bits that are pointed to by some xi, P ′ outputs the corresponding bit. In
case di�erent runs give di�erent values, the answer can be arbitrary. For any bit that is not
pointed by any xi, P ′ guesses at random. This gives a randomized protocol; one can �x the
randomness and preserve the success probability.

The communication of P ′ is ≤ rt.
To analyze the success probability. Fix any y for which Px1 [Pa(x) = Gm,b

k ] ≥ p/2. The
probability that all the r runs are correct is ≥ (p/2)r. The probability that there are ≥ cm′

bits that are not pointed to by some xi is at most the probability that there is a set of size
cm′ s.t. mr pointers fall there, which is at most

≤
(
m′

cm′

)
(1− c)mr ≤ cm

′
c−mr ≤ cm

′
,

for r ≥ cb.
When that does not happen, the random guesses will be correct w.p. ≥ 2−cm

′
.

Overall, the success probability over uniform y is

≥ 2−tp/2 · ((p/2)r − cm′) · 2−cm′ .

For p ≥ 2−cm and t ≤ cm′, the overall success probability is ≥ cm
′
. QED

In the case k = 3 according to Theorem 14.10 we need communication ≥ c
√
n. As

mentioned above, this is essentially tight for G, because of the way the layers are constructed.
But one can consider the natural question of chasing pointers where each layer has n nodes.
It is a tantalizing open question whether there is a protocol with communication ≤ c

√
n.

The trivial protocol takes communication n,and one might wonder if that's tight. But a
clever protocol achieves sublinear communication.
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14.3.3 Sublinear communication for 3 player

For k = 3 we consider pointer chasing on layers of sizes 1, n, n. De�ne G as

G(i, g, h) := h(g(i))

where i ∈ [n],g : [n]→ [n], and h : [n]→ [2].
We consider the even more restricted simultaneous communication model where the play-

ers speak once, non-interactively. Naive intuition suggests that linear communication might
be needed. In fact, such bounds were claimed several times, but each time the authors later
realized that they only applied to special cases. Indeed, we have:

Theorem 14.11. [143, 37] PC has simultaneous communication o(n).

Proof. We sketch the ideas in the proof [143] in case g is a permutation π. The case of
general g is in [37]. Let H be a bipartite graph H between the n nodes in the middle layer
and the n nodes in the last. For any permutation π, let GH,π denote the graph on the n last
nodes where {x, y} is an edge i� π−1(x) has an edge to y in H.

The main claim is that there is H of degree d = (1 + ε)pn s.t. for any π GH,π can be
covered by r = o(n) cliques. (Note any graph has a trivial covering with number of the edges
cliques.)

The protocol is as follows. H is known to all.
Player 1, for each of the r cliques, announces the parity of the bits h(x) for x in the

clique.
Player 2 announces h(x) for all the d neighbors x of i in H. This is d bits.
Player 3 knows k := π(i). It considers the clique of GH,π containing k. It knows the

parity of the h(x) for x in this clique. Also, for any x in the clique, x and k are connected,
hence π−1(k) = i is adjacent to x. So from the message of Player 2 we know h(x). We can
subtract o� all these bits to get h(k).

As stated, this protocol is not simultaneous. To make it simultaneous, let Player 3
announce which of the cliques k is in, and also which of the d neighbors of i are connected
via H to nodes in that clique that are not k. Then the referee has a bit per clique, knows
which bit to look at, and knows which bits of Player 2 to consider.

Player 3 message takes log r + d.
The existence of H with suitable parameters can be established by the probabilistic

method. Speci�cally, let H be distributed as G(n, p), a random graph where each edge is
present independently with prob. p. We observe that for any permtuation GH,π is random
from G(n, p2). Thus its complement is random from G(n, 1 − p2). One can show that
w.h.p. this complement has chromatic number at most r = o(n). It is known that the
chromatic number of a graph is equal to the minimum number of independent sets that you
need to cover the nodes of the graph. From this the result follows. QED

This protocol can be generalized to more players.
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14.4 Notes

Several proofs of Theorem 14.3 exist [99, 149, 23], see the books [110, 145] or the survey [43]
for two di�erent expositions. For more on disjointness see also the survey [160].

Several presentations of the proof of Theorem 14.8 exist: [46, 146, 200]. We followed the
latter.

A proof of Theorem 14.10 in the case k = 3 appeared in [19] but did not readily extend
to larger k. The proof we presented is a streamlined version of the argument in [201]. The
latter paper works with trees instead of graphs to obtain slightly better parameters at the
cost of a slightly more involved analysis of the number of bits hit by pointers.

The simulation of Sym-And circuits by nof protocols () is from [80].
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Chapter 15

Algebraic complexity

Stepping back, previous chapters have investigated the complexity of computing strings of
length 2n, corresponding to the truth-table of functions from [2]n to [2] starting from basic
strings (or functions) and changing them via simple operations. For example for boolean
circuits the basic functions are the constant 0, 1, the variable xi, and we combine them via
And/Or/Not gates.

It is natural to consider other objects and to allow for di�erent operations. In fact,
we have already encountered other models which are more algebraic, like polynomials and
matrices. In this chapter we explore more algebraic models, and in particular we consider
computing other objects, namely polynomials.

Surprisingly, the development of this theory closely parallels that of its boolean counter-
part. We will encounter again (especially starting in section �15.4) many of the main themes
and results seen so far, including depth reduction, impossibility results for small-depth mod-
els that are �just short� of proving major separations, the grand challenge, reductions, com-
pleteness, and an algebraic analogue of NP.

15.1 Linear transformations, rigidity, and all that

tbd

15.2 Computing integers

Perhaps the simplest algebraic question is that of computing n-bit integers using arithmetic
circuits over the integers, using no variables and no constants except 1 and −1. Usual
counting argument like that in the proof of Theorem 3.6 show that most n-bit integers
require circuits of size n/ logc n. And this is again nearly tight since any integer t ∈ [2]n can
be computed with cn operations by writing t = 20t0 + 21t1 + · · ·+ 2n−1tn−1, and computing
2i takes ≤ log i+ c operations via repeated squaring.

As usual, the grand challenge is to exhibit �explicit� integers that are hard to compute.
In particular, integers that cannot be computed with logc n operations. A prominent integer
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in this context is the factorial. If it is easy, then factoring is also easy.

Theorem 15.1. Suppose n-bit factorial has algebraic circuits of size loga n. Then there are
boolean circuits factoring n-bit integers of size nca .

This connection is slightly more subtle than the similarity of the words �factorial� and
�factoring� might indicate, and the di�erence in the circuit-size bounds might hint at its
non-triviality. The idea is that the smallest t s.t. x divides t! contains a non-trivial factor of
x, which can be found computing the greatest common divisor.

Example 15.1. The following 12 × 12 matrix has j! mod i in row i, column j. In a row,
all entries to the right of a 0 are 0 as well. For i > 4, the position of the 0 gives a number
with a non-trivial factor of i.

1 2 3 4 5 6 7 8 9 10 11 12
1 0
2 1 0
3 1 2 0
4 1 2 2 0
5 1 2 1 4 0
6 1 2 0
7 1 2 6 3 1 6 0
8 1 2 6 0
9 1 2 6 6 3 0
10 1 2 6 4 0
11 1 2 6 2 10 5 2 5 1 10 0
12 1 2 6 0

Proof. We are given x ∈ [2]n that we'd like to factor. Suppose we can compute the smallest
integer t s.t. x divides t!. Trivially, t ≤ x. Also, if x > 4 is composite then t < x.

Exercise 15.1. Prove this. What if x = 4?

Let us then write (t − 1)! = qx + r with r < x and so t! = qtx + rt, and x|rt. Hence
sx = rt for an integer s. Because t < x and r < x, the prime-power factors of x cannot
be all in r or all in t. So the greatest common divisor of x and t is non-trivial, and we can
compute it, divide x by it, and iterate. If the decomposition is trivial, that is t = x, then it
means that x is prime by what we said above, and we can stop.

It remains how to determine t. We use binary search, beginning with t = x, noting that
if x|i! then x|j! for any j > i. For each candidate t, we consider the algebraic circuit for t!.

We then use this circuit to compute t! mod x. Note that t! has an unfeasible number of
bits (exponential in n), but t! mod x has ≤ n bits, so we can write it down � a classic move
used extensively, e.g. in Exercise 2.20 and section 7.2.1.

By assumption, the algebraic circuit for t! has size loga(log t!) ≤ ca loga t. We have
t ≤ x ≤ 2n+1and the result follows. QED

And we will see below in section �15.4 that if it is hard then another long-sought separa-
tion follows.
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15.3 Univariate polynomials

A next natural question is computing univariate polynomials. An important distinction
must be made. We can consider computing polynomials formally, which we can think of as a
sequence of coe�cients, or informally, as functions. This distinction disappears when the �eld
is larger than the degree by Lemma 2.3, but otherwise leads to di�erent theory. For example
over F2 we have x2 = x informally (i.e. the identity holds for every �eld element) but obviously
not formally. Obviously formal identities are also informal, so informal impossibility results
s are harder to establish than formal.

Given this, the cleanest setting may be when the underlying �eld is in�nite.
�
Here we can allow arbitrary constants
The situation is similar to the previous section. A speci�c polynomial of interest if the

approximation to the exponential function:
∑n

i=0X
i/i!.

15.4 Multivariate polynomials

Again, the challenge is to exhibit �explicit� polynomials that are hard to compute.
For larger-depth there is a superlinear informal result that does not have a formal coun-

terpart. For several explicit degree-d polynomials in n variables it can prove bounds of the
form cn log d. We state one example:

Theorem 15.2. [169, 25] Computing
∑

i∈[n] x
d
i requires size cn log d.

The proof is �simple and surprising:� it is shown in [25] that computing a polynomial p
and simultaneously all its n partial derivatives w.r.t. the n variables only costs a constant
factor more than computing p. Then one can use the �degree bound� from [169].

We now turn to constant-depth circuits.

Algebraic impossibility from boolean impossibility

Note that over the �eld F2 the informal imp. results obtained in section 10.3.1 (see especially
Exercise 10.6) are algebraic (since And is like multiplication) � and nothing better is known
even if one is informal, for small depth.The techniques in section 10.3.1 can be extended to
slightly larger �elds [70]. The latter paper gives exponential lower bounds for ΣΠΣ circuits
computing an explicit low-degree polynomial. The idea is similar to that in section 10.3.1:
we show that such circuits are approximated by low-degree polynomials. We sketch why
this is possible, to illustrate where the �eld size plays a role. It su�ces to approximate ΠΣ
circuits well. Consider one such circuits, and let r be the rank of the linear forms input to
the Π gate (excluding their constants, if any). If the rank is large, then over a uniform input
it's likely that at least one linear form will be zero and so the whole circuit is zero. If the
rank r is small, then we can write each linear form as a linear combination of ≤ r linear
forms. Now if we expand the Π gate we will have sum of products of these r linear forms.
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Now we can use the fact that over a �eld of size q we have Xq = X, so we reduce the degree
of each form in any product to at most q − 1. Overall, the degree will be ≤ (q − 1)r.

Large �elds

But for larger, or in�nite �elds a di�erent set of techniques appears necessary, and only
formal results are known.

15.4.1 VNP

Similarly to NP, an important class of polynomials can be de�ned by summing over all
boolean values of a set of variables.

De�nition 15.1. The Σ-algebraic circuits S(X1, . . . , Xn) of size ≤ s are those that can be
written as Σy1,...,ys∈[2]C(X1, . . . , Xn, y1, . . . , ys) where C is an algebraic circuit of size ≤ s.

Several polynomials of interest that are not known to have small algebraic circuits can
be shown to have small Σ-algebraic circuits.

Example 15.2. We show that the permanent polynomial in n variables,

p(x0, x1, . . . , xn−1) =
∑
π

∏
i∈[n]

xi,π(i)

where π ranges over all permutations of [n], has Σ-algebraic circuits of size nc. It is an open
problem whether it has (plain) arithmetic circuits of power size.

We will encode π using n2 bits M specifying an n × n permutation matrix also written
M . Suppose we have a polynomial g s.t. g(M) = 1 if M is a permutation and 0 otherwise.
Then we have:

p =
∑

M∈[2]n2

g(M)
∏

i∈[n],j∈[n]

xi,j ·Mi,j.

Thus it only remains to show that g has small algebraic circuits.

Exercise 15.2. Finish the example.

Similar to the P vs. NP question, the prominent question here is whether Σ-algebraic and
algebraic circuits have similar power. The following unexpected result connects this question
to the complexity of computing integers (section �15.2). One can get similar results for other
�explicit� integers or even univariate polynomials (including those mentioned in 15.3).

Theorem 15.3. [107, 39] [If Σ-algebraic circuits are easy then so are univariate polynomials
and integers] Suppose that every Σ-algebraic circuit in n variables of size s has an equivalent
algebraic circuit of size sd for some constant d. Then the 2n-bit factorial has an algebraic
circuit of size ncd .
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The proof is an excellent display of �scaling up and down� and connecting disparate
complexity results.

Proof. First we claim bit i of the factorial given i ∈ [2]n is computable in

Maj ·Maj · · · · ·Maj · PCkt,

where the number of applications of the Maj operator is c. (Cf. section �6.4 for the de�nition
of the operator.) This follows from the fact that iterated multiplication of integers is in TC
(Theorem 10.2).

Now note that for any function f : [2]n → [2] in Maj · PCkt one can write down a Σ-
algebraic circuit S of power size whose value on x ∈ [2]n is ≥ 0 i� f(x) = 1. (Note for
x, y ∈ [2] we have x ∧ y = x · y and x ∨ y = x+ y − x · y and ¬x = 1− x; so the translation
is immediate.)

By assumption, S has equivalent algebraic circuits of power size. Applying this c times
to the above, we obtain an algebraic circuit C of power size such that C(i) is bit i of the
factorial.

Now consider

S ′(Xn−1, . . . , X0) :=
∑

j0,j1,...,jn−1∈[2]

C(j)Xj0
0 X

j1
1 ·X

jn−1

n−1

in the variables Xi. Note that S ′(2n−1, . . . 8, 4, 2, 1) equals the desired factorial. We can't
immediately apply the hypothesis to S ′, until we note

Xj0
0 = (X0j0 + 1− j0)

which allows to write S ′ as a Σ-algebraic circuit. Applying the hypothesis again yields an
equivalent power-size algebraic circuit C ′, and then again the desired factorial is C ′(2n−1, . . . 8, 4, 2, 1)
and the powers of 2 can be computed via repeated squaring. QED

15.5 Depth reduction in algebraic complexity

Various results are known. Work in the unbounded fan-in setting.
[180] shows that any algebraic circuit of size na computing a polynomial degree na has

an equivalent circuit of size nca and depth ca log n. This transformation does not have a
counterpart in the boolean world.

Note however that this only works under the additional restriction that the circuit com-
putes a low-degree polynomial:

Exercise 15.3. Give an algebraic circuit of size s that does not have an equivalent algebraic
circuit of depth ≤ s.

However, the following is similar in spirit to Theorem 9.6.
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Theorem 15.4. Any n-variate polynomial of degree d computable by a size-na arithmetic
circuit can be computed by a depth ΣΠΣ of depth e and size ncad

1/(e−1)
.

In particular, for depth 3 the size is nca
√
d. We shall see in section �15.7 that impossibility

results for circuits of size nc
√
d computing degree-d polynomials are known. Thus, as men-

tioned at the beginning of the chapter, the situation in the algebraic world is strikingly anal-
ogous to that in the boolean world discussed in section �7.3. We have impossibility results for
small-depth circuits that are �just short� of having major consequences for unbounded-depth
models.

15.6 Completeness

The results in section �9.2, extended to other �elds, show that iterated product of 3 × 3
matrices is complete for algebraic circuits. As in that section, the reduction is as simple as it
gets: For any power-size circuit one can write down a power-size product where the matrix
entries are either constants or variables that computes the same polynomial.

15.7 Impossibility results for small-depth circuits

Theorem 15.5. [114] Any depth-e circuit computing (one entry of) the product of d m×m
matrices (a polynomial of degree d) has size ≥ nd

ce , for any d ≤ log n. When e = 3 the
bound is nc

√
d.

This bound is tight.
This is a rapidly evolving area; subseq papers like Kush Saraf work with more intuitive

partition of variables (i.e., random), and don't involve set-multilinear.
The proof in [114] involves two main steps. In �rst step we show the following transfor-

mation:

Lemma 15.1. Any circuit of size s and depth d computing a set-multilinear polynomial has
an equivalent set-multilinear circuit of depth < 2d and size scdcd, over a �eld of characteristic
0.

In the second step we prove impossibility for set-multilinear circuits.
The proof of Lemma 15.1 also involves two steps. The �rst step makes the fan-in of

multiplication gates at most d. This makes the size blow up in the transformation to set
multilinear tolerable. The �rst step is done by a generic step that makes the circuit homoge-
neous. For such circuits you can simply remove multiplication gates with fan-in larger than
d.

15.8 Algebraic TMs

TBD
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15.9 Notes

Impossibility results for univariate polynomials were �rst studied in [170]. That paper es-
tablishes negative results for polynomials with very large coe�cients, but the results are
non-trivial since arbitrary constants can be used by the circuit. For a survey see the book
[40].

For an introduction to multivariate algebraic complexity see [40] and the survey [162].
The result in section �15.7 builds on a long line of works, see [115] for discussion.
Theorem 15.4 is the culmination of a line of works about depth reduction that was

rekindled by [4]. See discussion of subsequent work in [71] for this statement for depth 3.
The formulation for any depth is stated in [115].
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Chapter 16

Barriers
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In an attempt to understand the Grand Challenge (Chapter 3), one can identify several
proof techniques and show or speculate that they cannot solve it. Such arguments are known
as �barriers.� Several barriers have been put forth, and in fact there are even barriers to
barriers, i.e., arguments indicating that proving a barrier is di�cult, making complexity
theory a rather philosophical and introspective �eld.

The two main barriers are the black-box (a.k.a. oracle or relativization barrier) and the
natural proofs barrier.

16.1 Black-box

As hinted, many of the results we have shown don't really exploit the speci�cs of the model
we are working with, but work in greater generality. How to make this more precise? When
programming, we can think of having access to a powerful library, or subroutine, or oracle,
or black-box. Informally, if our argument extends in such cases we say it is black-box, or that
it relativizes. Such a library is known as oracle or black-box. The black-box barrier helps us
understand the limits of basic simulation arguments, including diagonalization, which tend
to relativize.

Formally, we are going to equip our models, such as TMs, with access to a function
f : [2]∗ → [2], known as oracle. At any point, the model can ask for the value of the function
at an input that has been computed. In the case of TMs, we can think of a special oracle
tape and a special oracle state. Upon entering the state, the contents x ∈ [2]∗ on the oracle
tape are replaced in one step with f(x) ∈ [2]. We can then de�ne corresponding complexity
classes, denoted Pf , and so on.

To illustrate, consider the separation P 6= Exp, which follows from the Time Hierarchy
Theorem 3.3. The result relativizes:

Theorem 16.1. For every oracle f : [2]∗ → [2], Pf 6= Expf .

Proof. Diagonalization and the time hierarchy work just as well for oracle machines. Specif-
ically, when simulating a machine M running in time t with a machine M ′ running time
t′ > t, the simulation proceeds as before, and if M queries the oracle then M ′ does that as
well. QED

Next we argue that relativizing techniques cannot resolve other major questions. Perhaps
the simplest example is for P vs. PSpace, because the way the oracle is accessed is clear.

Claim 16.1. There is an oracle f s.t. Pf = PSpacef .

Proof. The oracle takes as input (M, 1s, x), simulates M using space s on input x for
≤ |M |ssteps, and returns its answer. If M exceeds space s, the oracle returns 0. We claim
that PSpacef = PSpace. This is just because the oracle queries can be answered by direct
simulation using power space. Further, PSpace⊆ Pf . The proof is completed by combining
the two claims. QED
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Hence, relativizing proofs cannot prove the grand challenge that P 6= PSpace.
A less exciting possibility, ruled out next, is that relativizing techniques could show

P = PSpace.

Claim 16.2. There is an oracle f s.t. Pf 6= PSpacef .

The straightforward proof idea is to de�ne f that always returns 0 on P machines,
exploiting that they make few queries. Essentially, for such an oracle Pf = P. On the other
hand, PSpace machines, thanks to their ability of querying the oracle at every input of length
n, will be able to compute non-trivial functions of f . Formalizing this idea requires de�ning
the oracle in stages, to handle each P machine in turn, but this detail does not seem to
further our understanding.

There is an industry of oracle constructions. As essentially seen in Chapter 6, PHf

basically corresponds to AC functions of the truth table of f , and one can use results about
AC to give various oracle separations for PH and related classes.

Half a century ago oracle separations have enjoyed an exciting and proli�c phase. A
second phase has followed during which it was realized that oracles provide limited infor-
mation and they were relegated as curiosities. More recently, they have made a comeback,
sometimes under the new term of black-box, in cryptography and quantum computing, and
seem to be experiencing the �rst phase again.

16.2 Natural proofs

The natural proofs barrier aims to explain the limit of combinatorial proof techniques. The
idea is simple:

(1) Most combinatorial proof techniques against a class of functions F (for example, F
are the functions on n bits computable by circuits of size n10 and depth 10) do more than
providing a separation: They yield an e�cient algorithm that given the truth table of length
2n of a function can distinguish tables coming from F from those coming from uniformly
random functions.

(2) The classes F for which we would like to prove impossibility are believed to be powerful
enough to compute pseudorandom functions, i.e., truth tables that cannot be e�ciently
distinguished from uniformly random functions.

Note that (2) is not known unconditionally, but just believed to be the case. This is
where complexity theory gets quite philosophical. We can't really prove (2) without solving
the Grand Challenge, in which case these barriers are not actual barriers. On the other hand
one can have a belief that (2) is indeed true even though we can't prove it, and if that's
the case indeed to solve the Grand Challenge one needs to somehow bypass (1) and �nd
alternative techniques. We currently don't seem to have such techniques.
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16.2.1 TMs

We illustrate the natural-proofs barrier for 1TMs. Let us revisit the information bottleneck
technique from section �3.1 to show that from it we can extract an e�cient algorithm to
distinguish truth-tables computed by fast 1TMs from uniform functions. One is tempted to
consider a test checking if there is a large set where the function is constant, and moreover
X is a product set X = Y ×Z. However, it is not clear that this test would be e�cient. It is
more convenient to use the simulation of 1TMs by low-communication protocols, Theorem
14.6, and use the quantity R from section 14.2.2.

16.2.1.1 Telling subquadratic-time 1TMs from random

Given the truth-table of a function f : [2]n → [2], our test D will consider the function
f0 : [2]n/3 × [2]n/3 → [2] de�ned as f0(x, y) := f(x0n/3y), and check if R(f0) ≥ 2−cn.

First, let us verify that fast 1TMs indeed pass D. Let M be an s-state 1TM running in
time t computing f : [2]n → [2]. By Theorem 14.6, f0 has 2-party protocols with communi-
cation d := c(log s)t/n and error ≤ 1/2. By Lemma 14.2, R(f0) ≥ 2d/c ≥ sct/n.

Second, let's verify that D is e�ciently computable. Indeed, following the de�nition we
can compute D in time 2cn, which is power in the input length 2n.

Third, and �nally, we show that random functions U : [2]n → [2] don't pass the test.
Indeed, we have

EU [R(U)] = EUEe x01,x02
x11, x

1
2

[U(x0
1, x

0
2) + U(x0

1, x
1
2) + U(x1

1, x
0
2) + U(x1

1, x
1
2)].

When the x1 are distinct and the x2 are distinct, the expectation is 0. In the other
case the expectation is 1, and this happens with prob. ≤ 2−cn. Therefore EU [R(U)] ≤ 2−cn.
Moreover, R is never negative, for R(f) = Ex01

x11

(Eye[f(x0
1, y) + f(x0

2, y)])
2
. Hence

PU [R(U) ≥ 2−cn] ≤ 2−cn.

The upshot of the all the above is that we have devised an e�cient test that can dis-
tinguish truth tables of functions computed by fast 1TMs from truth tables of uniformly
random functions.

16.2.1.2 Quadratic-time 1TMs can compute pseudorandom functions

We now sketch a candidate pseudorandom function computable in quadratic time by 1TMs
with cn2 states. The candidate is an asymptotic generalization of a well-documented and
widely used block cipher: the Advanced Encryption Standard, AES. AES is based on the
substitution-permutation network (SPN) structure, and will actually compute a function
from [2]n → [2]n (whereas range [2] would su�ce for our goals). On input x ∈ [2]n, an SPN
is computed over a number r of rounds, where each round �confuses� the input by dividing it
into m/b bundles of b bits and applying a substitution function (S-box) to each bundle, and
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Figure 16.1: One round of an SPN

then �di�uses� the bundles by applying a matrix M with certain �branching� properties. At
the end of each round i, the n bits are xor-ed with an n-bit round seed ki, refer to �gure 16.1.

The candidate follows the design considerations behind the AES block cipher, and par-
ticularly its S-box. For any n that is a multiple of 32, we break the input into m := n/8
bundles of b = 8 bits each, viewed as elements in the �eld F28 , and perform r = n rounds.
We use the S-box S(x) := x2b−2. M is computed in two (linear) steps. In the �rst step, a
permutation π : [m] → [m] is used to shu�e the b-bit bundles of the state; namely, bundle
i moves to position π(i). The permutation π is computed as follows. The m bundles are
arranged into a 4 ×m/4 matrix. Then row i of the matrix (0 ≤ i < 4) is shifted circularly
to the left by i places. In the second step, a maximal-branch-number matrix φ ∈ F4×4 is
applied to each column of 4 bundles.

Let us now illustrate how one round can be computed in time cn with cn states. The
bundles are written on the tape in column-major order: First the 4 bundles of the 1st
column, then the 4 bundles of the 2nd column, and so on. The cn instances of S and ϕ can
be computed in time cn. To see that π can also be computed in time cn, note that due to
the representation, we can compute π with one pass, using that all but c bundles need to
move ≤ c positions away. Finally, encoding the n-bit seed in the TM's state transitions, the
addition of each round key also takes time cn.

Therefore, the r = n rounds can be computed in time cn2 with cn2 states.

By the simulation of TMs by circuits, this candidate is also computable by power-size
circuits. A naive implementation gives fairly large depth, so next we consider smaller-depth
circuits.
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16.2.2 Small-depth circuits

In Chapter 10 we saw several impossibility results for AC. In the next exercise you are asked
that at least one of the proof techniques we saw is natural.

Exercise 16.1. Give an e�cient algorithm to distinguish truth tables of functions com-
putable by power-size constant-depth AC from uniform.

Corollary 16.1. The ρ be a random restriction with ncd stars. The probability that Cρ is
not a decision tree of depth log s is ≤ s2−n

cd .

There are candidate pseudorandom functions computable in TC. Some of them are linked
to outstanding questions. For example, for one such candidate is known that if it is not
pseudorandom than one can factor integers better than we currently know. The critical
feature of TC that enables computing such candidates is iterated multiplication, see Theorem
10.2.

16.3 Notes

Relativization originated in the seminal work [22] and led to countless works on oracles. A
variant of relativization where the oracles have additional algebraic structure is sharper for
certain proof techniques and is studied in [1].

Natural proofs is from [148]. AES is described in [51]. The SPN structure of alternat-
ing �confusion� and �di�usion� steps was put forth already in [158]. The candidate 1TM
pseudorandom function in section 16.2.1.2 is from [124].

The PRF in TC is from [129]. It gives TC of size ≥ nc. The work [10] considers TC of
size n1+ε. [124] present a candidate, also based on AES, with these resources.
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Chapter 17

I believe P=NP

�[...] Now it seems to me, however, to be completely within the realm of
possibility that φ(n) grows that slowly. Since it seems that φ(n) ≥ k · n is
the only estimation which one can obtain by a generalization of the proof of the
undecidability of the Entscheidungsproblem and after all φ(n) ∼ k ·n (or ∼ k ·n2)
only means that the number of steps as opposed to trial and error can be reduced
from N to logN (or (logN)2). However, such strong reductions appear in other
�nite problems [...].� [63]

(Cf. blog post [196])
The only things that matter in a theoretical study are those that you can prove, but

it's always fun to speculate. After worrying about P vs. NP for half my life, and having
carefully reviewed the available �evidence� I have decided I believe that P = NP.

A main justi�cation for my belief is history:

1. In the 1950's Kolmogorov conjectured that multiplication of n-bit integers requires time
≥ cn2. That's the time it takes to multiply using the method that mankind has used
for at least six millennia. Presumably, if a better method existed it would have been
found already. Kolmogorov subsequently started a seminar where he presented again
this conjecture. Within one week of the start of the seminar, Karatsuba discovered his
famous algorithm running in time cnlog2 3 ≈ n1.58. He told Kolmogorov about it, who
became agitated and terminated the seminar. Karatsuba's algorithm unleashed a new
age of fast algorithms, including the next one. I recommend Karatsuba's own account
[100] of this compelling story.

2. In 1968 Strassen started working on proving that the standard cn3 algorithm for multi-
plying two n×n matrices is optimal. Next year his landmark cnlog2 7 ≈ n2.81 algorithm
appeared in his paper �Gaussian elimination is not optimal� [168].

3. In the 1970s Valiant showed that the graphs of circuits computing certain linear trans-
formations must be a super-concentrator, a graph which certain strong connectivity
properties. He conjectured that super-concentrators must have a super-linear num-
ber of wires, from which super-linear circuit lower bounds follow [178]. However, he
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later disproved the conjectured [179]: building on a result of Pinsker he constructed
super-concentrators using a linear number of edges.

4. At the same time Valiant also de�ned rigid matrices and showed that an explicit
construction of such matrices yields new circuit lower bounds. A speci�c matrix that
was conjectured to be su�ciently rigid is the Hadamard matrix. Alman and Williams
recently showed that, in fact, the Hadamard matrix is not rigid [11].

5. Constructing rigid matrices is one of three ways to get circuit lower bounds from a
graph decomposition in [179]. Another way is via communication lower bounds. Here
a speci�c candidate was the sum-index function, but then Sun [173] gave an e�cient
protocol for sum-index.

6. After �nite automata, a natural step in lower bounds was to study sightly more general
programs with constant memory. Consider a program that only maintains c bits of
memory, and reads the input bits in a �xed order, where bits may be read several times.
It seems quite obvious that such a program could not compute the majority function in
polynomial time (see 1.1). This was explicitly conjectured by several people, including
[35]. Barrington [125] famously disproved the conjecture by showing that in fact those
seemingly very restricted constant-memory programs are in fact equivalent to log-depth
circuits, which can compute majority (and many other things) (see Theorem 9.5).

7. Mansour, Nisan, and Tiwari conjectured [122] in 1990 that computing hash functions
on n bits requires circuit size Ω(n log n). Their conjecture was disproved in 2008 [95]
where a circuit of size O(n) was given.

8. For 30+ years the fastest run-time for graph isomorphism was exponential. A great
deal was written on e�cient proof systems for graph non-isomorphism. In 2015 Babai
shocked the world with an almost power-time algorithm for graph isomorphism.

9. Max�ow is a central problem studied since the dawn of computer science. All solutions
had running time ≥ n1+c, until a quasi-linear algorithm obtained in 2022.

And these are just some of the more famous ones. The list goes on and on. In number-on-
forehead communication complexity, the function Majority-of-Majorities was a candidate for
being hard for more than logarithmically many parties. This was disproved in [18] and sub-
sequent works, where many other counter-intuitive protocols are presented, see section �14.3.
Ditto for pointer chasing, see section 14.3.2. In data structures, would you think it possible
to switch between binary and ternary representation of a number using constant time per
digit and zero space overhead? Turns out it is [140, 52] (see section 12.1.2). Do you believe
factoring is hard? Then you also believe there are pseudorandom generators where each
output bit depends only on c input bits [15]. Known algorithms for directed connectivity use
either super-polynomial time or polynomial memory. But if you are given access to polyno-
mial memory full of junk that you can't delete, then you can solve directed connectivity using
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only logarithmic (clean) memory and polynomial time [38]. And I haven't even touched on
the many broken conjectures in cryptography, most recently related to obfuscation.

On the other hand, arguably the main thing that's surprising in the lower bounds we
have is that they can be proved at all. The bounds themselves are hardly surprising. Of
course, the issue may be that we can prove so few lower bounds that we shouldn't expect
surprises. Some of the undecidability results I do consider surprising, for example Hilbert's
10th problem. But what is actually surprising in those results are the algorithms, showing
that even very restricted models can simulate more complicated ones (same for the theory
of NP completeness). In terms of lower bounds they all build on diagonalization, that is, go
through every program and �ip the answer, which is boring.

The evidence is clear: we have grossly underestimated the reach of e�cient computation,
in a variety of contexts. All signs indicate that we will continue to see bigger and bigger
surprises in upper bounds, and P=NP. Do I really believe the formal inclusion P=NP?
Maybe, let me not pick parameters. What I believe is that the idea that lower bounds
are obviously true and we just can't prove them is not only baseless but even clashes with
historical evidence. It's the upper bounds that are missing.

The �thousand di�erent problems� argument for P 6= NP

�The class NP [...] contains thousands of di�erent problems for which no e�cient solving
procedure is known.�[65]

�Among the NP-complete problems are many [...] for which serious e�ort has been ex-
pended on �nding polynomial-time algorithms. Since either all or none of the NP-complete
problems are in P, and so far none have been found to be in P, it is natural to conjecture
that none are in P.� [89], Page 341.

I �nd these claims strange. In fact, the theory of NP completeness leads me to an opposite
conclusion. As we saw, the problems can all be translated one into the other with extremely
simple procedures, essentially doing nothing, just maybe complementing a bit. In what sense
are they di�erent? I think a good de�nition of di�erent is that they are not known to be
reducible to each other in a simple manner.

The �lots of people tried� argument for P 6= NP

The conjectures above were made by n top scientists in the area. On the other hand, N � n
people outside of the area attempted and failed to solve NP-hard problems. The fact that
they are outsiders can be a strength or a weakness for the argument. It can be a strength,
because of the sheer number, and because unshackled by the trends of the community, and
without much interaction, the N people have been free to explore radically new ideas:

�Many of these problems have arisen in vastly di�erent disciplines, and were the subject
of extensive research by numerous di�erent communities of scientists and engineers. These
essentially independent studies have all failed to provide e�cient algorithms for solving these
problems, a failure that is extremely hard to attribute to sheer coincidence or a stroke of
bad luck.�[65]
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But it can also be a weakness, because unaware of the well-studied pitfalls, and with little
communication, these N people are likely to all have followed the same route. Indeed, most
of the countless bogus proofs claiming to resolve major open problem in complexity fail in
one of only a handful of di�erent ways. So it is likely that those N people don't quite count
for N distinct attempts, but in fact a much smaller number, quite possibly less than n.

The �catastrophe� argument for P 6= NP

It's easy to consider scenarios in which P = NP would not cause a catastrophe. A trivial
scenario is if the algorithms take time nd for exceedingly large d. A less obvious scenario is
that the algorithms use complicated component X (think the classi�cation of simple groups,
or the 4-color theorem, etc.). And then we would enter a phase in which for a problem you
ask if it can be solved without using X.

My �get stuck at the same point� argument for P = NP

The impossibility results that we have are sometimes obtained via seemingly very di�erent
proofs. For example, we have �bottom-up� and �top-down� proofs that AC can't compute
parity. As far as I can tell, the proofs are genuinely di�erent, I would argue more di�erent
than the various NP-complete problems (see the �thousand di�erent problems� argument
above). Why should di�erent approaches stop at the same point, except because there is
nothing else to prove? A related issue is why available techniques stop �right before� proving
major results, see discussion e.g. in section �7.3. The most reasonable conclusion, it seems
to me, is that his happens because the major results are actually false.

Throughout history, science has often proved wrong those who wouldn't take things at
face value.

Complexity theory is perhaps unique in science. It appears that math is not ready for its
problems. It is a bulwark against the business approach to science, the frenzy of the illusion
of progress. For ultimately it doesn't matter how much you rake in or even who is writing
bombastic recommendation letters for you, etc. These problems remain untouched. And
progress may be more likely to come when you are alone, staring at blank paper:

�You do not need to leave your room. Remain sitting at your table and listen.
Do not even listen, simply wait. Do not even wait, be quiet still and solitary.
The world will freely o�er itself to you to be unmasked, it has no choice, it will
roll in ecstasy at your feet.� [98]
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�All that he does seems to him, it is true, extraordinarily new, but also,
because of the incredible spate of new things, extraordinarily amateurish, indeed
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scarcely tolerable, incapable of becoming history, breaking short the chain of the
generations, cutting o� for the �rst time at its most profound source the music of
the world, which before him could at least be divined. Sometimes in his arrogance
he has more anxiety for the world than for himself.� [98]
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Chapter 18

Annotated meta-bibliography

TBD
[97] Impossibility results in complexity theory.
[113] Massive reference for �nite �elds, though the focus is not computational.
[137]
[145]
[53]
[202]
[40]
[177]
[81]
[16] An excellent reference book covering for the �rst time more recent material, including

the PCP theorem.
[65] A book providing a conceptual and personal perspective on complexity, also covering

for the �rst time more recent material. Somewhat narrower in terms of topics compared to
[16].

[89] An enticing masterpiece, still a great reference. Stay away from the watered-down
�revisions.�

[138] Still a masterwork after 30+ years, conveying passion and originality, dated as it is
in terms of material. Seferis' poem is worth quoting in full:

I wish nothing else but to speak simply
please grant me this privilege
because we have burdened our song with so much music
that it is slowly sinking
and our art has become so ornate
that the makeup has corroded her face
and it is time to say our few simple words
because tomorrow our soul sails away

[Logicomix]: Another very enjoyable read. Wittgenstein was hilarious, but then again he
always is. But if you like me were expecting an Armageddon or a Ragnarok unleashed by
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Godel's incompleteness, you are going to be disappointed. There are only c scenes with him,
and while one does show him on the board scribbling actual lines from him masterwork,
the meaning and �repower of his discovery is nowhere to be found in the book, which ends
instead with yet another...

[Stoner], by John Williams: Highly recommended, especially if you wonder about the
meaning of life, especially academic life, or even marital life.

[The �rst world war, the second world war], by John Keegan. Masterful accounts of key
events that shaped the geography of science production.
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Chapter 19

Cryptography

crypto in NC0 (with Barrington?)

19.1 Natural proofs

obfuscation TMs
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