Fourier conjectures, correlation bounds, and Majority*

Emanuele Viola†

November 24, 2020

Abstract

Recently several conjectures were made regarding the Fourier spectrum of low-degree polynomials. We show that these conjectures imply new correlation bounds for functions related to Majority. Then we prove several new results on correlation bounds which aim to, but don’t, resolve the conjectures. In particular, we prove several new results on Majority which are of independent interest and complement Smolensky’s classic result.

The recent “polarizing random walks” paradigm [CHHL18, CHLT19, CHH+20, CGL+20] constructs new pseudorandom generators against classes of functions with “bounded Fourier tails.” For a function \(f : \{0, 1\}^n \rightarrow \{-1, 1\}\) define

\[
L_k(f) := \sum_{S \subseteq \{1, 2, \ldots, n\} : |S| = k} \left| \hat{f}(S) \right|,
\]

\[
M_k(f) := \sum_{S \subseteq \{1, 2, \ldots, n\} : |S| = k} \hat{f}(S),
\]

where \(\hat{f}(S) := \mathbb{E}_x f(x) \chi_S(x)\) for \(\chi_S(x) := (-1)^{\sum_{i \in S} x_i}\) is the Fourier transform of \(f\) [O’D14]. These papers construct pseudorandom generators for functions with small \(L_k\) or \(M_k\) for several settings of parameters.

In an effort to use this framework to improve the state of pseudorandom generators against low-degree polynomials over \(\mathbb{F}_2 = \{0, 1\}\) [BV10a, Lov09, Vio09b, FSUV13], several conjectures have been put forth about polynomials. Let \(p\) be a degree-\(d\) polynomial over \(\mathbb{F}_2\) in \(n\) variables. For \(f := (-1)^p\) it has been conjectured (see [CHHL18, CHLT19, CGL+20]):

\[
L_k(f) \leq 2^{O(dk)} \quad \forall k. \tag{1}
\]

\[
L_2(f) \leq O(d^2), \tag{2}
\]

\[
M_k(f) \leq 2^{o(dk) + O(k \log \log n)} \quad \forall k \leq O(\log n). \tag{3}
\]

Conjecture (1) would not imply new pseudorandom generators, but would come close to matching the state-of-the-art using this framework – something which was eventually

*This paper includes the results in [Vio19]
†Supported by NSF CCF award 1813930.
achieved in [CGL+20]. But conjectures (2) and (3) would imply new generators, improving
on long-standing open problems. One interesting feature of this approach is that, unlike the
influential approach by Nisan [Nis91], it is not based on correlation bounds. In particular,
Conjecture (2) is not known to imply such bounds. Still, correlation bounds where shown
to be sufficient for this approach in [CHH+20].

We show that in fact correlation bounds are also necessary. That is, we show that this
approach requires proving new correlation bounds for polynomials. This is new information
about Conjecture (2). Conjecture (3) was shown in [CGL+20] to imply new pseudorandom
generators with good dependence on the error, and the latter are known to imply new
correlation bounds for a function in NP [Vio09b]. We give a direct proof of this implication
which yields a function in P (and other parameter improvements). In fact, we show that even
weaker versions of the conjectures, such as $M_2 \leq o(\sqrt{n})$ for polynomials of degree $\log_2 n$,
already imply new correlation bounds.

Correlation bounds. We say that a function $f : \{0,1\}^n \to \{-1,1\}$ has δ-advantage (or
$(1-\delta)$-error) (probabilistic) degree d if there is a distribution P on polynomials $p : \{0,1\}^n \to \{0,1\}$ over \mathbb{F}_2 of degree d such that for every input x we have $P[(-1)^p(x) = f(x)] \geq \delta$. By Yao’s min-max argument [Yao77], a function f has δ-advantage degree d iff for every
distribution D on $\{0,1\}^n$ it has δ-advantage degree d under D, meaning there exists a
polynomial p over \mathbb{F}_2 of degree d such that $P[(-1)^p(D) = f(D)] \geq \delta$. If f has range $\{0,1\}$
instead of $\{-1,1\}$, as will be the case for majority, we use the same notation except $(-1)^p(x)$
is replaced simply by $P(x)$.

For two functions f and g from $\{0,1\}^n$ to $\{-1,1\}$ we define their correlation under a
distribution D by $\mathbb{E}[(-1)^f(D)(-1)^g(D)]$, which we note equals $2(\mathbb{P}[f(D) = g(D)] - 1/2)$ and
so it is (twice) the distance of $1/2$ from the advantage.

Since the classical works by Razborov and Smolensky [Raz87, Smo87] the best-available explicit probabilistic-degree lower bound for degree $d \geq \log_2 n$ gives error at best

$$1/2 - \Omega(d/\sqrt{n})$$

which holds for the Majority function on n bits. In particular, it is consistent with our
knowledge that every explicit function has $(1/2+1/\sqrt{n})$-advantage degree $\log_2 n$ (while non-
constructively there exist functions which do not even have advantage exponentially close to
$1/2$ for polynomial degree). For recent progress on less explicit functions see [Vio20].

Proving correlation bounds is a fundamental open problem whose solution stands in the
way of progress on a striking variety of fronts, including: circuit lower bounds, multiparty
communication complexity, and matrix rigidity. For more on this long-standing challenge and
a discussion of the just-mentioned implications, we refer the reader to [Vio09a, Vio17, Vio20].

The conjectures imply new correlation bounds. We show that bounds on M_k imply
new probabilistic-degree lower bounds for an explicit function h_k. We now define h_k and state our results.
Let $g_k : \{0,1\}^n \to \mathbb{Z}$ and $h_k : \{0,1\}^n \to \{-1,1\}$ be defined as

$$
g_k(x) := \sum_{S : |S| = k} \chi_S(x),$$

$$
h_k(x) := \text{Sign}(g_k(x)),
$$

where $\text{Sign}(i) = 1$ if $i > 0$ and -1 otherwise (the value on $i = 0$ is arbitrary).

Theorem 1. Let F be a distribution on functions from $\{0,1\}^n$ to $\{-1,1\}$ such that $\mathbb{P}[F(x) = h_k(x)] \geq 1/2 + \epsilon$ for every x. Then there is an outcome f of F such that $M_k(f) \geq 2\epsilon \cdot e^{-k} \sqrt{n}$.

To illustrate the theorem, consider first $k = 2$, in which case the conclusion becomes $M_2(f) \geq \Omega(\epsilon n)$. This means that showing even just $M_2(p) \leq o(\sqrt{n})$ for every degree-d polynomial requires showing that h_2 does not have $(1/2 + \Omega(1/\sqrt{n}))$-advantage degree d. This would improve the tradeoff (4) mentioned above when $d \geq \log_2 n$. Conjecture (2) implies the stronger bound $M_2(p) \leq O(d^2)$ for every degree-d polynomial p. This would mean that h_2 does not even have $(1/2 + \Omega(1/\sqrt{n}))$-advantage degree d for a constant c, a quadratic improvement on the tradeoff (4). Consider now the case of larger k. Assuming that h_k has $(1/2 + \epsilon)$-advantage degree d, and assuming Conjecture (3) and using the bound $\binom{n}{k} \geq (n/k)^k$ we obtain

$$
2\epsilon \cdot e^{-k} \left(\frac{n}{k} \right)^{k/2} \leq 2\epsilon \cdot e^{-k} \sqrt{\binom{n}{k}} \leq 2^{o(dk) + O(k \log \log n)}.
$$

This implies $\epsilon \leq 2^{k(o(d) + O(\log \log n) - 0.5 \log_2 (n/k))}$. For $k = \log_2 n$ this yields new correlation bounds. Indeed, let $d := \log_2 n$. Then because $o(d)$, $\log \log n$, and $\log(k)$ are all $o(\log n)$ we obtain

$$
\epsilon \leq 2^{-\Omega(k \log n)} = 2^{-\Omega(\log^2 n)}
$$

which improves on the tradeoff (4).

Proof. Note that for any function f, by linearity of expectation, we have

$$
M_k(f) = \mathbb{E}_xf(x)g_k(x).
$$

Fix any x and let $\mathbb{P}[F(x) = h_k(x)]$ be equal to $1/2 + \epsilon_x \geq 1/2 + \epsilon$. We can write

$$
\mathbb{E}_F[F(x)g_k(x)] = (1/2 + \epsilon_x) \cdot \text{Sign}(g_k(x)) \cdot g_k(x) + (1/2 - \epsilon_x) \cdot (-\text{Sign}(g_k(x))) \cdot g_k(x),
$$

holding even if $g_k(x) = 0$. Note that $\text{Sign}(g_k(x)) \cdot g_k(x) = |g_k(x)|$. Hence

$$
\mathbb{E}_F[F(x)g_k(x)] = (1/2 + \epsilon_x)|g_k(x)| + (1/2 - \epsilon_x)(-|g_k(x)|) = 2\epsilon_x|g_k(x)| \geq 2\epsilon |g_k(x)|.
$$

This gives $\mathbb{E}_{x,F}F(x)g_k(x) \geq \mathbb{E}_x 2\epsilon |g_k(x)|$. In particular, there exists an outcome f such that

$$
\mathbb{E}_x f(x)g(x) \geq 2\epsilon \mathbb{E}_x |g_k(x)|.
$$
There remains to bound \(E_x|g_k(x)| \). We make use of hypercontractivity from the analysis of Boolean functions. Because \(g_k \) is a polynomial of degree \(k \), by Theorem 9.22 in [O’D14] we have

\[
E_x|g_k(x)| \geq e^{-k} \sqrt{E_x|g_k(x)|^2}.
\]

Now observe that

\[
E_x|g_k(x)|^2 = E_x \sum_{S,T:|S|=|T|=k} \chi_S(x)\chi_T(x) = E_x \sum_{S,T:|S|=|T|=k} \chi_{S\oplus T}(x) = \binom{n}{k},
\]

where \(\oplus \) is symmetric difference. The last equality holds because the terms where \(S \neq T \) have expectation zero, and the others have expectation one. The result follows.

A natural question is whether Theorem 1 holds even for functions that correlate with \(h_k \) under the uniform distribution. We show that it does not.

Theorem 2. Let \(n \) be a power of 2. For any integer \(s \) between 0 and \(\sqrt{n}/2 \) there is a function \(f: \{0,1\}^n \to \{-1,1\} \) such that \(\mathbb{P}[f(x) = h_2(x)] \geq 1/2 + \Omega(s/\sqrt{n}) \) but \(M_2(f) \leq O(s^2) \).

To get a sense of the parameters let \(\mathbb{P}[f(x) = h_2(x)] = 1/2 + \epsilon \). Then \(M_2(f) \) is only \(O(\epsilon^2 n) \) as opposed to \(\Omega(\epsilon n) \) in Theorem 1. In particular, if \(s = O(1) \) and \(\epsilon = \Theta(1/\sqrt{n}) \) we get \(M_2(f) = O(1) \) as opposed to \(\Omega(\sqrt{n}) \) in Theorem 1.

We have shown that understanding the probabilistic degree of the functions \(h_k \) is also important for the feasibility of recent approaches to pseudorandom generators against polynomials. We obtain new bounds on the probabilistic degree of the functions \(h_k \) which however fall short of resolving whether the correlation bounds in the conclusion of Theorem 1 hold or not. We begin with studying \(h_1 \) which is essentially the majority function \(\text{Maj} \). The results are of independent interest, and a natural step to tackle \(h_k \) for larger \(k \). Indeed, below we use techniques developed for \(\text{Maj} \) to give new results on \(h_2 \).

We point out that the probabilistic degree tradeoff of Majority is not known. Given the tremendous interest in this function, this may come as a surprise. One might be tempted to think that Smolensky’s tradeoff (4) is tight. We can show that it is indeed tight under the uniform distribution.

For concreteness, we define \(\text{Maj} : \{0,1\}^n \to \{-1,1\} \) as \(\text{Maj}(x) = 1 \) iff the Hamming weight of \(x \) is \(\geq n/2 \). Note that \(h_1 = 1 - 2\text{Maj} = (-1)^{\text{Maj}} \).

Theorem 3. Majority has \((1/2 + \Omega(d/\sqrt{n}))\)-advantage degree \(d \) under the uniform distribution.

Recall this means that there are degree-\(d \) polynomials \(p \) over \(\mathbb{F}_2 \) such that \(\mathbb{P}_x[p(x) = \text{Maj}(x)] \geq 1/2 + \Omega(d/\sqrt{n}) \), where \(x \) is uniform in \(\{0,1\}^n \). Such a result was only known for \(d = O(1) \) or \(d = \Omega(\sqrt{n}) \), see [Vio09a].

However, there are harder distributions. We beat Smolensky’s bound for degree one. While such polynomials are simple, in light of Theorem 3 this result already requires a non-uniform distribution.

Theorem 4. Majority does not have \((1/2 + c/n)\)-advantage degree one, for some constant \(c \). This bound is tight up to the value of \(c \).
We now turn to constructions of probabilistic polynomials for majority. This problem is closely related to the so-called coin problem, defined next.

Definition 5. We say that a distribution F on boolean functions solves the δ-coin problem with advantage α if the following is true. Suppose the support of F consists of functions on t bits. Let X_1, X_2, \ldots, X_t be i.i.d. boolean random variables with $\mathbb{P}[X_i = 1] = \delta$. Then:

1. $\mathbb{P}[F(X_1, X_2, \ldots, X_t) = 1] \geq \alpha$; and
2. $\mathbb{P}[F(1 - X_1, 1 - X_2, \ldots, 1 - X_t) = 0] \geq \alpha$.

Note that $1 - X_i$ comes up 1 with probability $1 - \delta$.

The study of the coin problem for low-degree polynomials goes back to [SV10] (see also the thesis [Vio06]) and has been the subject of several recent works including [LSS+19, GII+19, Sri20]. This problem has also been studied in a variety of other models; the terminology “coin problem” was coined in [BV10b].

However, these works consider large advantage $\alpha = 1/2 + \Omega(1)$. By contrast, we are interested in the setting where α is close to $1/2$. We give nearly tight bounds in this setting, showing that with degree d the best we can do is to boost the bias by d.

Theorem 6. There is a distribution on polynomials of degree $O(d\sqrt{\log(1/(de))})$ that $(1/2 + d/n)$-solves the $(1/2 + \epsilon)$-coin problem. Moreover, this is tight up to the factor $O(\sqrt{\log(1/(de))})$.

This theorem immediately gives a result for majority. Indeed, computing Majority on n bits for odd n can be randomly reduced to solving the $(1/2 + 1/n)$-coin problem, simply by selecting uniform bits from the input. Hence, Theorem 6 shows that Majority has $(1/2 + d/n)$-advantage degree $\leq O(d\sqrt{\log n})$.

We improve the advantage by a factor d for large d.

Theorem 7. There is a constant c such that for all $d \geq cn^{1/3}$ Majority on n bits, for odd n, has $(1/2 + d^2/n)$-advantage degree $\leq O(d\sqrt{\log n})$.

To determine the probabilistic-degree tradeoff of Majority is a very interesting question whose answer is also likely to shed more light on the Fourier conjectures.

Finally, we can also use Theorem 6 to obtain a new construction for h_2. One can reduce computing h_2 to computing a majority on $\binom{n}{2}$ bits, and then apply Theorem 6 to obtain advantage $1/2 + \Omega(d/n^2)$. With a more careful argument we can improve the advantage to $1/2 + \Omega(d/n^{3/2})$.

Theorem 8. For infinitely many n, h_2 has $(1/2 + d/n^{3/2}\log n)$-advantage degree $O(d\sqrt{\log n})$.

This result is not strong enough to disprove Conjecture (2). For that we require advantage $1/2 + \omega(d^2/n)$.

The rest of the paper is organized as follows. We begin with some preliminaries in Section 1. The proof of Theorem 3 is in Section 2. The proof of Theorem 4 is in Section 3. In Section 4 we prove Theorem 6 on the coin problem, and then we use it to deduce the result about h_2, proving Theorem 8. Section 5 is devoted to the proof of Theorem 7. Finally, the proof of Theorem 2 is in Section 6.
1 Preliminaries

In this section we collect several results which are used in later proofs.

The following lemma shows that the majority of several i.i.d. Bernoulli random variables increases their bias, even in the regime where the bias is very small to start with.

Lemma 9. There exists $c > 0$ such that the following holds:

Let X_1, \ldots, X_t be i.i.d. boolean random variables with $\mathbb{P}[X_i = 1] \geq 1/2 + \alpha$, where $\sqrt{t} \alpha < c$ and t is odd. Then $\mathbb{P}[\text{Maj}(X_1, \ldots, X_t) = 1] \geq 1/2 + \Omega(\sqrt{t})$.

We are not aware of a source from which this result can be easily extracted, so we provide a proof.

Proof. Assume that $\mathbb{P}[X_i = 1] = 1/2 + \alpha$ without loss of generality. We prove $\mathbb{P}[\text{Maj}(X_1, \ldots, X_t) = 1] - \mathbb{P}[\text{Maj}(X_1, \ldots, X_t) = 0] \geq \Omega(\sqrt{t})$. The former difference can be written as

$$\sum_{i=1/2}^{t/2} \binom{t}{t/2 + i} \left((1/2 + \alpha)^{t/2+i}(1/2 - \alpha)^{t/2-i} - (1/2 - \alpha)^{t/2+i}(1/2 + \alpha)^{t/2-i} \right),$$

where the sum is for $i = 1/2, 1 + 1/2, 2 + 1/2, \ldots, t/2$.

Collecting a 2^t factor and writing z for 2^t this equals

$$2^{-t} \sum_{i=1/2}^{t/2} \binom{t}{t/2 + i} \left((1 + z)^{t/2+i}(1 - z)^{t/2-i} - (1 - z)^{t/2+i}(1 + z)^{t/2-i} \right).$$

Further collecting $(1 - z)^{t/2}(1 + z)^{t/2} = (1 - z^2)^{t/2}$ we rewrite it as

$$2^{-t}(1 - z^2)^{t/2} \sum_{i=1/2}^{t/2} \binom{t}{t/2 + i} \left(\left(\frac{1 + z}{1 - z} \right)^i - \left(\frac{1 - z}{1 + z} \right)^i \right).$$

Note that $\left(\frac{1 + z}{1 - z} \right) > 1$ and so $\left(\frac{1 + z}{1 - z} \right)^i - \left(\frac{1 - z}{1 + z} \right)^i$ is positive and increasing with i. Hence for any s we can bound below the expression by

$$2^{-t}(1 - z^2)^{t/2} \sum_{i=s}^{t/2} \binom{t}{t/2 + i} \left(\left(\frac{1 + z}{1 - z} \right)^s - \left(\frac{1 - z}{1 + z} \right)^s \right).$$

Moreover, let us write

$$\left(\frac{1 + z}{1 - z} \right)^s - \left(\frac{1 - z}{1 + z} \right)^s = (1 + x)^s - (1 - y)^s$$

where $x = 2z/(1 - z)$ and $y = 2z/(1 + z)$. We bound below the right-hand side by

$$1 + xs - e^{-ys} \geq 1 + xs - (1 - ys + (ys)^2) = s(x + y) - y^2 s^2.$$
We pick $s = \sqrt{t}/100 + 1/2$. The above expression is $\Omega(\sqrt{t}\alpha)$ as long as $\sqrt{t}\alpha = \Theta(st)$ is sufficiently small. Moreover, we have

$$2^{-t}(1 - z^2)^{t/2} \sum_{i=s}^{t/2} \binom{t/2}{i} \geq \Omega(1).$$

This holds because $(1 - z^2)^{t/2} \geq \Omega(1)$ and the sum of binomial coefficients is also $\Omega(2^{-t})$ using Stirling’s approximation to the binomial coefficient.

We use the following characterization of symmetric polynomials which is Theorem 2.4 in [BGL06] and follows from Lucas’ theorem.

Lemma 10. Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be a symmetric function that only depends on the input Hamming weight modulo 2^l. Then f is computable by a symmetric \mathbb{F}_2 polynomial of degree $< 2^l$. Conversely, any function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ computable by a symmetric \mathbb{F}_2 polynomial of degree $< 2^l$ only depends on the input Hamming weight modulo 2^l.

Then we need constructions of probabilistic polynomials for symmetric functions, obtained in [AW15]. The bounds in the earlier paper [Sri13] would also suffice for the main points in this paper. See also [STV19] for a recent characterization.

Lemma 11. [AW15] Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be symmetric. Then f has $(1 - \epsilon)$-advantage degree $O(\sqrt{n \log(1/\epsilon)})$, for any ϵ.

2 Proof of Theorem 3

The main proof is for odd n. If n is even we can use the polynomial $p'(x_0, x_1, \ldots, x_{n-1}) := p(x_0, x_1, \ldots, x_{n-2})(1 - x_{n-1})$ where p is the polynomial with the highest correlation γ with majority on input length $n - 1$. The correlation of p' is $> \gamma/2$.

We now proceed with the main proof. We can assume without loss of generality that d is a power of 2 and $\leq 0.1 \sqrt{n}$. The polynomial witnessing the correlation will be symmetric. For a symmetric function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ write $f_w : \{0, 1, \ldots, n\} \rightarrow \{0, 1\}$ for $f(x) = f_w(|x|)$ where $|x|$ is the Hamming weight of x. The correlation between a symmetric polynomial p and $(-1)^{\text{Maj}}$ can be written as

$$2^{-n} \sum_{i=0}^{n} \binom{n}{i} (-1)^{p_w(i)} (-1)^{\text{Maj}_w(i)}.$$

To construct p we use Lemma 10 for $\ell = \log_2(2d)$. That shows that for any $f_w : \{0, 1, \ldots, n\} \rightarrow \{0, 1\}$ that depends only on the input modulo 2^ℓ there is a symmetric polynomial $p : \{0, 1\}^n \rightarrow \{0, 1\}$ of degree 2^ℓ such that $p_w = f_w$.

The definition of f_w and hence p is as follows. Define Block i to be the $2d$ integers $2di + 0, 2di + 1, \ldots, 2di + 2d - 1$. Let i^* be the smallest i such that Block i contains an integer larger than $n/2$. Let t be the number of integers less than $n/2$ in Block i^*. (If $n + 1$ is a power of 2 we have $t = 0$, and below there is no residual chunk.) Define f_w to be 1 on
the smallest t inputs, 0 on the next t, 0 on the next $d - t$, and finally 1 on the next $d - t$.

Here’s an example for $n = 17$, $d = 2$, $t = 1$, $i^* = 2$; the last row shows the division in blocks:

<table>
<thead>
<tr>
<th>weight</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-1)^{Maj_w}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>$(-1)^{p_w}$</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Note that p_w is by construction anti-symmetric in the sense, different from above, that: $p_w(i) = 1 - p_w(n - i)$. The same is true for Maj_w. Therefore $g(i) := (-1)^{p_w(i)}(-1)^{Maj_w(i)}$ is symmetric, that is $g(i) = g(n - i)$. Hence we only need to consider the bigger half of the Hamming weights. Majority is always 1, and so we can rewrite the correlation as

$$2^{-n} \cdot 2 \cdot \sum_{i=0}^{(n-1)/2} \binom{n}{(n+1)/2 + i} (-1)^{p_w((n+1)/2+i)}.$$

Enumerate the above binomial coefficients starting from the biggest one for $i = 0$. The term $(-1)^{p_w((n+1)/2+i)}$ will be +1 on the first $t + (d - t) = d$, then −1 on the next d, then again +1 on the next d, and so on. We group the coefficients in chunks of length 2; in each chunk the term is +1 for the first half and −1 for the second half. The number of coefficients is $(n + 1)/2$. Hence we have $\lceil (n + 1)/4d \rceil$ chunks, plus a residual truncated chunk of length $\ell < 2d$.

Hence we can write the correlation as follows.

$$2^{-n} \cdot 2 \sum_{i=0}^{\lfloor \sqrt{n}/d \rfloor - 1} \sum_{j=0}^{d-1} \left(\binom{n}{(n+1)/2+2di+j} - \binom{n}{(n+1)/2+2di+j+d} \right) + 2^{-n} \cdot 2 \sum_{i=0}^{\ell-1} \binom{n}{n-i} (-1)^{p_w((n+1)/2+i)}.$$

By, say, a Chernoff bound the absolute value of the latter summand $+2^{-n} \cdots$ is at most $2^{-\Omega(n)}$, using that $\ell < 2d = O(\sqrt{n})$. Now consider the first summand. Because the binomials are decreasing in size, each difference is positive. Hence we obtain a lower bound if we reduce the range of i. We reduce it to $\lfloor \sqrt{n}/d \rfloor$. So the correlation is at least

$$2^{-n} \cdot 2 \sum_{i=0}^{\lfloor \sqrt{n}/d \rfloor} \sum_{j=0}^{d-1} \left(\binom{n}{(n+1)/2+2di+j} - \binom{n}{(n+1)/2+2di+j+d} \right) - 2^{\Omega(n)}.$$

The next lemma bounds below the difference of two such binomial coefficients.

Lemma 12. For $s \leq 4\sqrt{n}$ and $d \leq 0.1\sqrt{n}$ we have: $2^{-n} \left(\binom{n}{n/(2s)} - \binom{n}{n/(2s+d)} \right) \geq \Omega(sd/n^{3/2})$.

We apply the lemma with $s = 1/2 + 2d + j$ which note is $\leq 1/2 + 2\sqrt{n} + 0.1\sqrt{n} \leq 3\sqrt{n}$. The correlation is at least

$$\sum_{i=0}^{\lfloor \sqrt{n}/d \rfloor} \sum_{j=0}^{d-1} \Omega((1/2 + 2d + j)d/n^{3/2}) - 2^{\Omega(n)} \geq \sum_{k=0}^{\Omega(\sqrt{n})} \Omega(kd/n^{3/2}) - 2^{\Omega(n)} \geq \Omega(d/\sqrt{n}).$$

To justify the first inequality we use $1/2 + 2d + j \geq di + j$ and then do the change of variable $k = di + j$. For the second we use that the sum of all k up to $\Omega(\sqrt{n})$ is $\Omega(n)$. This concludes the proof except for the lemma.
Proof of lemma We have
\[
\binom{n}{n/2 + s} - \binom{n}{n/2 + s + d} = \frac{n!}{(n/2 + s)!(n/2 - s)!} - \frac{n!}{(n/2 + s + d)!(n/2 - s - d)!} = \frac{n!}{(n/2 + s)!(n/2 - s)!} \left[1 - \frac{(n/2 - s)(n/2 - s - 1) \cdots (n/2 - s - d + 1)}{(n/2 + s + d)(n/2 + s + d - 1) \cdots (n/2 + s + 1)} \right].
\]
The ratio inside the square bracket is at most
\[
\frac{(n/2 - s)^d}{(n/2)^d} = (1 - 2s/n)^d \leq e^{-2sd/n} \leq 1 - sd/n,
\]
where the last inequality holds because $2sd/n \leq 1$.

The binomial coefficient outside of the square bracket is
\[
\binom{n}{n/2 + s} \geq \frac{2^{nh(1/2+s/n)}}{\sqrt{8n(1/2+s/n)(1/2-sn)}} \geq \Omega \left(\frac{2^n(1-O(s^2/n^2))}{\sqrt{n}} \right) \geq \Omega \left(\frac{2^n}{\sqrt{n}} \right).
\]

Here h is the binary entropy function, and the first inequality can be found as Lemma 17.5.1 in [CT06]. The second and third inequalities follow from the approximation $h(1/2 + x) \geq 1 - 4x^2$, valid for every x, and $s = O(\sqrt{n})$.

The lemma follows by combining the two bounds.

3 Proof of Theorem 4

First let us discuss tightness. To show tightness for odd n we simply output a uniformly selected bit. For even n this works for all inputs except those of Hamming weight $= n/2$. To fix this, we modify the distribution on polynomials to equal 1 with probability $1/n$. On input of weight $= n/2$ we get the right value with probability $1/n + (1 - 1/n)(1/2) \geq 1/2 + \Omega(1/n)$. On inputs of Hamming weight $\neq n/2$ we also get the right value with probability $(1 - 1/n)(1/2 + 1/n) \geq 1/2 + \Omega(1/n)$.

We now move to negative results. First we note that we can reduce the case of even n to that of odd n: simply append a bit whose value is that of majority on balanced inputs. This does not change the value of majority, and has negligible effect on the advantage. Hence it suffices to prove a negative result for even n, and we do so in the rest of this section.

We select as hard distribution the distribution D which is uniform on inputs of Hamming weight $n/2 + 1$ and $n/2 - 1$. Our goal is to show that for every fixed degree-one polynomial p we have $\Pr[p(D) = \text{Maj}(D)] \leq 1/2 + O(1/n)$. Using generating functions we obtain a proof which is nearly calculation-free, requiring only elementary bounds on binomials. Let $m = n/2$. Let k be the number of variables in the degree-one polynomial. Let
\[
b(n,m,k) = \sum_{i=0}^{k} (-1)^i \binom{m}{i} \binom{n-m}{k-i}.
\]
Note that $b(n, m, k) / \binom{n}{k}$ is the probability p that a uniform set of size k has odd intersection with a fixed set of size m, minus the probability that it has even intersection. This difference equals $1 - 2p$ and so the quantity to bound is

$$\alpha(n, n/2 - 1, k) := \left| \frac{1}{\binom{n}{k}} \left(b(n, n/2 - 1, k) - b(n, n/2 + 1, k) \right) \right|.$$

First we use generating functions to obtain a closed form for $b(n, m, k)$. Recall the generating functions (see e.g. [GKP94] for background on this technique)

$$(1 + z)^n = \sum_{i \geq 0} \binom{n}{i} z^i,$$

$$(1 - z)^n = \sum_{i \geq 0} \binom{n}{i} (-1)^i z^i.$$

We have

$$(1 - z)^m (1 + z)^{n-m} = \sum_{i \geq 0, j \geq 0} \binom{m}{i} \binom{n-m}{j} (-1)^i z^{i+j} = \sum_{k \geq 0} b(n, m, k) z^k.$$

If $m = n/2 - t$ the left-hand side can be written as

$$(1 - z)^{n/2-t} (1 + z)^{n/2-t} (1 + z)^{2t} = (1 - z)^{n/2-t} (1 + z)^{2t} = \sum_{i \geq 0} (-1)^i \binom{n/2-t}{i} z^{2i} (1 + z)^{2t}.$$

Similarly, if $m = n/2 + t$ the it can be written as

$$(1 - z)^{n/2-t} (1 + z)^{n/2-t} (1 - z)^{2t} = \sum_{i \geq 0} (-1)^i \binom{n/2-t}{i} z^{2i} (1 - z)^{2t}.$$

Specializing to $t = 1$ we obtain

$$\sum_{k \geq 0} (b(n, n/2 - 1, k) - b(n, n/2 + 1, k)) z^k$$

$$= \sum_{i \geq 0} (-1)^i \binom{n/2-1}{i} z^{2i} (1 + z)^2 - (1 - z)^2$$

$$= \sum_{i \geq 0} (-1)^i \binom{n/2-1}{i} z^{2i} \cdot 4z$$

$$= 4 \sum_{i \geq 0} (-1)^i \binom{n/2-1}{i} z^{2i+1}.$$
Equating coefficients of z^k yields
\[b(n, n/2 - 1, k) - b(n, n/2 + 1, k) = 4(-1)^{(k-1)/2} \left(\frac{n/2 - 1}{(k - 1)/2} \right) \]
if k is odd, otherwise the left-hand side is zero.

Hence we get
\[\alpha = \frac{4 \left(\frac{n/2 - 1}{(k - 1)/2} \right)}{\binom{n}{k}} \]
if k is odd, and $\alpha = 0$ if k is even.

There remains to bound the right-hand side. First, we can assume that $k \leq n/2$ because replacing k with $n - k$ does not change the value of α. If $k = 0, 1$ we readily have $\alpha = O(1/n)$, using that n is even. Otherwise we can use the bounds
\[(n/k)^k \leq \binom{n}{k} \leq (en/k)^k \]
to again show $\alpha = O(1/n)$. We have
\[\alpha \leq 4 \left(\frac{n}{(k - 1)} \right)^{(k-1)/2} \left(\frac{k}{n} \right)^k = 4 \sqrt{\frac{k}{n}} \left(\sqrt{\frac{1}{k-1}} \cdot \frac{k}{\sqrt{n}} \right)^k . \]

We can conclude by noticing that if $k \leq 100 \log_2 n$ then this is at most $\text{poly log } n/n^{1.5} = O(1/n)$, using $k \geq 2$; while if $k \geq 100 \log_2 n$ using that $k \leq n/2$ and $k - 1 \geq 0.99 k$ we have
\[\alpha \leq O(1) \cdot \left(\frac{\sqrt{k}}{\sqrt{0.99n}} \right)^k \leq O(1)(\sqrt{0.5/0.99})^k \leq O(1)(3/4)^k \leq 1/n . \]

4 The coin problem, and the probabilistic degree of h_2

In this section we prove Theorems 6 and 8.

4.1 Proof of Theorem 6

To solve the coin problem, we simply compute Majority on d^2 bits, for odd d. By Lemma 9, this solves the coin problem with advantage $1/2 + \Omega(d \epsilon)$. By Lemma 11 Maj on d^2 bits has $(1 - \gamma)$-advantage degree $O(d \sqrt{\log(1/\gamma)})$. Setting $\gamma := d \epsilon / c$ for a large enough constant c yields the result. (Note that by increasing d by a constant factor we can remove the $\Omega(1)$ in the expression for the advantage, and also have that d is odd, without changing the expression for the degree bound.)

To prove that this result is tight up to the $\sqrt{\log(1/d \epsilon)}$ factor, reason as follows. Suppose that there is a distribution on degree-d polynomials that solves the $(1/2 + \epsilon)$-coin problem with advantage $1/2 + \alpha$. If we sample $O(1/\alpha)^2$ times independently these polynomials, and
compute the majority, a Chernoff bound shows that we obtain advantage 0.99. By Lemma 11 the majority computation can be done with error $1/100$ by a probabilistic polynomial of degree $O(1/\alpha)$. Composing this with the degree-d polynomial we obtain a probabilistic polynomial of degree $O(d/\alpha)$ which solves the $(1/2 + \epsilon)$-coin problem with advantage 0.98. By averaging we can fix the polynomial and still maintain advantage 0.96. Now we can appeal to a result proved in [LSS+19] which shows that any such polynomial has degree $\Omega(1/\epsilon)$. Hence, $d/\alpha \geq \Omega(1/\epsilon)$. In other words, $\alpha \leq O(d\epsilon)$, as desired.

4.2 Proof of Theorem 8

We again use our solution to the coin problem. However, we carefully set n to make the bias as large as possible. Note that on inputs x with $n/2 + t$ zeroes and $n/2 - t$ ones we have

$$g_2(x) = 2t^2 - n/2.$$

Let $m = \binom{n}{2}$. For $x \in \{0,1\}^n$ let $y \in \{-1,1\}^m$ be all the parities on 2-bits, that is for S a subset of size 2 of $[n]$ we have $y_S = \chi_S(x) = (-1)^{\sum x_i \in S x_i}$. Further, let z be the 0–1 version of y, that is $z_S = (y_S + 1)/2$. Note that computing $h_2(x)$ is the same as $\text{Maj}(z)$. Moreover, the Hamming weight of z is $(g_2(x) + m)/2$. (Because if the weight of z is w then $g_2(x) = w - (m - w) = 2w - m$.)

By ensuring that g_2 is not close to 0 we ensure that the weight of z is not close to $m/2$. This will make the problem easier.

Let n be such that the distance between $n/4$ and any square is at least $\Omega(\sqrt{n})$. This can be accomplished by setting $n/4 = u^2 + u$ for an integer u. This guarantees that the distance between $n/4$ and u^2 is at least u, and also the distance between $n/4$ and the next square $(u + 1)^2 = u^2 + 2u + 1$ is at least u. Because $n = \Theta(u^2)$, this distance is at least $\Omega(\sqrt{n})$.

And so also $|g_2(x)| \geq \Omega(\sqrt{n})$ for every x. Hence for every x the Hamming weight $(g_2(x) + m)/2$ of z is always bounded away by $\Omega(\sqrt{n})$ from $m/2$.

Now, for any $x \in \{0,1\}^n$ consider picking a uniform bit z_I from the associated z. Note that computing one such bit can be done with constant degree. We have:

1. If $h_2(x) = 1$ then $\Pr[z_I = 1] \geq 1/2 + \Omega(n/m) \geq 1/2 + \Omega(1/n^{3/2})$;
2. If $h_2(x) = -1$ then $\Pr[z_I = 0] \geq 1/2 + \Omega(1/n^{3/2})$.

Hence, it suffices to solve the $(1/2 + \Omega(1/n^{3/2}))$-coin problem. By Theorem 6 this can be done with degree $O(d\sqrt{\log n})$ and advantage $1/2 + \Omega(d/n^{3/2})$, proving the result.

5 Proof of Theorem 7

We take $s = d^2$ uniform samples from the input, where d is odd. If the (relative) weight is $> 1/2 + \beta d/n$ we output YES, if $< 1/2 - \beta d/n$ NO, and otherwise we give the right answer via “brute-force” using Theorem 10. Brute-force gives the right answer on inputs of weight $\in [1/2 - d/n, 1/2 + d/n]$. Here β is a small enough constant to be set later.

While the high-level approach is similar to the constructions in [AW15, OSS19], our setting is different. Those works consider the setting of small error, while we work with error close to $1/2$, and this makes the proof different.
Formally, for an interval $I \subseteq \mathbb{R}$ denote by f_I the boolean function which outputs 1 if the input weight is in I. The f_I are symmetric, so by Lemma 11 they have probabilistic polynomials of degree $O(\sqrt{n \log n})$ with error $1/n^2$. The error is so small that it can be ignored, and we will do so in the rest of the proof.

Also, by Lemma 10 there exists a (symmetric) polynomial b of degree $O(d)$ which computes Maj on inputs of weight in $[n/2 - d, n/2 + d]$.

Our final polynomial is then

$$
\Pr[s(1/2-\beta d/n), s(1/2+\beta d/n)](Y) \cdot b(x) + \Pr[s(1/2+\beta d/n), s](Y),
$$

where Y is a uniform sample of s bits of x.

The analysis is as follows. Let $B(n, p)$ be the sum of n i.i.d. boolean r.v. coming up 1 with probability p.

If the input has weight $\in (1/2, 1/2 + d/n]$: error occurs only if the weight of the samples is $< 1/2 - \beta d/n$. The probability of this is at most $\Pr[B(d^2, 1/2) < 1/2 - \beta d/n]$ which can be written as

$$
\Pr[B(d^2, 1/2) < 1/2] - \Pr[B(d^2, 1/2) \in [1/2 - \beta d/n, 1/2)] = 1/2 - \sum_{i=1/2}^{\beta d^3/n} (d^2 / 2 - i)^{2-d^2}.
$$

Using the hypothesis $d \geq cn^{1/3}$, the sum has $\Omega(\beta d^3/n)$ terms. Each summand is $\Omega(1/d)$ as long as $\beta d^3/n \leq \alpha d$ for a suitable α, for which it is sufficient that $d^3/n \leq \alpha d$, which is satisfied by hypothesis. Hence the error is $\leq 1/2 - \Omega(\beta d^3/n) \cdot (1/d) = 1/2 - \Omega(d^2/n)$ in this case.

If the input has weight $> 1/2 + d/n$: error occurs only if the weight of the samples is $\leq 1/2 + \beta d/n$. The probability of error is $\leq \Pr[B(d^2, 1/2 + d/n) \leq 1/2 + \beta d/n]$.

Recall that

$$
\Pr[B(d^2, 1/2 + d/n) > 1/2] \geq 1/2 + \Omega(d^2/n)
$$

by Lemma 9, valid as long as $d \cdot d/n \leq \alpha$, which is satisfied by hypothesis. On the other hand we have

$$
\Pr[B(d^2, 1/2 + d/n) \in [1/2, 1/2 + \beta d/n]]
\leq O(2^{d^2/d}) \cdot (1/4 - d^2/n^2)^{d^2/2} \sum_i \left(\frac{1/2 + d/n}{1/2 - d/n}\right)^i
\leq O(1/d) \cdot \sum_i (1 + O(d/n))^i
\leq O(1/d) \cdot \beta d^3/n \cdot (1 + O(d/n))^{\beta d^3/n}
\leq O(\beta d^2/n) \cdot e^{O(\beta d^3/n^2)}
= O(\beta d^2/n).
$$
Hence, by making β small enough, we have
\[
\mathbb{P}[B(d^2, 1/2 + d/n) \geq 1/2 + \beta d/n] \geq 1/2 + \Omega(d^2/n),
\]
as desired.

The cases where the input has weight $< 1/2$ are symmetric, and this concludes the proof.

6 Proof of Theorem 2

We essentially define f to have correlation zero with h_2 on every Hamming weight, except for s Hamming weights where the value of g_2 is as small as possible. Let $M := \{n/2 + \sqrt{n}/2, n/2 + \sqrt{n}/2 - 1, \ldots, n/2 + \sqrt{n}/2 - s + 1\}$ and let Z_i be the inputs with i zeroes. For $x \in Z_i$ and $i \in M$ let $f(x) = h(x) = -1$. For $x \in Z_0$ let, say, $f(x) = 1$ and for $x \in Z_n$ let $f(x) = -1$. For any other Z_i, divide the inputs in Z_i in two equals parts, which is possible by Lucas’ theorem because n is a power of 2. Let f be 1 on one part and -1 on the other.

Consider $\mathbb{E}_x[f(x)h_2(x)]$. We have $\mathbb{E}_x[f(x)h_2(x)|x \in Z_0 \cup Z_n] = 0$, and $\mathbb{E}_x[f(x)h_2(x)|x \in Z_i] = 0$ if $i \not\in M$ and $i \neq 0$ and $i \neq n$, by definition. Otherwise the expectation is 1. Hence $\mathbb{E}_x[f(x)h(x)]$ is the probability that $x \in Z_i$ for some $i \in M$. Assuming $s \leq \sqrt{n}/2$ this probability is $\geq \Omega(s) \cdot \mathbb{P}[x \in Z_{n/2 + \sqrt{n}/2}]$. The latter probability is $\Omega(1/\sqrt{n})$ using the standard bound $(n/2 + \sqrt{n}/2)^n = \Theta(2^n/\sqrt{n})$ which can be verified using Stirling’s approximation. Hence $\mathbb{E}_x[f(x)h_2(x)] \geq \Omega(s/\sqrt{n})$, and so $\mathbb{P}[f(x) = h_2(x)] \geq 1/2 + \Omega(s/\sqrt{n})$.

Now consider $\mathbb{E}_x[f(x)g_2(x)]$. Again, this is zero unless the number of zeroes of x lies in M. Note that $g_2(x) = 2t^2 - n/2$ on inputs in $Z_{n/2+t}$. The maximum value of $|g_2(x)|$ for inputs with weights in M is for $t = \sqrt{n}/2 - s + 1$ which yields value $|2(\sqrt{n}/2 - s + 1)^2 - n/2| = |2(-s + 1)^2 + (-s + 1)\sqrt{n}| \leq O(s^3 + s\sqrt{n})$. For $s \leq \sqrt{n}/2$ the latter is $O(s\sqrt{n})$. The chance that the number of zeroes of x lies in M is $\Theta(s/\sqrt{n})$ as noted before. Hence we get $M_2(f) \leq O(s\sqrt{n} \cdot s/\sqrt{n}) \leq O(s^2)$.

Acknowledgment. I am grateful to Chin Ho Lee for pointing out the work [CGL+20] to me, and to an anonymous reviewer for suggesting the use of hypercontractivity to bound $\mathbb{E}_x[g_k(x)]$ in the proof of Theorem 1 (alternatively one can reason along the lines of the proof of Theorem 4).

References

2019.

