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Abstract

We propose to study market efficiency from a computational viewpoint. Borrowing from
theoretical computer science, we define a market to be efficient with respect to resources S
(e.g., time, memory) if no strategy using resources S can make a profit. As a first step,
we consider memory-m strategies whose action at time t depends only on the m previous
observations at times t −m, . . . , t − 1. We introduce and study a simple model of market
evolution, where strategies impact the market by their decision to buy or sell. We show that
the effect of optimal strategies using memory m can lead to “market conditions” that were
not present initially, such as (1) market bubbles and (2) the possibility for a strategy using
memory m′ > m to make a bigger profit than was initially possible. We suggest ours as a
framework to rationalize the technological arms race of quantitative trading firms.

Keywords: Market Efficiency; Computational Complexity.

1 Introduction

Market efficiency—the idea that prices fully reflect all available information—is one of the
most important concepts in economics. A large number of articles have been devoted to its
formulation, statistical implementation, and refutation since Samuelson (1965) and Fama
(1965a,b; 1970) first argued that price changes must be unforecastable if they fully incor-
porate the information and expectations of all market participants. The more efficient the
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market, the more random the sequence of price changes generated by it, and the most efficient
market of all is one in which price changes are completely random and unpredictable.

According to the proponents of market efficiency, this randomness is a direct result of
many active market participants attempting to profit from their information. Driven by
profit opportunities, legions of investors pounce on even the smallest informational advan-
tages at their disposal, and in doing so, they incorporate their information into market prices
and quickly eliminate the profit opportunities that first motivated their trades. If this oc-
curs instantaneously, as in an idealized world of frictionless markets and costless trading,
then prices fully reflect all available information. Therefore, no profits can be garnered
from information-based trading because such profits must have already been captured. In
mathematical terms, prices follow martingales.

This stands in sharp contrast to finance practitioners who attempt to forecast future
prices based on past ones. And perhaps surprisingly, some of them do appear to make
consistent profits that cannot be attributed to chance alone.

1.1 Our Contribution

In this paper we suggest that a reinterpretation of market efficiency in computational terms
might be the key to reconciling this theory with the possibility of making profits based on past
prices alone. We believe that it does not make sense to talk about market efficiency without
taking into account that market participants have bounded resources. In other words, instead
of saying that a market is “efficient” we should say, borrowing from theoretical computer
science, that a market is efficient with respect to resources S, e.g., time, memory, etc., if no
strategy using resources S can generate a substantial profit. Similarly, we cannot say that
investors act optimally given all the available information, but rather they act optimally
within their resources. This allows for markets to be efficient for some investors, but not
for others; for example, a computationally powerful hedge fund may extract profits from a
market which looks very efficient from the point of view of a day-trader who has less resources
at his disposal—arguably the status quo.

As is well-known, suggestions in this same spirit have already been made in the literature.
For example, Simon (1955) argued that agents are not rational but boundedly rational, which
can be interpreted in modern terms as bounded in computational resources. Many other
works in this direction are discussed in §1.2. The main difference between this line of research
and ours is: while it appears that most previous works use sophisticated continuous-time
models, in particular explicitly addressing the market-making mechanism (which sets the
price given agents’ actions), our model is simple, discrete, and abstracts from the market-
making mechanism.

Our model and results: We consider an economy where there exists only one good. The
daily returns (price-differences) of this good follow a pattern, e.g.:

(−1, 1,−1, 1,−1, 1, 2,−1, 1,−1, 1,−1, 1, 2,−1, 1,−1, 1,−1, 1, 2, . . .),

which we write as [−1, 1,−1, 1,−1, 1, 2], see Figure 1 on Page 4. A good whose returns follow
a pattern may arise from a variety of causes ranging from biological to political; think of
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seasonal cycles for commodities, or the 4-year presidential cycle. Though one can consider
more complicated dependencies, working with these finite patterns keeps the mathematics
simple and is sufficient for the points made below.

Now we consider a new agent A who is allowed to trade the good daily, with no transaction
costs. Intuitively, agent A can profit whenever she can predict the sign of the next return.
However, the key point is that A is computationally bounded: her prediction can only depend
on the previous m returns. Continuing the above example and setting memory m = 2, we
see that upon seeing returns (−1, 1), A’s best strategy is to guess that the next return will
be negative: this will be correct for 2 out of the 3 occurrences of (−1, 1) (in each occurrence
of the pattern).

We now consider a model of market evolution where A’s strategy impacts the market by
pushing the return closer to 0 whenever it correctly forecasts the sign of the return — thereby
exploiting the existing possibility of profit — or pushing it away from 0 when the forecast is
incorrect — thereby creating a new possibility for profit. In other words, the evolved market
is the difference between the original market and the strategy guess (we think of the guess
in {−1, 0, 1}). For example, Figure 2 shows how the most profitable strategy using memory
m = 2 evolves the market given by the pattern [−2, 2,−2, 2,−2, 2, 3] (similar to the previous
example).

The main question addressed in this work is: how do markets evolved by memory-
bounded strategies look like?

We show that the effect of optimal strategies using memory m can lead to market condi-
tions that were not present initially, such as (1) market bubbles and (2) the possibility that a
strategy using memory m′ > m can make larger profits than previously possible. By market
bubbles (1), we mean that some returns will grow much higher, an effect already anticipated
in Figure 2. For the point (2), we consider a new agent B that has memory m′ that is larger
than that of A. We let B trade on the market evolved by A. We show that, for some initial
market, B may make more profit than what would have been possible if A had not evolved
the market, or even if another agent with large memory m′ had evolved the market instead
of A. Thus, it is precisely the presence of low-memory agents (A) that allows high-memory
agents (B) to make large profits.

Regarding the framework for (2), we stress that we only consider agents trading sequen-
tially, not simultaneously: after A evolves the market, it gets incorporated into a new market,
on which B may trade. While a natural direction is extending our model to simultaneous
agents, we argue that this sequentiality is not unrealistic. Nowadays, some popular strategies
A are updated only once a month. Within any such month, a higher-frequency strategy B
can indeed trade in the market evolved by A without A making any adjustment.

1.2 More related work

Since Samuelson’s (1965) and Fama’s (1965a,b; 1970) landmark papers, many others ex-
tended their original framework, yielding a “neoclassical” version of the efficient market
hypothesis where price changes, properly weighted by aggregate marginal utilities, are un-
forecastable (see, for example, LeRoy, 1973; Rubinstein, 1976; and Lucas, 1978). In markets
where, according to Lucas (1978), all investors have “rational expectations,” prices do fully
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Figure 1: The market corresponding to a market pattern.

1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

Figure 2: Optimal memory-2 strategy evolves the market and creates a bubble.
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Figure 3: Optimal memory-3 strategy evolves the market without creating a bubble.
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reflect all available information and marginal-utility-weighted prices follow martingales. Mar-
ket efficiency has been extended in many other directions, but the general thrust is the same:
individual investors form expectations rationally, markets aggregate information efficiently,
and equilibrium prices incorporate all available information instantaneously. See Lo (1997,
2007) for a more detailed summary of the market efficiency literature in economics and
finance.

There are two branches of the market efficiency literature that are particularly relevant
for our paper: the asymmetric information literature, and the literature on asset bubbles and
crashes. In Fischer Black’s (1986) presidential address to the American Finance Association,
he argued that financial market prices were subject to “noise”, which could temporarily create
inefficiencies that would ultimately be eliminated through intelligent investors competing
against each other to generate profitable trades. Since then, many authors have modeled
financial markets by hypothesizing two types of traders—informed and uninformed—where
informed traders have private information regarding the true economic value of a security,
and uninformed traders have no information at all, but merely trade for liquidity needs (see,
for example, Grossman and Stiglitz, 1980; Diamond and Verrecchia, 1981; Admati, 1985;
Kyle, 1985; and Campbell and Kyle, 1993). In this context, Grossman and Stiglitz (1980)
argue that market efficiency is impossible because if markets were truly efficient, there would
be no incentive for investors to gather private information and trade. DeLong et al. (1990,
1991) provide a more detailed analysis in which certain types of uninformed traders can
destabilize market prices for periods of time even in the presence of informed traders. More
recently, studies by Luo (1995, 1998, 2001, 2003), Hirshleifer and Luo (2001), and Kogan
et al. (2006) have focused on the long-term viability of noise traders when competing for
survival against informed traders; while noise traders are exploited by informed traders as
expected, certain conditions do allow them to persist, at least in limited numbers.

The second relevant offshoot of the market efficiency literature involves “rational bub-
bles”, in which financial asset prices can become arbitrarily large even when all agents are
acting rationally (see, for example, Blanchard and Watson, 1982; Allen, Morris, and Postle-
waite, 1993; Santos and Woodford, 1997; and Abreu and Brunnermeier, 2003). LeRoy (2004)
provides a comprehensive review of this literature.

Finally, in the computer science literature, market efficiency has yet to be addressed
explicitly. However, a number of studies have touched upon this concept tangentially. For
example, computational learning methods have been applied to the pricing and trading of
financial securities by Hutchinson, Lo, and Poggio (1994). Evolutionary approaches in the
dynamical systems and complexity literature have also been applied to financial markets by
Farmer and Lo (1999), Farmer (2002), Farmer and Joshi (2002), Lo (2004), Farmer, Patelli,
and Zovko (2005), Lo (2005), and Bouchaud, Farmer, and Lillo (2008). And simulations
of market dynamics using autonomous agents have coalesced into a distinct literature on
“agent-based models” of financial markets by Arthur et al. (1994, 1997), Arthur, LeBaron,
and Palmer (1999), Farmer (2001), and LeBaron (2001a–c, 2002, 2006). While none of the
papers in these distinct strands of the computational markets literature focus on a new
definition of market efficiency, nevertheless, they all touch upon different characteristics of
this aspect of financial markets.
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Organization. We provide our computational definition of market efficiency in Section 2.
We describe the dynamics of market evolution in Section 3, and conclude in Section 4.

2 A computational definition of market efficiency

We model a market by an infinite sequence of random variables X1, X2, . . . where Xt ∈ R is
the return at time t. For the points made in this work, it is enough to consider markets that
are obtained by the repetition of a pattern. This has the benefit of keeping the mathematics
to a minimum level of sophistication.

Definition 1 (Market). A market pattern of length p is a sequence of p random variables
[X1, . . . , Xp], where each Xi ∈ R.

A market pattern [X1, . . . , Xp] gives rise to a market obtained by the independent repe-
tition of the patterns: X1

1 , . . . , X
1
p , X2

1 , . . . , X
2
p , X3

1 , . . . , X
3
p , . . ., where each block of random

variables X i
1, . . . , X

i
p are distributed like X1, . . . , Xp and independent from Xj

1 , . . . , X
j
p for

j 6= i. Figure 1 shows an example for a market pattern in which the random variables are
constant.

We now define strategies. A memory-m strategy takes as input the previous m observa-
tions of market returns, and outputs 1 if it thinks that the next return will be positive. We
can think of this “1” as corresponding to a buy-and-sell order (which is profitable if the next
return is indeed positive). Similarly, a strategy output of −1 corresponds to a sell-and-buy
order, while 0 corresponds to no order.

Definition 2. A memory-m strategy is a map s : Rm → {−1, 0, 1}.
We now define the gain of a strategy over a market. At every market observation, the gain

of the strategy is the sign of the product of the strategy output and the market return: the
strategy gains a profit when it correctly predicts whether the next return will be positive or
negative, and loses a profit otherwise. Since we think of markets as defined by the repetition
of a pattern, it is enough to define the gain of the strategy over this pattern.

Definition 3 (Gain of a strategy). The gain of a memory-m strategy s : Rm → {−1, 0, 1}
over market pattern [X1, . . . , Xp] is:

p∑
i=1

EX1,...,Xp [sign (s(Xi−m, Xi−m+1, . . . , Xi−1) ·Xi)] ,

where for any k, the random variable (X1−k·p, . . . , Xp−k·p) is independent from all the others
and distributed like (X1, . . . , Xp).

A memory-m strategy s is optimal over a market pattern if no memory-m strategy has
a bigger gain than s over that market pattern.

The gain of an optimal memory-1 strategy over a certain market is a concept which is
intuitively related to the (first-order) autocorrelation of the market, i.e. the correlation be-
tween the return at time t and that at time t + 1 (for random t), a well-studied measure
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of market efficiency (cf. Lo 2005, figure 2). This analogy can be made exact up to a nor-
malization for markets that are given by balanced sequences of +1,−1. In this case higher
memory can be thought of an extension of autocorrelation. It may be interesting to apply
this measure to actual data.

Given a deterministic market pattern (which is just a sequence of numbers such as
[2,−1, 5, ...]), optimal strategies can be easily computed: it is easy to see that an opti-
mal strategy outputs +1 if and only if more than half the occurrences of x in the market
pattern are followed by a positive value.

We are now ready to give our definition of market efficiency.

Definition 4 (Market efficiency). A market pattern [X1, . . . , Xp] is efficient with respect to
memory-m strategies if no such strategy has strictly positive gain over [X1, . . . , Xp].

For example, let X1 be a {−1, 1} random variable that is −1 with probability 1/2. Then
the market pattern [X1] is efficient with respect to memory-m strategies for every m.

A standard “parity” argument gives the following hierarchy, which we prove for the sake
of completeness.

Claim 5. For every m, there is a market pattern that is efficient for memory-m strategies,
but is not efficient for memory-(m + 1) strategies.

Proof. Let X1, X2, . . . , Xm+1 be i.i.d. random variables with range {−1, 1} whose probability
of being 1 is 1/2. Consider the market pattern

[
X1, X2, . . . , Xm+1, Xm+2 :=

m+1∏
i=1

Xi

]

of length p = m + 2. By the definition of the pattern, the distribution of each variable is
independent from the previous m, and therefore any memory-m strategy has gain 0.

Consider the memory-(m + 1) strategy s(x1, x2, . . . , xm+1) :=
∏m+1

i=1 xi. Its gain over the
market pattern is

p∑
i=1

EX1,...,Xp [sign (Xi−m−1 ·Xi−m · · ·Xi−1 ·Xi)] = EX1,...,Xp [sign (X1 ·X2 · · ·Xm+1 ·Xm+2)] = 1.

3 Market evolution

In this section we describe the dynamics of our market model. We consider a simple model
of evolution where the strategies enter the market sequentially. After a strategy enters, its
“impact on the market” is recorded in the market and produces a new evolved market. The
way in which a strategy impacts the market is by subtracting the strategy output from the
market data.
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Figure 4: Random market pattern (on the left) evolved by an optimal memory 3 strategy
into a bubble after 16 iterations (on the right).

Definition 6 (Market evolution). We say that a memory-m strategy s : Rm → {−1, 0, 1}
evolves a market pattern [X1, X2, . . . , Xp] into the market pattern

[X1 − s(X1−m, . . . , X1−1), X2 − s(X2−m, . . . , X2−1), . . . , Xp − s(Xp−m, . . . , Xp−1)].

Figure 2 shows the evolution of a market pattern.
Definition 6 can be readily extended to multiple strategies acting simultaneously, just by

subtracting all the impacts of the strategies on the market, but for the points made in this
paper the above one is enough.

In the next two subsections we point out two consequences of the above definition.

3.1 Market bubbles

In this section we point out how low-memory strategies can give rise to market bubbles,
i.e. we show that an optimal low-memory strategy can evolve a market pattern into another
one which has values that are much bigger than those of the original market pattern (in
absolute value). Consider for example the market pattern [−2, 2,−2, 2,−2, 2, 3] in Figure
2. Note how an optimal memory-2 strategy will profit on most time instances but not all.
In particular, on input (−2, 2), the best output is −1, which agrees with the sign of the
market in 2 out of 3 occurrences of (−2, 2). This shrinks the returns towards 0 on most time
instances, but will make the last return in the pattern rise. The optimal memory-2 strategy
evolves the original market pattern into [−1, 1,−1, 1,−1, 1, 3]. The situation then repeats,
and an optimal memory-2 strategy evolves the latter pattern into [0, 0, 0, 0, 0, 0, 5]. This is
an example of how an optimal strategy creates market conditions which were not initially
present.

We point out that the market bubble does not form with memory 3; see Figure 3.
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We also point out that the formation of such bubbles is not an isolated phenomenon,
nor specific to memory 2: we have generated several random markets and plotted their
evolutions, and bubbles often arise with various memories. We report one such example in
Figure 4, where a random pattern of length 20 is evolved by optimal memory-3 strategies
into a bubble after 16 iterations. In fact, the framework proposed in this paper gives rise to
a “game” in the spirit of Conway’s Game of Life, showing how simple trading rules can lead
to apparently chaotic market dynamics. Perhaps the main difference between our game and
Conway’s is that in ours strategies perform optimally within their resources.

3.2 High-memory strategies feed off low-memory ones

The next claim shows a pattern where a high-memory strategy can make a bigger profit
after a low-memory strategy has acted and modified the market pattern. This profit is
bigger than the profit that is obtainable by a high-memory strategy without the low-memory
strategy acting beforehand, and even bigger than the profit obtainable after another high-
memory strategy acts beforehand. Thus it is precisely the presence of low-memory strategies
that creates opportunities for high-memory strategies which were not present initially. This
example provides explanation for the real-life status quo which sees a growing quantitative
sophistication among asset managers.

Informally, the proof of the claim exhibits a market with a certain “symmetry.” For
high-memory strategies, the best choice is to maintain the symmetry by profiting in multiple
points. But a low-memory strategy will be unable to do. Its optimal choice will be to “break
the symmetry,” creating new profit opportunities for high-memory strategies.

Claim 7. For every m < m′ there are a market pattern P = [X1, . . . , Xp], an optimal
memory-m strategy sm that evolves P into Pm, and an optimal memory-m′ strategy sm′ that
evolves P into Pm′ such that the gain of an optimal memory-m′ strategy over Pm is bigger
than either of the following:

• the gain of sm′ over P ,

• the gain of any memory-m strategy over Pm,

• the gain of any memory-m′ strategy over Pm′.

Proof. Consider the market pattern

[
X1, . . . , Xm−1, a ·Xm, b

m∏
i=1

Xi, Y2, . . . , Ym′−1, c · Ym′ ,

m∏
i=1

Xi

m′∏
i=2

Yi,

X1, . . . , Xm′−1, a
′ ·Xm′ , b

m′∏
i=1

Xi, Y2, . . . , Ym′−1, c · Ym′ ,−
m′∏
i=1

Xi

m′∏
i=2

Yi

]
,

where X1, . . . , Xm′ and Y2, . . . , Ym′ are independent {−1, 1} random variables (note some of
these variables appear multiple times in the pattern), and a = 10, a′ = 20, b = 30, c = 40.
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We now analyze the gains of various strategies. For this it is convenient to define the
latest input of a strategy s(x1, . . . , x`) as x`; this corresponds to the most recent observation
the strategy is taking into consideration.

The strategy sm: We note that there is an optimal strategy sm on P that outputs 0
unless its latest input has absolute valute a. This is because in all other instances the
random variable the strategy is trying to predict is independent from the previous m. Thus,
sm(x1, . . . , xm) equals 0 unless |xm| = a in which case it outputs the sign of

∏m
i=1 xi. The

gain of this strategy is 1. The strategy evolves the pattern into the same pattern except that
the first occurrence of b is replaced with b− 1:

Pm :=
[
X1, . . . , Xm−1, a ·Xm, (b− 1)

m∏
i=1

Xi, Y2, . . . , Ym′−1, c · Ym′ ,

m∏
i=1

Xi

m′∏
i=2

Yi,

X1, . . . , Xm′−1, a
′ ·Xm′ , b

m′∏
i=1

Xi, Y2, . . . , Ym′−1, c · Ym′ ,−
m′∏
i=1

Xi

m′∏
i=2

Yi

]
.

The strategy sm′: We note that there is an optimal memory-m′ strategy over P that
outputs 0 unless its latest input has absolute value a, a′, or c. Again, this is because in
all other instances the strategy is trying to predict a variable that is independent from the
previous m′. Moreover, when its latest input has absolute value c, we can also assume that
the strategy outputs 0. This is because the corresponding contribution is

E

[
sign

(
sm′(b ·

m∏
i=1

Xi, Y2, . . . , Ym′−1, c · Ym′) ·
m∏

i=1

Xi

m′∏
i=2

Yi

)]

+E

[
sign

(
sm′(b ·

m′∏
i=1

Xi, Y2, . . . , Ym′−1, c · Ym′) · −
m′∏
i=1

Xi

m′∏
i=2

Yi

)]
= 0.

Thus there is an optimal memory-m′ strategy with gain 2 that evolves the market pattern
into the pattern Pm′ that is like P with b replaced by b− 1 in both occurrences (as opposed
to Pm which has b replaced by b− 1 only in the first occurrence).

The optimal memory-m′ strategy on Pm′. Since Pm′ is like P with b replaced by b − 1,
the gain of the optimal memory-m′ strategy on Pm′ is 2.

The optimal memory-m strategy on Pm. Essentially the same argument for sm can be
applied again to argue that any memory-m strategy on Pm has gain 1 at most.

The optimal memory-m′ strategy on Pm. Finally, note that there is a memory-m′ strategy
whose gain is 4 on Pm. This is because the replacement of the first occurrence of b in P with
b− 1 allows a memory-m′ strategy to predict the sign of the market correctly when its latest
input has absolute value c.

We make few final comments regarding Claim 7. First, the same example can be obtained
for deterministic market patterns by considering the exponentially longer market pattern
where the random variables take all possible combinations. However the randomized example
is easier to describe. Also, although in Claim 7 we talk about a optimal strategy, in fact the
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particular strategies considered there are natural in that they are those that minimize the
number of {−1, 1} outputs (i.e., the amount of trading). We could have forced this to be
the case by adding in our definition of gain a negligible transaction cost, in which case the
claim would talk about the optimal strategy, but we preferred a simpler definition of gain.

4 Conclusion

In this work we have suggested to study market efficiency from a computational point of
view. We have put forth a specific memory-based framework which is simple and tractable,
yet capable of modeling market dynamics such as the formation of market bubbles and the
possibility for a high-memory strategy to “feed off” low-memory ones. Our results may
provide an analytical framework for studying the technological arms race that portfolio
managers have been engaged in since the advent of organized financial markets.

Our framework also gives rise to a few technical questions, such as how many evolutions
does it take a pattern to reach a certain other pattern, to what extent does this number of
evolutions depends on different levels of memory, and to what extent does it depend on the
simultaneous interaction among strategies using different memories.
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