
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 18, Scribe: Giorgos Zirdelis

In this lecture we study lower bounds on data structures. First, we define
the setting. We have n bits of data, stored in s bits of memory (the data
structure) and want to answer m queries about the data. Each query is
answered with d probes. There are two types of probes:

• bit-probe which return one bit from the memory, and

• cell-probe in which the memory is divided into cells of log n bits, and
each probe returns one cell.

The queries can be adaptive or non-adaptive. In the adaptive case, the
data structure probes locations which may depend on the answer to previous
probes. For bit-probes it means that we answer a query with depth-d decision
trees.

Finally, there are two types of data structure problems:

• The static case, in which we map the data to the memory arbitrarily
and afterwards the memory remains unchanged.

• The dynamic case, in which we have update queries that change the
memory and also run in bounded time.

In this lecture we focus on the non-adaptive, bit-probe, and static setting.
Some trivial extremes for this setting are the following. Any problem (i.e.,
collection of queries) admits data structures with the following parameters:

• s = m and d = 1, i.e. you write down all the answers, and

• s = n and d = n, i.e. you can always answer a query about the data if
you read the entire data.

Next, we review the best current lower bound, a bound proved in the
80’s by Siegel [Sie04] and rediscovered later. We state and prove the lower
bound in a different way. The lower bound is for the problem of k-wise
independence.
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Problem 1. The data is a seed of size n = k logm for a k-wise independent
distribution over {0, 1}m. A query i is defined to be the i-th bit of the sample.

The question is: if we allow a little more space than seed length, can we
compute such distributions fast?

Theorem 2. For the above problem with k = m1/3 it holds that

d ≥ Ω

(
lgm

lg(s/n)

)
.

It follows, that if s = O(n) then d is Ω(lgm). But if s = n1+Ω(1) then
nothing is known.

Proof. Let p = 1/m1/4d. We have the memory of s bits and we are going
to subsample it. Specifically, we will select a bit of s with probability p,
independently.

The intuition is that we will shrink the memory but still answer a lot
of queries, and derive a contradiction because of the seed length required to
sample k-wise independence.

For the “shrinking” part we have the following. We expect to keep p · s
memory bits. By a Chernoff bound, it follows that we keep O(p · s) bits
except with probability 2−Ω(p·s).

For the “answer a lot of queries” part, recall that each query probes d
bits from the memory. We keep one of the m queries if it so happens that
we keep all the d bits that it probed in the memory. For a fixed query, the
probability that we keep all its d probes is pd = 1/m1/4.

We claim that with probability at least 1/mO(1), we keep
√
m queries.

This follows by Markov’s inequality. We expect to not keep m−m3/4 queries
on average. We now apply Markov’s inequality to get that the probability
that we don’t keep at least m−

√
m queries is at most (m−m3/4)/(m−

√
m).

Thus, if 2−Ω(p·s) ≤ 1/mO(1), then there exists a fixed choice of memory
bits that we keep, to achieve both the “shrinking” part and the “answer a
lot of queries” part as above. This inequality is true because s ≥ n > m1/3

and so p · s ≥ m−1/4+1/3 = mΩ(1). But now we have O(p · s) bits of memory
while still answering as many as

√
m queries.

The minimum seed length to answer that many queries while maintaining
k-wise independence is k log

√
m = Ω(k lgm) = Ω(n). Therefore the memory
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has to be at least as big as the seed. This yields

O(ps) ≥ Ω(n)

from which the result follows. �

This lower bound holds even if the s memory bits are filled arbitrarily
(rather than having entropy at most n). It can also be extended to adaptive
cell probes.

We will now show a conceptually simple data structure which nearly
matches the lower bound. Pick a random bipartite graph with s nodes on the
left and m nodes on the right. Every node on the right side has degree d. We
answer each probe with an XOR of its neighbor bits. By the Vazirani XOR
lemma, it suffices to show that any subset S ⊆ [m] of at most k memory bits
has an XOR which is unbiased. Hence it suffices that every subset S ⊆ [m]
with |S| ≤ k has a unique neighbor. For that, in turn, it suffices that S

has a neighborhood of size greater than d|S|
2

(because if every element in the
neighborhood of S has two neighbors in S then S has a neighborhood of size
< d|S|/2). We pick the graph at random and show by standard calculations
that it has this property with non-zero probability.

Pr

[
∃S ⊆ [m], |S| ≤ k, s.t. |neighborhood(S)| ≤ d|S|

2

]
= Pr

[
∃S ⊆ [m], |S| ≤ k, and ∃T ⊆ [s], |T | ≤ d|S|

2
s.t. all neighbors of S land in T

]
≤

k∑
i=1

(
m

i

)
·
(

s

d · i/2

)
·
(
d · i
s

)d·i
≤

k∑
i=1

(e ·m
i

)i
·
(

e · s
d · i/2

)d·i/2
·
(
d · i
s

)d·i
=

k∑
i=1

(e ·m
i

)i
·
(
e · d · i/2

s

)d·i/2

=
k∑
i=1

e ·mi ·
(
e · d · i/2

s

)d/2
︸ ︷︷ ︸

C


i

.
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It suffices to have C ≤ 1/2, so that the probability is strictly less than 1,
because

∑k
i=1 1/2i = 1−2−k. We can match the lower bound in two settings:

• if s = mε for some constant ε, then d = O(1) suffices,

• s = O(k · logm) and d = O(lgm) suffices.

Remark 3. It is enough if the memory is (d ·k)-wise independent as opposed
to completely uniform, so one can have n = d · k · log s. An open question is
if you can improve the seed length to optimal.

As remarked earlier the lower bound does not give anything when s is
much larger than n. In particular it is not clear if it rules out d = 2. Next
we show a lower bound which applies to this case.

Problem 4. Take n bits to be a seed for 1/100-biased distribution over
{0, 1}m. The queries, like before, are the bits of that distribution. Recall
that n = O(lgm).

Theorem 5. You need s = Ω(m).

Proof. Every query is answered by looking at d = 2 bits. But t = Ω(m)
queries are answered by the same 2-bit function f of probes (because there
is a constant number of functions on 2-bits). There are two cases for f :

1. f is linear (or affine). Suppose for the sake of contradiction that t >
s. Then you have a linear dependence, because the space of linear
functions on s bits is s. This implies that if you XOR those bits,
you always get 0. This in turn contradicts the assumption that the
distributions has small bias.

2. f is AND (up to negating the input variables or the output). In this
case, we keep collecting queries as long as they probe at least one new
memory bit. If t > s when we stop we have a query left such that both
their probes query bits that have already been queried. This means
that there exist two queries q1 and q2 whose probes cover the probes
of a third query q3. This in turn implies that the queries are not close
to uniform. That is because there exist answers to q1 and q2 that fix
bits probed by them, and so also fix the bits probed by q3. But this
contradicts the small bias of the distribution.

�
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