
Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lectures 16-17, Scribe: Tanay Mehta

In these lectures we prove the corners theorem for pseudorandom groups,
following Austin [Aus16]. Our exposition has several non-major differences
with that in [Aus16], which may make it more computer-science friendly. The
instructor suspects a proof can also be obtained via certain local modifica-
tions and simplifications of Green’s exposition [Gre05b, Gre05a] of an earlier
proof for the abelian case. We focus on the case G = SL2(q) for simplicity,
but the proof immediately extends to other pseudorandom groups.

Theorem 1. Let G = SL2(q). Every subset A ⊆ G2 of density µ(A) ≥
1/ loga |G| contains a corner, i.e., a set of the form {(x, y), (xz, y), (x, zy) | z 6=
1}.

1.1 Proof Overview

For intuition, suppose A is a product set, i.e., A = B × C for B,C ⊆ G.
Let’s look at the quantity

Ex,y,z←G[A(x, y)A(xz, y)A(x, zy)]

where A(x, y) = 1 iff (x, y) ∈ A. Note that the random variable in the
expectation is equal to 1 exactly when x, y, z form a corner in A. We’ll show
that this quantity is greater than 1/|G|, which implies that A contains a
corner (where z 6= 1). Since we are taking A = B × C, we can rewrite the
above quantity as

Ex,y,z←G[B(x)C(y)B(xz)C(y)B(x)C(zy)]

= Ex,y,z←G[B(x)C(y)B(xz)C(zy)]

= Ex,y,z←G[B(x)C(y)B(z)C(x−1zy)]

where the last line follows by replacing z with x−1z in the uniform distri-
bution. If µ(A) ≥ δ, then µ(B) ≥ δ and µ(C) ≥ δ. Condition on x ∈ B,
y ∈ C, z ∈ B. Then the distribution x−1zy is a product of three independent
distributions, each uniform on a set of measure greater than δ. By pseudo-
randomness x−1zy is 1/|G|Ω(1) close to uniform in statistical distance. This
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implies that the above quantity equals

µ(A) · µ(C) · µ(B) ·
(
µ(C)± 1

|G|Ω(1)

)
≥ δ3

(
δ − 1

|G|Ω(1)

)
≥ δ4/2

> 1/|G|.

Given this, it is natural to try to write an arbitrary A as a combination
of product sets (with some error). We will make use of a more general result.

1.2 Weak Regularity Lemma

Let U be some universe (we will take U = G2). Let f : U → [−1, 1] be
a function (for us, f = 1A). Let D ⊆ {d : U → [−1, 1]} be some set of
functions, which can be thought of as “easy functions” or “distinguishers.”

Theorem 2.[Weak Regularity Lemma] For all ε > 0, there exists a function
g :=

∑
i≤s ci · di where di ∈ D, ci ∈ R and s = 1/ε2 such that for all d ∈ D

Ex←U [f(x) · d(x)] = Ex←U [g(x) · d(x)]± ε.

The lemma is called ‘weak’ because it came after Szemerédi’s regularity
lemma, which has a stronger distinguishing conclusion. However, the lemma
is also ‘strong’ in the sense that Szemerédi’s regularity lemma has s as a
tower of 1/ε whereas here we have s polynomial in 1/ε. The weak regularity
lemma is also simpler. There also exists a proof of Szemerédi’s theorem (on
arithmetic progressions), which uses weak regularity as opposed to the full
regularity lemma used initially.

Proof. We will construct the approximation g through an iterative process
producing functions g0, g1, . . . , g. We will show that ||f − gi||22 decreases by
≥ ε2 each iteration.

1. Start: Define g0 = 0 (which can be realized setting c0 = 0).

2. Iterate: If not done, there exists d ∈ D such that |E[(f − g) · d]| > ε.
Assume without loss of generality E[(f − g) · d] > ε.
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3. Update: g′ := g + λd where λ ∈ R shall be picked later.

Let us analyze the progress made by the algorithm.

||f − g′||22 = Ex[(f − g′)2(x)]

= Ex[(f − g − λd)2(x)]

= Ex[(f − g)2] + Ex[λ
2d2(x)]− 2Ex[(f − g) · λd(x)]

≤ ||f − g||22 + λ2 − 2λEx[(f − g)d(x)]

≤ ||f − g||22 + λ2 − 2λε

≤ ||f − g||22 − ε2

where the last line follows by taking λ = ε. Therefore, there can only be 1/ε2

iterations because ||f − g0||22 = ||f ||22 ≤ 1. �

1.3 Getting more for rectangles

Returning to the lower bound proof, we will use the weak regularity lemma to
approximate the indicator function for arbitrary A by rectangles. That is, we
take D to be the collection of indicator functions for all sets of the form S×T
for S, T ⊆ G. The weak regularity lemma gives us A as a linear combination
of rectangles. These rectangles may overlap. However, we ideally want A to
be a linear combination of non-overlapping rectangles.

Claim 3. Given a decomposition of A into rectangles from the weak regular-
ity lemma with s functions, there exists a decomposition with 2O(s) rectangles
which don’t overlap.

Proof. Exercise. �

In the above decomposition, note that it is natural to take the coefficients
of rectangles to be the density of points in A that are in the rectangle. This
gives rise to the following claim.

Claim 4. The weights of the rectangles in the above claim can be the average
of f in the rectangle, at the cost of doubling the distinguisher error.

Consequently, we have that f = g + h, where g is the sum of 2O(s) non-
overlapping rectangles S × T with coefficients Pr(x,y)∈S×T [f(x, y) = 1].
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Proof. Let g be a partition decomposition with arbitrary weights. Let g′ be
a partition decomposition with weights being the average of f . It is enough
to show that for all rectangle distinguishers d ∈ D

|E[(f − g′)d]| ≤ |E[(f − g)d]|.

By the triangle inequality, we have that

|E[(f − g′)d]| ≤ |E[(f − g)d]|+ |E[(g − g′)d]|.

To bound E[(g − g′)d]|, note that the error is maximized for a d that re-
spects the decomposition in non-overlapping rectangles, i.e., d is the union
of some non-overlapping rectangles from the decomposition. This can be
argues using that, unlike f , the value of g and g′ on a rectangle S × T
from the decomposition is fixed. But, for such d, g′ = f ! More formally,
E[(g − g′)d] = E[(g − f)d]. �

We need to get a little more from this decomposition. The conclusion of
the regularity lemma holds with respect to distinguishers that can be written
as U(x) ·V (y) where U and V map G→ {0, 1}. We need the same guarantee
for U and V with range [−1, 1]. This can be accomplished paying only a
constant factor in the error, as follows. Let U and V have range [−1, 1].
Write U = U+ − U− where U+ and U− have range [0, 1], and the same for
V . The error for distinguisher U · V is at most the sum of the errors for
distinguishers U+ · V+, U+ · V−, U− · V+, and U− · V−. So we can restrict
our attention to distinguishers U(x) · V (y) where U and V have range [0, 1].
In turn, a function U(x) with range [0, 1] can be written as an expectation
EaUa(x) for functions Ua with range {0, 1}, and the same for V . We conclude
by observing that

Ex,y[(f − g)(x, y)EaUa(x) · EbVb(y)] ≤ max
a,b

Ex,y[(f − g)(x, y)Ua(x) · Vb(y)].

1.4 Proof

Let us now finish the proof by showing a corner exists for sufficiently dense
sets A ⊆ G2. We’ll use three types of decompositions for f : G2 → {0, 1},
with respect to the following three types of distinguishers, where Ui and Vi
have range {0, 1}:

1. U1(x) · V1(y),
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2. U2(xy) · V2(y),

3. U3(x) · V3(xy).

The last two distinguishers can be visualized as parallelograms with a 45-
degree angle between two segments. The same extra properties we discussed
for rectangles hold for them too.

Recall that we want to show

Ex,y,g[f(x, y)f(xg, y)f(x, gy)] >
1

|G|
.

We’ll decompose the i-th occurrence of f via the i-th decomposition listed
above. We’ll write this decomposition as f = gi + hi. We do this in the
following order:

f(x, y) · f(xg, y) · f(x, gy)

= f(x, y)f(xg, y)g3(x, gy) + f(x, y)f(xg, y)h3(x, gy)

...

= g1g2g3 + h1g2g3 + fh2g3 + ffh3

We first show that E[g1g2g3] is big (i.e., inverse polylogarithmic in expec-
tation) in the next two claims. Then we show that the expectations of the
other terms are small.

Claim 5. For all g ∈ G, the values Ex,y[g1(x, y)g2(xg, y)g3(x, gy)] are the
same (over g) up to an error of 2O(s) · 1/|G|Ω(1).

Proof. We just need to get error 1/|G|Ω(1) for any product of three func-
tions for the three decomposition types. By the standard pseudorandomness
argument we saw in previous lectures,

Ex,y[c1U1(x)V1(y) · c2U2(xgy)V2(y) · c3U3(x)V3(xgy)]

= c1c2c3Ex,y[(U1 · U3)(x)(V1 · V2)(y)(U2 · V3)(xgy)]

= c1c2c3 · µ(U1 · U3)µ(V1 · V2)µ(U2 · V3)± 1

|G|Ω(1)
.

�
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Recall that we start with a set of density ≥ 1/ loga |G|.
Claim 6. Eg,x,y[g1g2g3] > Ω(1/ log4a |G|).

Proof. By the previous claim, we can fix g = 1G. We will relate the ex-
pectation over x, y to f by a trick using the Hölder inequality: For random
variables X1, X2, . . . , Xk,

E[X1 . . . Xk] ≤
k∏
i=1

E[Xci
i ]1/ci such that

∑
1/ci = 1.

To apply this inequality in our setting, write

E[f ] = E

[
(f · g1g2g3)1/4 ·

(
f

g1

)1/4

·
(
f

g2

)1/4

·
(
f

g3

)1/4
]
.

By the Hölder inequality, we get that

E[f ] ≤ E[f · g1g2g3]1/4E
[
f

g1

]1/4

E
[
f

g2

]1/4

E
[
f

g3

]1/4

.

Note that

Ex,y
f(x, y)

g1(x, y)
= Ex,y

f(x, y)

Ex′,y′∈Cell(x,y)[f(x′, y′)]

= Ex,y

Ex′,y′∈Cell(x,y)[f(x′, y′)]

Ex′,y′∈Cell(x,y)[f(x′, y′)]

= 1

where Cell(x, y) is the set in the partition that contains (x, y). Finally, by
non-negativity of f , we have that E[f ·g1g2g3]1/4 ≤ E[g1g2g3]. This concludes
the proof. �

We’ve shown that the g1g2g3 term is big. It remains to show the other
terms are small. Let ε be the error in the weak regularity lemma with respect
to distinguishers with range [−1, 1].

Claim 7. |E[ffh3]| ≤ ε1/4.
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Proof. Replace g with gy−1 in the uniform distribution to get

E4
x,y,g[f(x, y)f(xg, y)h3(x, gy)]

= E4
x,y,g[f(x, y)f(xgy−1, y)h3(x, g)]

= E4
x,y[f(x, y)Eg[f(xgy−1, y)h3(x, g)]]

≤ E2
x,y[f

2(x, y)]E2
x,yE2

g[f(xgy−1, y)h3(x, g)]

≤ E2
x,yE2

g[f(xgy−1, y)h3(x, g)]

= E2
x,y,g,g′ [f(xgy−1, y)h3(x, g)f(xg′y−1, y)h3(x, g′)],

where the first inequality is by Cauchy-Schwarz.
Now replace g → x−1g, g′ → x−1g and reason in the same way:

= E2
x,y,g,g′ [f(gy−1, y)h3(x, x−1g)f(g′y−1, y)h3(x, x−1g′)]

= E2
g,g′,y[f(gy−1, y) · f(g′y−1, y)Ex[h3(x, x−1g) · h3(x, x−1g′)]]

≤ Ex,x′,g,g′ [h3(x, x−1g)h3(x, x−1g′)h3(x′, x′−1g)h3(x′, x′−1g′)].

Replace g → xg to rewrite the expectation as

E[h3(x, g)h3(x, x−1g′)h3(x′, x′−1xg)h3(x′, x′−1g′)].

We want to view the last three terms as a distinguisher U(x) · V (xg).
First, note that h3 has range [−1, 1]. This is because h3(x, y) = f(x, y) −
Ex′,y′∈Cell(x,y)f(x′, y′) and f has range {0, 1}.

Fix x′, g′. The last term in the expectation becomes a constant c ∈ [−1, 1].
The second term only depends on x, and the third only on xg. Hence for
appropriate functions U and V with range [−1, 1] this expectation can be
rewritten as

E[h3(x, g)U(x)V (xg)],

which concludes the proof. �

There are similar proofs to show the remaining terms are small. For
fh2g3, we can perform simple manipulations and then reduce to the above
case. For h1g2g3, we have a slightly easier proof than above.
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1.4.1 Parameters

Suppose our set has density δ ≥ 1/ loga |G|. We apply the weak regularity
lemma for error ε = 1/ logc |G|. This yields the number of functions s =
2O(1/ε2) = 2O(log2c |G|). For say c = 1/3, we can bound Ex,y,g[g1g2g3] from
below by the same expectation with g fixed to 1, up to an error 1/|G|Ω(1).
Then, Ex,y,g=1[g1g2g3] ≥ E[f ]4 = 1/ log4a |G|. The expectation of terms with

h is less than 1/ logc/4 |G|. So the proof can be completed for all sufficiently
small a.
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