Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lectures 16-17, Scribe: Tanay Mehta

In these lectures we prove the corners theorem for pseudorandom groups,
following Austin [Ausl6]. Our exposition has several non-major differences
with that in [Aus16], which may make it more computer-science friendly. The
instructor suspects a proof can also be obtained via certain local modifica-
tions and simplifications of Green’s exposition [Gre05bl [Gre05a] of an earlier
proof for the abelian case. We focus on the case G = SLy(q) for simplicity,
but the proof immediately extends to other pseudorandom groups.

Theorem 1. Let G = SLy(q). Every subset A C G?* of density u(A) >
1/log” |G| contains a corner, i.e., a set of the form {(x,y), (xz,y), (z, zy) | z #

1},

1.1 Proof Overview

For intuition, suppose A is a product set, i.e., A = B x C for B,C C G.
Let’s look at the quantity

EoyzclA(z,y) A2z, y) Az, 29)]

where A(xz,y) = 1 iff (z,y) € A. Note that the random variable in the
expectation is equal to 1 exactly when z,y, z form a corner in A. We’ll show
that this quantity is greater than 1/|G|, which implies that A contains a
corner (where z # 1). Since we are taking A = B x C, we can rewrite the
above quantity as

Ewywc[ (z )C(y)B(fﬂz)C(y)B(ﬂﬁ)C(Z’y)]
zyz%G[B(x)C(y)B() (l’ &)

where the last line follows by replacing z with 27!z in the uniform distri-
bution. If u(A) > 4, then pu(B) > § and pu(C) > §. Condition on = € B,
y € C, z € B. Then the distribution 2~ 'zy is a product of three independent
distributions, each uniform on a set of measure greater than ¢. By pseudo-
randomness ' zy is 1/|G|*™" close to uniform in statistical distance. This
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implies that the above quantity equals

(A) - p(C) - u(B) - (MC) + \GI%)

1
3
=0 (5 - |G|Q(1)>

> §%/2
> 1/|G|.

Given this, it is natural to try to write an arbitrary A as a combination
of product sets (with some error). We will make use of a more general result.

1.2 Weak Regularity Lemma

Let U be some universe (we will take U = G?). Let f: U — [-1,1] be
a function (for us, f = 14). Let D C {d : U — [—1,1]} be some set of
functions, which can be thought of as “easy functions” or “distinguishers.”

Theorem 2.[Weak Regularity Lemma] For all € > 0, there exists a function
9= i< Ci-di where d; € D, ¢; € R and s = 1/¢* such that for all d € D

Eeculf(2) - d(@)] = Beculy(z) - d(2)] £ €

The lemma is called ‘weak’ because it came after Szemerédi’s regularity
lemma, which has a stronger distinguishing conclusion. However, the lemma
is also ‘strong’ in the sense that Szemerédi’s regularity lemma has s as a
tower of 1/e whereas here we have s polynomial in 1/e. The weak regularity
lemma is also simpler. There also exists a proof of Szemerédi’s theorem (on
arithmetic progressions), which uses weak regularity as opposed to the full
regularity lemma used initially.

Proof. We will construct the approximation g through an iterative process
producing functions go, g1, ...,9. We will show that ||f — ¢;||3 decreases by
> €2 each iteration.

1. Start: Define gy = 0 (which can be realized setting ¢y = 0).

2. Iterate: If not done, there exists d € D such that |E[(f — g) - d]| > e.
Assume without loss of generality E[(f — g) - d] > e.
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3. Update: ¢’ := g + Ad where A € R shall be picked later.

Let us analyze the progress made by the algorithm.

1f =43 =E[(f —9)(x)]
= E,[(f — g — Ad)*(x)]
= B [(f — 9)%] + Eo[Nd?(2)] — 2B, [(f — g) - Ad(x)]
<|If = gll5 + X = 2XE,[(f — g)d(x)]
<|If = gll3 + A% = 2Xe
<||If —gll3 — €

where the last line follows by taking A = €. Therefore, there can only be 1/¢?
iterations because ||f — gol|3 = || f|5 < 1. O

1.3 Getting more for rectangles

Returning to the lower bound proof, we will use the weak regularity lemma to
approximate the indicator function for arbitrary A by rectangles. That is, we
take D to be the collection of indicator functions for all sets of the form S x T
for S, T C GG. The weak regularity lemma gives us A as a linear combination
of rectangles. These rectangles may overlap. However, we ideally want A to
be a linear combination of non-overlapping rectangles.

Claim 3. Given a decomposition of A into rectangles from the weak regular-
ity lemma with s functions, there exists a decomposition with 2°¢*) rectangles
which don’t overlap.

Proof. Exercise. O

In the above decomposition, note that it is natural to take the coefficients
of rectangles to be the density of points in A that are in the rectangle. This
gives rise to the following claim.

Claim 4. The weights of the rectangles in the above claim can be the average
of f in the rectangle, at the cost of doubling the distinguisher error.

Consequently, we have that f = g + h, where ¢ is the sum of 2°¢) non-
overlapping rectangles S x T with coefficients Pr(, y)csxr[f(z,y) = 1].



Proof. Let g be a partition decomposition with arbitrary weights. Let ¢’ be
a partition decomposition with weights being the average of f. It is enough
to show that for all rectangle distinguishers d € D

[E[(f = ¢")d]| < [E[(f — g)d].
By the triangle inequality, we have that
E[(f = ¢)dl| < [E[(f — g)d]| + [E[(g — ¢')d]|-

To bound E[(g — ¢’)d]|, note that the error is maximized for a d that re-
spects the decomposition in non-overlapping rectangles, i.e., d is the union
of some non-overlapping rectangles from the decomposition. This can be
argues using that, unlike f, the value of g and ¢’ on a rectangle S x T
from the decomposition is fixed. But, for such d, ¢ = f! More formally,

E[(g — ¢')d] = E[(g — f)d]. O

We need to get a little more from this decomposition. The conclusion of
the regularity lemma holds with respect to distinguishers that can be written
as U(z)-V(y) where U and V map G — {0,1}. We need the same guarantee
for U and V' with range [—1,1]. This can be accomplished paying only a
constant factor in the error, as follows. Let U and V have range [—1,1].
Write U = U, — U_ where U, and U_ have range [0, 1], and the same for
V. The error for distinguisher U - V' is at most the sum of the errors for
distinguishers U, - V., Uy - V_, U_ - V., and U_ - V_. So we can restrict
our attention to distinguishers U(z) - V' (y) where U and V' have range [0, 1].
In turn, a function U(z) with range [0, 1] can be written as an expectation
E,U,(z) for functions U, with range {0, 1}, and the same for V. We conclude
by observing that

Eoyl(f — 9)(z,y)EoUq(z) - EyVi(y)] < H;%XEI,Z/[(]C — 9)(x, y)Us(x) - Vi(y)].

1.4 Proof

Let us now finish the proof by showing a corner exists for sufficiently dense
sets A C G?. We'll use three types of decompositions for f : G* — {0,1},
with respect to the following three types of distinguishers, where U; and V;
have range {0, 1}:

L Ui(z) - Vi(y),



2. Us(zy) - Val(y),
3. Us(x) - Va(zy).

The last two distinguishers can be visualized as parallelograms with a 45-
degree angle between two segments. The same extra properties we discussed
for rectangles hold for them too.

Recall that we want to show
1
]E%y,g[f(xu y)f(xg7 y)f(xugy)] > @

We’ll decompose the i-th occurrence of f via the i-th decomposition listed
above. We’ll write this decomposition as f = ¢g; + h;. We do this in the
following order:

fx,y)- flzg,y) - f(z,g9y)
= f(z,y)f(zg,y)93(z, 9y) + f(x,y) f(xg,y)hs(z, gy)

= 019293 + h19293 + fhogs + ffhs

We first show that E[g; g2g3] is big (i.e., inverse polylogarithmic in expec-
tation) in the next two claims. Then we show that the expectations of the
other terms are small.

Claim 5. For all g € G, the values E, ,[g1(z,y)92(zg,v)g5(x, gy)] are the
same (over g) up to an error of 29¢) . 1/|G|%W).

Proof. We just need to get error 1/|G|*™ for any product of three func-
tions for the three decomposition types. By the standard pseudorandomness
argument we saw in previous lectures,

Epy[ciUn(2)Vi(y) - c2Usz(zgy)Va(y) - csUs(z) Va(xgy)]
= 1023, [(Ur - Us) (z) (Vi - Va) (y) (Us - V3)(2gy)]

1
= c1cacz - (Ur - Ug) (Vi - Vo) u(Us - V3) |G|



Recall that we start with a set of density > 1/log” |G|.
Claim 6. E,, ,[g19295] > Q(1/log™ |G]).
Proof. By the previous claim, we can fix ¢ = 15. We will relate the ex-

pectation over x,y to f by a trick using the Holder inequality: For random
variables X1, Xo, ..., Xy,

k
EX;... X} < HE[Xfi]l/Ci such that Z 1/e; = 1.

i=1

To apply this inequality in our setting, write

1/4 1/4 1/4
(f - 919295)"* - (i) : (i) : (i> ] .
[ 92 g3

By the Holder inequality, we get that

1/4 1/4 1/4
E[f] <E[f - g19295)"*E F} E F} E F} .
g1 92 g3

E[f] =E

Note that
fz,y

; = Dy
g1 ("L‘; y) Ex’,y’ECell ,y

(2
Ex’,y’e Cell(z,y) [
(@)

)

i
(
i

LE, y/
_ 7y
B 2,y

x’y
Ex’,y’e Cell(z,y
=1

where Cell(x,y) is the set in the partition that contains (x,y). Finally, by
non-negativity of f, we have that E[f - g1g293]"/* < E[g1g293]. This concludes
the proof. ([l

We've shown that the g1g2g3 term is big. It remains to show the other
terms are small. Let € be the error in the weak regularity lemma with respect
to distinguishers with range [—1, 1].

Claim 7. |E[f fhs]| < €'/4.
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Proof. Replace g with gy~ in the uniform distribution to get

By, olf (z,9) f (29, y)hs(z, gy)]

=By, L (@) fxgy™ y)hs(z, 9)]

=B} [f (2, 9)Eq[f(zgy~ ", y)hs(x, 9)]]

<EZ, L2 (x, 9)|ES B f(zgy~", y)hs(z, 9)]

< Ei yEg[f (zgy~ " y)hs(z, g)]

= B2, 0@y )ha(z, 9) f(xg'y™, y)hs(z, )],

where the first inequality is by Cauchy-Schwarz.
Now replace ¢ — 27 1g, ¢ — 27 'g and reason in the same way:

=K, .0 [f(gy‘1 y)hs(z, I‘lg)f( "y y)hs(z, a7 g)]
= E_Zg Sy~ ) - Fg Y ) hs(z, a7 g) - ha(x, 27 )]
xa: 9,9’ [hg(l' x g)hg(ff r lg,)hfﬂ(x ‘/LJ ! )h3(l’/,£L‘/_lg/>].

Replace g — xg to rewrite the expectation as

E[hg(l’, g)hg(l', x_lg/)hi’)(‘xl? xl_lxg)h3(x,7 x,_lg,)]'

We want to view the last three terms as a distinguisher U(x) - V(zg).
First, note that hs has range [—1,1]. This is because hs(z,y) = f(z,y) —
Eu e cezy) f(@',y") and f has range {0,1}.

Fix 2/, ¢’. The last term in the expectation becomes a constant ¢ € [—1, 1].
The second term only depends on z, and the third only on xzg. Hence for
appropriate functions U and V' with range [—1, 1] this expectation can be
rewritten as

Elhs(z, g)U(x)V (zg)];
which concludes the proof. O

There are similar proofs to show the remaining terms are small. For
fhags, we can perform simple manipulations and then reduce to the above
case. For hig.g3, we have a slightly easier proof than above.



1.4.1 Parameters

Suppose our set has density 6 > 1/log” |G|. We apply the weak regularity
lemma for error € = 1/log®|G|. This yields the number of functions s =
20(1/¢) — 9000e™ |G For say ¢ = 1/3, we can bound K, 4[g1g29s] from
below by the same expectation with g fixed to 1, up to an error 1/|G|?M).
Then, E,, g—1[g19293] > E[f]* = 1/1log™|G|. The expectation of terms with
h is less than 1/1log”*|G|. So the proof can be completed for all sufficiently

small a.
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