Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Lecture 10, Guest lecture by Justin Thaler,
Scribe: Biswaroop Maiti

This is a guest lecture by Justin Thaler regarding lower bounds on approxi-
mate degree [BKT17, BT15, BT17]. Thanks to Justin for giving this lecture
and for his help with the write-up. We will sketch some details of the lower
bound on the approximate degree of AND o OR, SURJ and some intuition
about the techniques used. Recall the definition of SURJ from the previous
lecture as below:

Definition 1. The surjectivity function SURJ: ({-1, 1}1°gR)N — {-1,1},
takes input = (x1,...,2y) where each z; € {—1,1}!°¢® is interpreted as
an element of [R]. SURJ(z) has value —1 if and only if Vj € [R], Ji: z; = j.

Recall from the last lecture that ANDg o ORy: {—1,1}N — {11}
is the block-wise composition of the AND function on R bits and the OR
function on N bits. In general, we will denote the block-wise composition of
two functions f, and g, where f is defined on R bits and ¢ is defined on N
bits, by fr o gn. Here, the outputs of R copies of g are fed into f (with the
inputs to each copy of g being pairwise disjoint). The total number of inputs
to frogy is R+ N.

1.1 Lower Bound of d;/3(SURJ) via lower bound of d; ;5(AND-
OR)

Claim 2. dy;5(SURJ) = ©(n/4).

We will look at only the lower bound in the claim. We interpret the input
as a list of N numbers from [R] := {1,2,--- R}. As presented in [BKT17],
the proof for the lower bound proceeds in the following steps.

1. Show that to approximate SURJ, it is necessary to approximate the
block-composition ANDg o ORy on inputs of Hamming weight at most

N. ie., show that dy3(surj) > d5; (ANDg o ORy).

1/3
Step 1 was covered in the previous lecture, but we briefly recall a bit
of intuition for why the claim in this step is reasonable. The intuition
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comes from the fact that the converse of the claim is easy to establish,
i.e., it is easy to show that in order to approximate SURJ, it is sufficient
to approximate ANDg o ORy on inputs of Hamming weight exactly N.

This is because SURJ can be expressed as an ANDg (over all range
items r € [R]) of the ORy (over all inputs i € [N]) of “Is input x; equal
to r”7 Each predicate of the form in quotes is computed exactly by a
polynomial of degree log R, since it depends on only log R of the input
bits, and exactly N of the predicates (one for each i € [N]) evaluates
to TRUE.

Step 1 of the lower bound proof for SURJ in [BKT17] shows a con-
verse, namely that the only way to approximate SURJ is to approximate
ANDpg o ORy on inputs of Hamming weight at most N.

. Show that df/];(ANDR o ORy) = Q(n**), i.e., the degree required to
approximate ANDg o ORy on inputs of Hamming weight at most N is
at least D = Q(n%/*).

In the previous lecture we also sketched this Step 2. In this lecture
we give additional details of this step. As in the papers, we use the
concept of a “dual witness.” The latter can be shown to be equivalent
to bounded indistinguishability.

Step 2 itself proceeds via two substeps:

(a) Give a dual witness ® for ANDpg - ORy that places little mass
(namely, total mass less then (R-N-D)~?) on inputs of hamming
weight > V.

(b) By modifying ®, give a dual witness &' for ANDg-ORy that places
zero mass on inputs of Hamming weight > N.

In [BKT17], both Substeps 2a and 2b proceed entirely in the dual world

(i.e., they explicitly manipulate dual witnesses ® and ®’). The main goal of
this section of the lecture notes is to explain how to replace Step 2b of the
argument of [BKT17] with a wholly “primal” argument.

The intuition of the primal version of Step 2b that we’ll cover is as follows.
First, we will show that a polynomial p: {—1, 1} — {—11} of degree D
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that is bounded on the low Hamming Weight inputs, cannot be too big on
the high Hamming weight inputs. In particular, we will prove the following
claim.

Claim 3. Ifp: {—1,1}* — Ris a degree D polynomial that satisfies |p(x)| <
4/3 on all inputs of z of Hamming weight at most D, then |p(x)| < (4/3) -
D - MP for all inputs z.

Second, we will explain that the dual witness ® constructed in Step 2a
has the following “primal” implication:

Claim 4. For D ~ N%*, any polynomial p of degree D satisfying |p(x) —
(ANDg o ORy) (z)] < 1/3 for all inputs = of Hamming weight at most N
must satisfy [p(z)| > (4/3)- D - (R- N)P for some input z € {—1, 1}V,

Combining Claims [3| and [4, we conclude that no polynomial p of degree
D ~ N3/* can satisfy

|p(2)—(ANDRoORy)(z)| < 1/3 for all inputs = of Hamming weight at most NN,

(1)
which is exactly the desired conclusion of Step 2. This is because any polyno-
mial p satisfying Equation |1| also satisfies [p(z)| < 4/3 for all x of Hamming
weight of most IV, and hence Claim |3 implies that

4
Ip(z)] < 3 D - (R-N)? for all inputs x € {—1, 1}V, (2)

But Claim [4] states that any polynomial satisfying both Equations [I] and
requires degree strictly larger than D.
In the remainder of this section, we prove Claims [3] and [4]

1.2 Proof of Claim [3

Proof of Claim[3. For notational simplicity, let us prove this claim for poly-
nomials on domain {0, 1}, rather than {—1,1}.

Proof in the case that p is symmetric. Let us assume first that p is
symmetric, i.e., p is only a function of the Hamming weight |z| of its input
x. Then p(z) = g(|z|) for some degree D univariate polynomial g (this is a
direct consequence of Minsky-Papert symmetrization, which we have seen in
the lectures before). We can express g as below in the same spirit of Lagrange
interpolation.



o0) =3 o) [T 1=

ere, the first term, g ,1s bounded 1n magnitude by |g < , an
H he fi k) ,is bounded i itude b k 4/3, and
IT12,) 1=t} < MP. Therefore, we get the final bound:

lg(t)] < (4/3)- D - MP.

Proof for general p. Let us now consider the case of general (not necessarily
symmetric) polynomials p. Fix any input x € {0,1}*. The goal is to show
that [p(z)| < 3D - MP.

Let us consider a polynomial p,: {0, 1}/l — {0,1} of degree D obtained
from p by restricting each input ¢ such that z; = 0 to have the value 0. For
example, if M = 4 and z = (0,1,1,0), then p,(y2,y3) = p(0,y2,ys3,0). We
will exploit three properties of p,:

Property 1. deg(p,) < deg(p) < D.

Property 2. Since |p(x)| < 4/3 for all inputs with |z| < D, p,(y) satisfies the
analogous property: |p,(y)| < 4/3 for all inputs with |y| < D.

Property 3. If 1), denotes the all-1s vector of length |z|, then p,(1,) = p(z).

Property 3 means that our goal is to show that [p(1,)] < 3 -D - MP.

Let p®™™: {0,1}¥ — R denote the symmetrized version of p,, i.e.,
pmm(y) = K, [p.(0(y))], where the expectation is over a random permu-
tation o of {1,...,|z|}, and 0(y) = (Yo1)s - - -+ Yo(a]))- Since o(1jg) = 1y for
all permutations o, p™™ (1)) = Pz(1jz)) = p(x). But p™™ is symmetric,
so Properties 1 and 2 together mean that the analysis from the first part of
the proof implies that [p™™(y)| < 5 -D - MP for all inputs y. In particular,
letting y = 1}, we conclude that |p(z)| < 5D - MP as desired. O

Discussion. One may try to simplify the analysis of the general case in
the proof Claimby considering the polynomial p»™™: {0, 1}* — R defined
via p¥™™(z) = E,[p(c(z))], where the expectation is over permutations o of
{1,..., M}. p¥™™ is a symmetric polynomial, so the analysis for symmetric
polynomials immediately implies that [p»™ (z)| < Zgl-D-]W D Unfortunately,
this does not mean that |p(z)| < 5-D - MP.
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This is because the symmetrized polynomial p¥™™ is averaging the values

of p over all those inputs of a given Hamming weight. So, a bound on this
averaging polynomial does not preclude the case where p is massively positive
on some inputs of a given Hamming weight, and massively negative on other
inputs of the same Hamming weight, and these values cancel out to obtain a
small average value. That is, it is not enough to conclude that on the average
over inputs of any given Hamming weight, the magnitude of p is not too big.

Thus, we needed to make sure that when we symmetrize p, to p¥™, such
large cancellations don’t happen, and a bound of the average value of p on a
given Hamming weight really gives us a bound on p on the input z itself. We
defined p, so that p,(1a) = p(z). Since there is only one input in {0, 1}* of
Hamming weight M, p2™™(1,,) does not average p,’s values on many inputs,
meaning we don’t need to worry about massive cancellations.

A note on the history of Claim [3| Claim [3] was implicit in [RS10].
They explicitly showed a similar bound for symmetric polynomials using
primal view and (implicitly) gave a different (dual) proof of the case for
general polynomials.

1.3 Proof of Claim 4]
1.3.1 Interlude Part 1: Method of Dual Polynomials [BT17]

A dual polynomial is a dual solution to a certain linear program that cap-
tures the approximate degree of any given function f: {—1,1}" — {-—1,1}.
These polynomials act as certificates of the high approximate degree of f.
The notion of strong LP duality implies that the technique is lossless, in com-
parison to symmetrization techniques which we saw before. For any function
f and any ¢, there is always some dual polynomial ¥ that witnesses a tight
e-approximate degree lower bound for f. A dual polynomial that witnesses
the fact that d.(f) > d is a function W: {—1,1}" — {—1,1} satisfying three
properties:

e Correlation analysis:

Z U(x)- f(z) > e

ze{-1,1}"

If ¥ satisfies this condition, it is said to be well-correlated with f.



e Pure high degree: For all polynomials p: {—1,1}" — R of degree
less than d, we have

> plx)-U(x) =0

ze{-1,1}"

If W satisfies this condition, it is said to have pure high degree at least
d.

e /; norm:

> |u()| =1

ze{-1,1}"

1.3.2 Interlude Part 2: Applying The Method of Dual Polynomi-
als To Block-Composed Functions

For any function f: {—1,1}" — {—1,1}, we can write an LP capturing the
approximate degree of f. We can prove lower bounds on the approximate
degree of f by proving lower bounds on the value of feasible solution of this
LP. One way to do this is by writing down the Dual of the LP, and exhibiting
a feasible solution to the dual, thereby giving an upper bound on the value
of the Dual. By the principle of LP duality, an upper bound on the Dual LP
will be a lower bound of the Primal LP. Therefore, exhibiting such a feasible
solution, which we call a dual witness, suffices to prove an approximate degree
lower bound for f.

However, for any given dual witness, some work will be required to verify
that the witness indeed meets the criteria imposed by the Dual constraints.

When the function f is a block-wise composition of two functions, say h
and g, then we can try to construct a good dual witness for f by looking at
dual witnesses for each of h and g, and combining them carefully, to get the
dual witness for h o g.

The dual witness ® constructed in Step 2a for AND o OR is expressed
below in terms of the dual witness of the inner OR function viz. Wor and
the dual witness of the outer AND, viz. Wanp.

R
O(xy...25) = Uanp (-, sgn(Tor(z;)), ) - H |Wor(2;)]. (3)



This method of combining dual witnesses Uanp for the “outer” function
AND and Wog for the “inner function” Wog is referred to in [BKTI17, BT17]
as dual block composition.

1.3.3 Interlude Part 3: Hamming Weight Decay Conditions

Step 2a of the proof of the SURJ lower bound from [BKTI7] gave a dual
witness ® for ANDg o ORy (with R = ©(XV)) that had pure high degree
Q(N3/%), and also satisfies Equations {4 and |5 below.

> |®()| < (R-N-D)™" (4)

|z| >N

1
Forallt=0,...,N P < —
or a b ) 72' (l’)‘_ 15<1+t)2

()

|z|=t

Equation [4]is a very strong “Hamming weight decay” condition: it shows
that the total mass that U places on inputs of high Hamming weight is very
small. Hamming weight decay conditions play an essential role in the lower
bound analysis for SURJ from [BKTT7]. In addition to Equations [4 and
themselves being Hamming weight decay conditions, [BKT17]’s proof that &
satisfies Equations |4 and [5] exploits the fact that the dual witness Wog for OR
can be chosen to simultaneously have pure high degree N/ and to satisfy
the following weaker Hamming weight decay condition:

Claim 5. There exist constants ¢y, co such that for all t =0,--- NV,

> Wor(x) < ¢1- sy - expl—ca- /N1, (6)

|z|=t

(We will not prove Claim [5|in these notes, we simply state it to highlight
the importance of dual decay to the analysis of SURJ).

Dual witnesses satisfying various notions of Hamming weight decay have a
natural primal interpretation: they witness approximate degree lower bounds
for the target function (ANDg o ORy in the case of Equation [4f and ORy in
the case of Equation @ even when the approrimation s allowed to be expo-
nentially large on inputs of high Hamming weight. This primal interpretation
of dual decay is formalized in the following claim.



Claim 6. Let L(t) be any function mapping {0,1,..., N} to R,.. Suppose
U is a dual witness for f satisfying the following properties:

e (Correlation): >Z 1y ¥(2) - f(2) > 1/3.
e (Pure high degree): ¥ has pure high degree D.

e (Dual decay): >, _, [¥(z)| < 3 forallt=0,1,...,N.

1+t ZL()

Then there is no degree D polynomial p such that

Ip(x) — f(z)] < L(t) forall t =0,1,..., N. (7)

Proof. Let p be any degree D polynomial. Since W has pure high degree D,

er{ 11}Np( z) - V(z) =0.
We will now show that if p satisfies Equation [7, then the other two

properties satisfied by W (correlation and dual decay) together imply that
Zze{_17l}N p(z) - U(x) > 0, a contradiction.

Yo V@ p@) = Y V@) fla) - Y W(@)- (p(x) — f(2)

ze{—1,1}N ze{-1,1}N ze{—1,1}N
>1/3— > |¥(x)| - |plx) — f(2)]
ze{—1,1}N
N
>1/3-) ) [¥(x)
t=0 |z|=t
N 1
>1/3-) (t)
5. (1+t)2- L(t)
N 1
=1/3— Z — >0
5. (1+1)2

Here, Line 2 exploited that ¥ has correlation at least 1/3 with f, Line 3
exploited the assumption that p satisfies Equation [7] and Line 4 exploited
the dual decay condition that W is assumed to satisfy. 0



1.3.4 Proof of Claim

Proof. Claim [4 follows from Equations [4] and [5 combined with Claim [6]
Specifically, apply Claim [6] with f = ANDg o ORy, and

L) = 1/3ift <N
| (R-N-D)Pift>N.

O

2 Generalizing the analysis for SURJ to prove
a nearly linear approximate degree lower

bound for AC’

Now we take a look at how to extend this kind of analysis for SURJ to obtain
even stronger approximate degree lower bounds for other functions in AC’.
Recall that SURJ can be expressed as an ANDpg (over all range items r € [R))
of the ORy (over all inputs ¢ € [N]) of “Is input z; equal to r”? That is,
SURJ simply evaluates ANDg o ORy on the inputs (...,y;,,...) where y;;
indicates whether or not input z; is equal to range item j € [R).

Our analysis for SURJ can be viewed as follows: It is a way to turn

the AND function on R bits (which has approximate degree © (\/ﬁ)) into

a function on close to R bits, with polynomially larger approximate degree
(i.e. SURJ is defined on N log R bits where, say, the value of N is 100R, i.e.,
it is a function on 100Rlog R bits). So, this function is on not much more
than R bits, but has approximate degree Q(R3/ %), polynomially larger than
the approximate degree of ANDg.

Hence, the lower bound for SURJ can be seen as a hardness amplification
result. We turn the AND function on R bits to a function on slightly more
bits, but the approximate degree of the new function is significantly larger.

From this perspective, the lower bound proof for SURJ showed that in
order to approximate SURJ, we need to not only approximate the ANDg
function, but, additionally, instead of feeding the inputs directly to AND
gate itself, we are further driving up the degree by feeding the input through
ORy gates. The intuition is that we cannot do much better than merely
approximate the AND function and then approximating the block composed



ORy gates. This additional approximation of the OR gates give us the extra
exponent in the approximate degree expression.

We will see two issues that come in the way of naive attempts at gen-
eralizing our hardness amplification technique from ANDpg to more general
functions.

2.1 Interlude: Grover’s Algorithm

Grover’s algorithm [Gro96| is a quantum algorithm that finds with high
probability the unique input to a black box function that produces a given
output, using O(\/N ) queries on the function, where N is the size of the the
domain of the function. It is originally devised as a database search algorithm
that searches an unsorted database of size N and determines whether or not
there is a record in the database that satisfies a given property in O§/N)
queries. This is strictly better compared to deterministic and randomized
query algorithms because they will take (V) queries in the worst case and
in expectation respectively. Grover’s algorithm is optimal up to a constant
factor, for the quantum world.

2.2 Issues: Why a dummy range item is necessary

In general, let us consider the problem of taking any function f that does not
have maximal approximate degree (say, with approximate degree nl_Q(l)),
and turning it into a function on roughly the same number of bits, but with
polynomially larger approximate degree.

In analogy with how SURJ(zy,...,2x) equals ANDg o ORy evaluated
on inputs (...,¥;,...), where y;; indicates whether or not z; = j, we can
consider the block composition froORy evaluated on (. ..,y ;,...), and hope
that this function has polynomially larger approximate degree than fg itself.

Unfortunately, this does not work. Consider for example the case fr =
ORpg. The function ORroORy = ORpg.x evaluates to 1 on all possible vectors
(---yYji,---,), since all such vectors of Hamming weight exactly N > 0.

One way to try to address this is to introduce a dummy range item, all
occurrences of which are simply ignored by the function. That is, we can
consider the (hopefully harder) function G to interpret its input as a list
of N numbers from the range [R]y := {0,1,..., R}, rather than range [R],
and define G = fr o ORN(y11,...,YrN) (note that variables yo1,. .., Yo n,
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which indicate whether or not each input x; equals range item 0, are simply
ignored).

In fact, in the previous lecture we already used this technique of intro-
ducing a “dummy” range item, to ease the lower bound analysis for SURJ
itself. Last lecture we covered Step 1 of the lower bound proof for SURJ,
and we let zg = Zf\il Yo,; denote the frequency of the dummy range item,
0. The introduction of this dummy range item let us replace the condition
Zf:o z; = N (i.e., the sum of the frequencies of all the range items is ezactly

N) by the condition Zle z; < N (i.e., the sum of the frequencies of all the
range items is at most N).

2.3 A dummy range item is not sufficient on its own

Unfortunately, introducing a dummy range item is not sufficient on its own.
That is, even when the range is is [R] rather than [R], the function G = fro
ORN(Y11,.-.,YyrN) may have approximate degree that is not polynomially
larger than that of fgr itself. An example of this is (once again) fr = ORpg.
With a dummy range item, ORg 0o ORN(y11,- .-, yr n) evaluates to TRUE if
and only if at least one of the N inputs is not equal to the dummy range
item 0. This problem has approximate degree O(N'/2) (it can be solved
using Grover search).

Therefore, the most naive approach at general hardness amplification,
even with a dummy range item, does not work.

2.4 The approach that works

The approach that succeeds is to consider the block composition foAND;u go
ORy (i.e., apply the naive approach with a dummy range item not to fz itself,
but to fr o ANDjogr). As pointed out in Section the ANDy,, r gates are
crucial here for the analysis to go through.

It is instructive to look at where exactly the lower bound proof for SURJ
breaks down if we try to adapt it to the function ORRoORy = ORg.y (rather
than the function ANDg o ORy which we analyzed to prove the lower bound
for SURJ). Then we can see why the introduction of the ANDy,,  gates fixes
the issue.

When analyzing the more naively defined function G = (ORg o ORy) (y1.1, - -

(with a dummy range item), Step 1 of the lower bound analysis for SURJ
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does work unmodified to imply that in order to approximate G, it is neces-
sary to approximate block composition of ORg 0o ORy on inputs of Hamming
weight at most N. But Step 2 of the analysis breaks down: one can approxi-
mate ORg o ORy on inputs of Hamming weight at most N using degree just
O(N/?).

Why does the Step 2 analysis break down for ORgz 0 ORy? If one tries to
construct a dual witness ® for ORroORy by applying dual block composition
(cf. Equation but with the dual witness Wanp for ANDg replaced by a dual
witness for ORg), ® will not be well-correlated with ORg o ORy.

Roughly speaking, the correlation analysis thinks of each copy of the inner
dual witness Wor(x;) as consisting of a sign, sgn(Vogr)(x;), and a magnitude
|Wor(x;)|, and the inner dual witness “makes an error” on z; if it outputs
the wrong sign, i.e., if sgn(Vor)(z;) # OR(x;). The correlation analysis
winds up performing a union bound over the probability (under the product
distribution [, |Wor(z;)|) that any of the R copies of the inner dual witness
makes an error. Unfortunately, each copy of the inner dual witness makes
an error with constant probability under the distribution |Wegr|. So at least
one of them makes an error under the product distribution with probability
very close to 1. This means that the correlation of the dual-block-composed
dual witness ® with ORr o ORy is poor.

But if we look at ORp o (ANDj,e g © ORy), the correlation analysis does
go through. That is, we can give a dual witness ¥;, for AND),; g0 ORy and a
dual witness W, for ORg such that the the dual-block-composition of W,
and U, is well-correlated with ORg o (ANDjog g © ORy).

This is because [BT15] showed that for e = 1—1/(3R), d. (ANDjog g © ORy)
Q(NY2). This means that (ANDj,zr o ORy) has a dual witness ¥;, that
“makes an error” with probability just 1/(3R). This probability of making
an error is so low that a union bound over all R copies of U;, appearing in
the dual-block-composition of ¥, and W;, implies that with probability at
least 1/3, none of the copies of ¥;, make an error.

In summary, the key difference between ORy and ANDjo, r © ORy that
allows the lower bound analysis to go through for the latter but not the former
is that the latter has e-approximate degree Q(N'/2) for e = 1 —1/(3R), while
the former only has e-approximate degree Q(N'/?) if € is a constant bounded
away from 1.

To summarize, the SURJ lower bound can be seen as a way to turn the
function fr = ANDpg into a harder function G = SURJ, meaning that G
has polynomially larger approximate degree than fr. The right approach to
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generalize the technique for arbitrary fg is to (a) introduce a dummy range
item, all occurrences of which are effectively ignored by the harder function G,
and (b) rather than considering the “inner” function ORy, consider the inner
function ANDlogR o ORN, i.e., let G = fR o AND]OgR o ORN(yl,l cvey leogR,N)-
The AND,,, r gates are essential to make sure that the error in the correlation
of the inner dual witness is very small, and hence the correlation analysis for
the dual-block-composed dual witness goes through. Note that G can be
interpreted as follows: it breaks the range [Rlog R]y up into R blocks, each
of length log R, (the dummy range item is excluded from all of the blocks),
and for each block it computes a bit indicating whether or not every range
item in the block has frequency at least 1. It then feeds these bits into fg.

By recursively applying this construction, starting with fr = ANDg,
we get a function in AC® with approximate degree Q(n'=?) for any desired
constant o > 0.

2.5 k—distinctness

The above mentioned very same issue also arises in [BKTI17]’s proof of a
lower bound on the approximate degree of the k-distinctness function. Step
1 of the lower bound analysis for SURJ reduced analyzing k-distinctness to
analyzing OR o TH%, (restricted to inputs of Hamming weight at most N),
where TH’fV is the function that evaluates to TRUE if and only if its input
has Hamming weight at least k. The lower bound proved in [BKT17] for
k-distinctness is Q(n®4~1/*). OR is the TH' function. So, ORg o TH" is
“close” to ORRoORy. And we’ve seen that the correlation analysis of the dual
witness obtained via dual-block-composition breaks down for ORg o ORy.
To overcome this issue, we have to show that THIfV is harder to approxi-
mate than ORy itself, but we have to give up some small factor in the process.
We will lose some quantity compared to the Q(n*4) lower bound for SURJ.
It may seem that this loss factor is just a technical issue and not intrinsic, but
this is not so. In fact, this bound is almost tight. There is an upper bound
from a complicated quantum algorithm [BL11], Bel12)] for k-distinctness that
makes O(n3/4=1/ @4y — 3/4-201) that we won’t elaborate on here.
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