
Space Complexity

● We consider space (a.k.a. memory, storage, etc.).

● To consider space < n, we work with TM with two tapes:

Input tape: contains input, read-only

Work tape: initially blank, read-write

Only work tapes counts towards space.

Does this fit our model of space?

Example: Recall the TM for {ambmcm : m ≥ 0}:
M := “On input w:
(1) Scan tape and cross off one a, one b, and one c
(2) If none of these symbols is found, ACCEPT
(3) If not all of these symbols is found,
 or if found in the wrong order, REJECT
(4) Go back to (1).”

Does this fit our model of space?

No. We cannot write on the input.
How can you modify to fit our model?

Example: Recall the TM for {ambmcm : m ≥ 0}:
M := “On input w:
(1) Scan tape and cross off one a, one b, and one c
(2) If none of these symbols is found, ACCEPT
(3) If not all of these symbols is found,
 or if found in the wrong order, REJECT
(4) Go back to (1).”

This fits our model of space
How much space does this use?

Example: TM for {ambmcm : m ≥ 0}:
M := “On input w:
(0) Copy the input w on the work tape.
(1) Scan work tape and cross off one a, one b, and
 one c
(2) If none of these symbols is found, ACCEPT
(3) If not all of these symbols is found,
 or if found in the wrong order, REJECT
(4) Go back to (1).”

This fits our model of space
How much space does this use?

Space = n

Can you use less space?

Example: TM for {ambmcm : m ≥ 0}:
M := “On input w:
(0) Copy the input w on the work tape.
(1) Scan work tape and cross off one a, one b, and
 one c
(2) If none of these symbols is found, ACCEPT
(3) If not all of these symbols is found,
 or if found in the wrong order, REJECT
(4) Go back to (1).”

Example: TM for {ambmcm : m ≥ 0} using less space:
M := “On input w:
Scan tape, if find symbols in wrong order, REJECT
Count the a, b, and c; write numbers on work tape
If the numbers are equal ACCEPT, else REJECT”

● How to count the a?
Initialize a binary counter to 0 on work tape.
While input head is on an a: {
 Move input head right
 Increase counter on work tape by 1.
}

● How much space does this take?

Example: TM for {ambmcm : m ≥ 0} using less space:
M := “On input w:
Scan tape, if find symbols in wrong order, REJECT
Count the a, b, and c; write numbers on work tape
If the numbers are equal ACCEPT, else REJECT”

● How to count the a?
Initialize a binary counter to 0 on work tape.
While input head is on an a: {
 Move input head right
 Increase counter on work tape by 1.
}

● How much space does this take? c log(n).

● Definition:
SPACE(s(n)) = languages decided by TM using space ≤ s(n)

● This is interesting both for s(n) ≥ n and for s(n) ≤ n,

 for example with s(n) = c log(n) you can do a lot already

● Fact: SPACE(c log n) can compute many basic functions

● It is easy to show addition is in SPACE(c log n)

● It is harder to show multiplication is in SPACE(c log n)

● It is a breakthrough paper that division is in SPACE(c log n)

● Definition:
 A configuration of a TM using space s consists of:

 state

 contents of the work tape

 position of the head on the work tape

 head positions on input tape

 How many choices for each item?

● Definition:
 A configuration of a TM using space s consists of:

 state | Q |

 contents of the work tape ?

 position of the head on the work tape

 head positions on input tape

 How many choices for each item?

● Definition:
 A configuration of a TM using space s consists of:

 state | Q |

 contents of the work tape | Γ |s

 position of the head on the work tape ?

 head positions on input tape

 How many choices for each item?

● Definition:
 A configuration of a TM using space s consists of:

 state | Q |

 contents of the work tape | Γ |s

 position of the head on the work tape s

 head positions on input tape ?

 How many choices for each item?

● Definition:
 A configuration of a TM using space s consists of:

 state | Q |

 contents of the work tape | Γ |s

 position of the head on the work tape s

 head positions on input tape n

 Total number of configurations is:
 |Q| • | Γ |s • s • n ≤ cs • n, for a constant c

● Claim: SPACE(s(n)) TIME(c ⊆ s(n)), s(n) ≥ log n∀

● Proof:

 ?

● Note: Feel free to allow 2-tape TM for TIME too.

● Claim: SPACE(s(n)) TIME(c ⊆ s(n)), s(n) ≥ log n∀

● Proof:

Let M be a TM running in space s(n).

Number of possible configurations ≤ cs(n) • n ≤ (2c)s(n)

No two configurations may repeat.

Hence M takes at most (2c)s(n) steps. 

● Claim: TIME(t(n)) SPACE(t(n))⊆

● Proof:
?

● Claim: TIME(t(n)) SPACE(t(n))⊆

● Proof:

In time t you can only use t cells. 

● Summary:

TIME(t(n)) SPACE(t(n)) TIME(c⊆ ⊆ t(n)), t(n) ≥ log n∀

● Next: Non-determinism

● Recall definition of NTIME:

NTIME(t(n)) = { L : M : x of length n ∃ ∀
 x L y, |y| ≤ t(n), M(x,y) accepts in ≤ t(n)   ∃

● We want to define NSPACE

● We can't write y on input or work tape,
 the model would not be what we want

● So instead we consider non-deterministic TM

● Definition: NSPACE(s(n)) = languages decided by
 non-deterministic TM using space < s(n)

● Intuition: “non-deterministic TM : TM = NFA : DFA”

● δ : Q x Γ2 → Powerset(Q x Γ2 x {L,R}2)

Recall that we are working with two-tape TM:

● This allows the TM to “guess” strings.

– – – – – –

V

_ → 0, R
_ → 1, R

Example “Guessing a string”

This example shows a valid sequence of
configurations for a non-deterministic TM

0 – – – – –

V

_ → 0, R
_ → 1, R

Example “Guessing a string”

This example shows a valid sequence of
configurations for a non-deterministic TM

0 1 – – – –

V

_ → 0, R
_ → 1, R

Example “Guessing a string”

This example shows a valid sequence of
configurations for a non-deterministic TM

0 1 1 – – –

V

_ → 0, R
_ → 1, R

Example “Guessing a string”

This example shows a valid sequence of
configurations for a non-deterministic TM

and so on...

PATH = {(G,s,t) : G is a directed graph with a path from s to t }

● Claim: PATH NSPACE(?)∈

PATH = {(G,s,t) : G is a directed graph with a path from s to t }

● Claim: PATH NSPACE(10 log n)∈
● Proof:

?

PATH = {(G,s,t) : G is a directed graph with a path from s to t }

● Claim: PATH NSPACE(10 log n)∈
● Proof:

M := “On input (G,s,t):

Let v := s.

For i = 0 to |G|
 ?
 ?
 ?

REJECT”

PATH = {(G,s,t) : G is a directed graph with a path from s to t }

● Claim: PATH NSPACE(10 log n)∈
● Proof:

M := “On input (G,s,t):

Let v := s.

For i = 0 to |G|
 Guess a neighbor w of v.
 Let v := w.
 If v = t, ACCEPT

REJECT”

Space needed = ?

PATH = {(G,s,t) : G is a directed graph with a path from s to t }

● Claim: PATH NSPACE(10 log n)∈
● Proof:

M := “On input (G,s,t):

Let v := s.

For i = 0 to |G|
 Guess a neighbor w of v.
 Let v := w.
 If v = t, ACCEPT

REJECT”

Space needed = |v| + |i| = c log |G|. 

● By definition SPACE(s(n)) NSPACE(?)⊆

● By definition SPACE(s(n)) NSPACE(s(n)).⊆

● We showed SPACE(s(n)) TIME(?)⊆

● By definition SPACE(s(n)) NSPACE(s(n)).⊆

● We showed SPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Next NSPACE(s(n)) TIME(?)⊆

● By definition SPACE(s(n)) NSPACE(s(n)).⊆

● We showed SPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Next NSPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Claim: NSPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Proof:

● Claim: NSPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Proof:

● Let M be a non-deterministic TM using space s(n).

● Define M' :=
“On input x,
 Compute the configuration graph G of M on input x.

Nodes = configurations
Edges = {(c,c') : c yields c' on input x }

 ???

”

● Claim: NSPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Proof:

● Let M be a non-deterministic TM using space s(n).

● Define M' :=
“On input x,
 Compute the configuration graph G of M on input x.

Nodes = configurations
Edges = {(c,c') : c yields c' on input x }

 If caccept is reachable from cstart in G, ACCEPT

 else REJECT”

● |G| = ?

● Claim: NSPACE(s(n)) TIME(2⊆ c s(n)), s(n) ≥ log n∀

● Proof:

● Let M be a non-deterministic TM using space s(n).

● Define M' :=
“On input x,
 Compute the configuration graph G of M on input x.

Nodes = configurations
Edges = {(c,c') : c yields c' on input x }

 If caccept is reachable from cstart in G, ACCEPT

 else REJECT”

● Because |G| = cs(n) and reachability can be solved in
polynomial time, M' runs in time cs(n) 

P vs. NP for space ?

P vs. NP for space ?

P = NP!

 UNLIKE TIME,

SPACE CAN BE REUSED!

Theorem: NSPACE(s(n)) SPACE(c s⊆ 2 (n)), s(n) ≥ log n∀

This is known as Savitch's theorem

Proof: ?

Theorem: NSPACE(s(n)) SPACE(c s⊆ 2 (n)), s(n) ≥ log n∀

Proof: Let N be a non-deterministic TM using space s(n).

Define M := “On input w,
 Return REACH(Cstart, Caccept , d s(n)).”

● REACH(c, c', t) decides if c' reachable from c in ≤ t steps
in configuration graph of N on input w

Cstart = start configuration

Caccept = accept configuration

d s(n) = number of configurations of N, for a constant d

● Key point is how to implement REACH

REACH(c, c', t) := \\ is c' reachable from c in t steps?
 “Enumerate all configurations cm {

 If REACH(c,cm ,t/2) and REACH(cm ,c', t/2), ACCEPT

 }
 REJECT”

Define S(t) := space for REACH(c,c',t).

S(t) ≤ ?

REACH(c, c', t) := \\ is c' reachable from c in t steps?
 “Enumerate all configurations cm {

 If REACH(c,cm ,t/2) and REACH(cm ,c', t/2), ACCEPT

 }
 REJECT”

Define S(t) := space for REACH(c,c',t).

S(t) ≤ d s(n) + S(t/2). Reuse space for two calls to REACH.

Space for REACH(Cstart, Caccept, d s(n)) ≤

?

REACH(c, c', t) := \\ is c' reachable from c in t steps?
 “Enumerate all configurations cm {

 If REACH(c,cm ,t/2) and REACH(cm ,c', t/2), ACCEPT

 }
 REJECT”

Define S(t) := space for REACH(c,c',t).

S(t) ≤ d s(n) + S(t/2). Reuse space for two calls to REACH.

Space for REACH(Cstart, Caccept, d s(n)) ≤

d s(n) + d s(n) + … + d s(n) ≤ d2 s2 (n) 

● Theorem: NSPACE(s(n)) SPACE(c s⊆ 2 (n)), s(n) ≥ log n∀

● We just proved this.

● Corollary: NSPACE(log n) SPACE(?)⊆

● Theorem: NSPACE(s(n)) SPACE(c s⊆ 2 (n)), s(n) ≥ log n∀

● We just proved this.

● Corollary: NSPACE(log n) SPACE(c log⊆ 2 n)
Uc NSPACE(nc) = Uc SPACE(?)

● Theorem: NSPACE(s(n)) SPACE(c s⊆ 2 (n)), s(n) ≥ log n∀

● We just proved this.

● Corollary: NSPACE(log n) SPACE(c log⊆ 2 n)
Uc NSPACE(nc) = Uc SPACE(nc)

● Compare with open question for time:

Uc NTIME(nc) = Uc TIME(nc) ?

● Is NTIME(t) closed under complement?

● Is NTIME(t) closed under complement?

Unknown, not believed to be the case.

● Is NSPACE(s) closed under complement?

● Is NTIME(t) closed under complement?

Unknown, not believed to be the case.

● Is NSPACE(s) closed under complement?

We just showed NSPACE(s) ⊆ ?

● Is NTIME(t) closed under complement?

Unknown, not believed to be the case.

● Is NSPACE(s) closed under complement?

We just showed NSPACE(s) SPACE(c s⊆ 2)

So if L NSPACE(s) then ∈ not L is in SPACE(?

● Is NTIME(t) closed under complement?

Unknown, not believed to be the case.

● Is NSPACE(s) closed under complement?

We just showed NSPACE(s) SPACE(c s⊆ 2)

So if L NSPACE(s) then ∈ not L is in SPACE(c s2)

● Can you avoid squaring the space?

● Is NTIME(t) closed under complement?

Unknown, not believed to be the case.

● Is NSPACE(s) closed under complement?

We just showed NSPACE(s) SPACE(c s⊆ 2)

So if L NSPACE(s) then ∈ not L is in SPACE(c s2)

● Can you avoid squaring the space?

Yes! If L NSPACE(s) then ∈ not L is in SPACE(c s)

This is weird!

Theorem PATH NSPACE(d log n), for a constant d.∈

Theorem PATH NSPACE(d log n), for a constant d.∈

Proof: Want a non-deterministic TM that given G, s, and t
accepts there is  no path from s to t in G.

Theorem PATH NSPACE(d log n), for a constant d.∈

Proof: Want a non-deterministic TM that given G, s, and t
accepts there is  no path from s to t in G.

Suppose TM knows c := number of nodes reachable from s

Key idea: there is no path from s to t 
 there are c nodes such that ???????

Theorem PATH NSPACE(d log n), for a constant d.∈

Proof: Want a non-deterministic TM that given G, s, and t
accepts there is  no path from s to t in G.

Suppose TM knows c := number of nodes reachable from s

Key idea: there is no path from s to t 
 there are c nodes different from t reachable from s

Define M := “ ?

Theorem PATH NSPACE(d log n), for a constant d.∈

Proof: Want a non-deterministic TM that given G, s, and t
accepts there is  no path from s to t in G.

Suppose TM knows c := number of nodes reachable from s

Key idea: there is no path from s to t 
 there are c nodes different from t reachable from s

Define M := “On input G, s, t, and c:
 Initialize Count = 0;

 Enumerate over all nodes v ≠ t {
 Guess a path from s of length n.

 If reach v, Count ++
 }

 If Count = c ACCEPT, else REJECT”

How to compute c.

Let Ai be the nodes at distance ≤ from s, and let ci := |Ai |.

Note A0 = {s}, c0 = 1.

We want c = cn

To compute ci+1 from ci :=

“ci+1 = 0

 Enumerate nodes v (candidate in Ai+1)

 For each v, enumerate over all w nodes in Ai ,

 and check if w → v is an edge. If so, ci+1 ++ ;”

The enumeration over Ai is done guessing ci nodes and paths

from s. If we don't find ci nodes, we REJECT. 

● Next: Two cool things about PSPACE = Uc SPACE(nc)

We saw NP captures videogames, board games, etc.

PSPACE captures 2-player games

For example, given a Go board, how should you move?

We saw NP is a one-message proof system.

We also saw interactive proof systems, and gave such
systems for problems not believed to be in NP.

What can interactive proof systems do?

We saw NP is a one-message proof system.

We also saw interactive proof systems, and gave such
systems for problems not believed to be in NP.

What can interactive proof systems do?

Theorem:
 PSPACE = INTERACTIVE PROOF SYSTEMS

In particular,
there is an interactive proof system for playing Go

Summary of some classes we saw

http://www.cse.psu.edu/~sxr48/cmpsc464/

● Omitted slides

PSPACE

SAT: truth of x∃ 1 x∃ 2 … x∃ n φ (x1 , x2 , … , xn)

NP-complete

QBF: truth of Q1 x1 Q2 x2 … Qn xn φ (x1, x2, …, xn), Qi { , } ∃ ∀

PSPACE-complete

Claim: QBF PSPACE
Proof:
Exercise

Claim: QBF is PSPACE-hard
Proof: Let M be a PSPACE machine and x an input.
We compute in time poly|x| a QBF formula φ :
φ true

  M accepts x
  caccept reachable from cstart in M's configuration graph

φ(c,c')t := is c' reachable from c in ≤ t steps?

 = ?

Claim: QBF is PSPACE-hard
Proof: Let M be a PSPACE machine and x an input.
We compute in time poly|x| a QBF formula φ :
φ true

  M accepts x
  caccept reachable from cstart in M's configuration graph

φ(c,c')t := is c' reachable from c in ≤ t steps?

 = d : (a,b) ∃ ∀ {(c,d), (d,c')} : φ (a,b) t/2

| φ(c,c')t | = ?

Claim: QBF is PSPACE-hard
Proof: Let M be a PSPACE machine and x an input.
We compute in time poly|x| a QBF formula φ :
φ true

  M accepts x
  caccept reachable from cstart in M's configuration graph

φ(c,c')t := is c' reachable from c in ≤ t steps?

 = d : (a,b) ∃ ∀ {(c,d), (d,c')} : φ (a,b) t/2

| φ(c,c')t | = O(|config|) + | φ(c,c')t/2 |

For t = 2poly(n), | φ(cstart,caccept)t | = ?

Claim: QBF is PSPACE-hard
Proof: Let M be a PSPACE machine and x an input.
We compute in time poly|x| a QBF formula φ :
φ true

  M accepts x
  caccept reachable from cstart in M's configuration graph

φ(c,c')t := is c' reachable from c in ≤ t steps?

 = d : (a,b) ∃ ∀ {(c,d), (d,c')} : φ (a,b) t/2

| φ(c,c')t | = O(|config|) + | φ(c,c')t/2 |

For t = 2poly(n), | φ(cstart,caccept)t | = |config| • poly(n) = poly(n)

 

● Same idea as Savitch's theorem

● Definition:
L := Uc SPACE(c log n)

NL := Uc NSPACE(c log n)

PSPACE := Uc SPACE(nc)

NPSPACE := Uc NSPACE(nc)

L NL P NP PSPACE = NPSPACE⊆ ⊆ ⊆ ⊆

● Space hierarchy theorem
 ∀ functions f, g : f(n) = o(g(n)),

SPACE(f(n)) strictly contained in SPACE(g(n))

So L ≠ PSPACE

Def. A function f : {0,1}* {0,1}* is computable in 
SPACE(s(n)) if the function
f'(x,i) : {0,1}* {0,1}, f'(x,i) := f(x) i

is in SPACE(s(n)).

Exercise:
Consider the alternative definition where TM are equipped
with a write-only tape, that does not count towards space,
where TM is supposed to write f(x).
Show the two definitions are equivalent when, say,
|f(x)| = poly|x|, s(n) = O(log n).

● What problem is NP-complete?

3SAT

● What problem is NSPACE(c log(n))-complete?

PATH

● Theorem:
PATH SPACE(c log n) NSPACE(log n) = SPACE(c log n)  

● Proof:
?

● Theorem:
PATH SPACE(c log n) NSPACE(log n) = SPACE(c log n)  

● Proof:
Let N be a non-deterministic TM using space log n.
Let G be the graph where the nodes are configurations of N,

and node C is connected to C' if C yields C'.

Note: |G| ≤ ?

● Theorem:
PATH SPACE(c log n) NSPACE(log n) = SPACE(c log n)  

● Proof:
Let N be a non-deterministic TM using space log n.
Let G be the graph where the nodes are configurations of N,

and node C is connected to C' if C yields C'.

Note: |G| ≤ nd for some constant d

Define TM M := “On input w
Run TM for PATH on ?

● Theorem:
PATH SPACE(c log n) NSPACE(log n) = SPACE(c log n)  

● Proof:
Let N be a non-deterministic TM using space log n.
Let G be the graph where the nodes are configurations of N,

and node C is connected to C' if C yields C'.

Note: |G| ≤ nd for some constant d

Define TM M := “On input w
Run TM for PATH on (G, Cstart, Caccept)

Return the answer” 

● Detail: M cannot write down G. Instead, when TM for PATH
 needs an edge, M will compute in on the fly.

