Big picture

- All languages
- Decidable

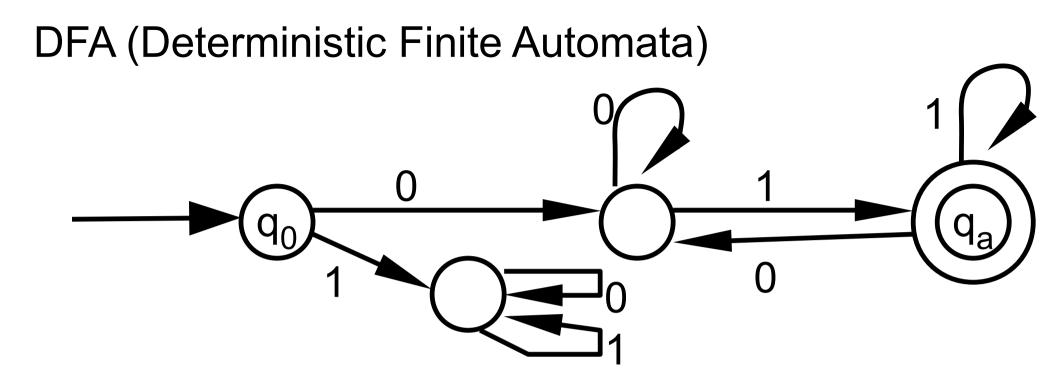
Turing machines

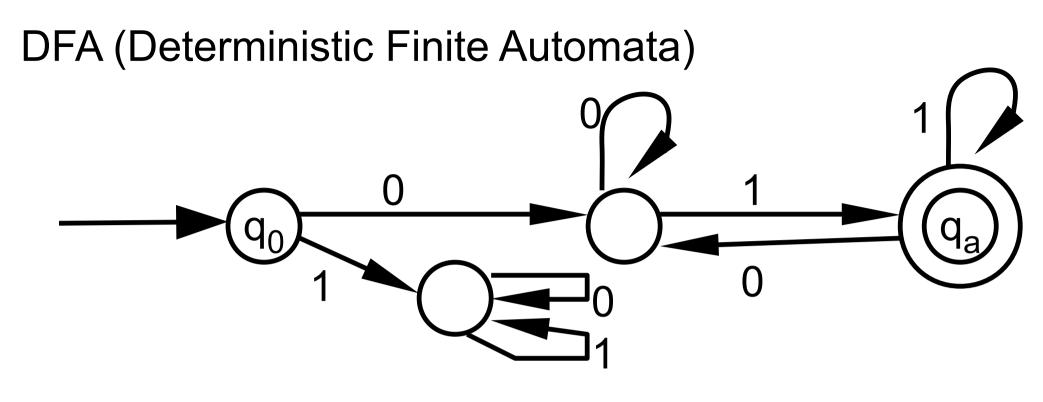
- NP
- P
- Context-free

Context-free grammars, push-down automata

Regular

Automata, non-deterministic automata, regular expressions





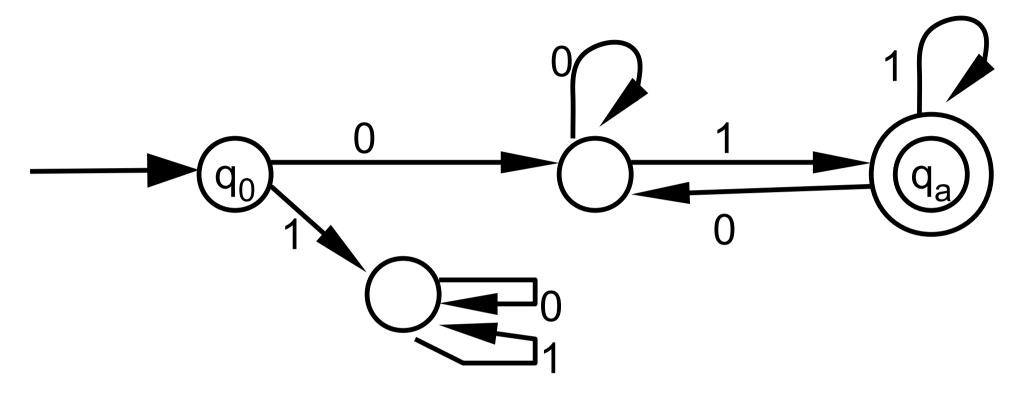
- Transitions _____

labelled with elements of the alphabet $\Sigma = \{0, 1\}$

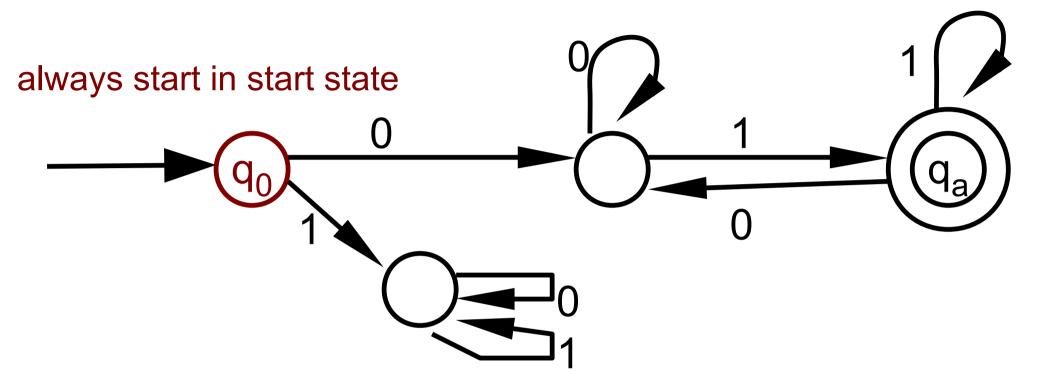
Computation on input w:

- Begin in start state
- Read input string in a one-way fashion
- Follow the arrows matching input symbols
- When input ends: ACCEPT if in accept state (

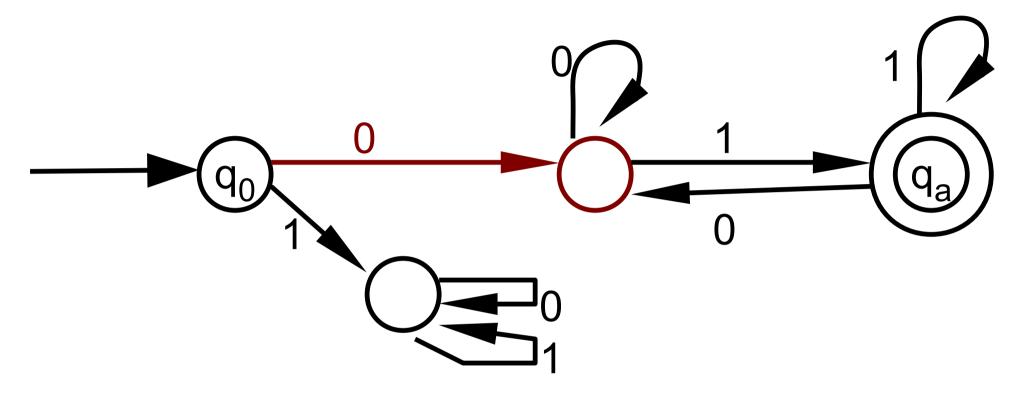
REJECT if not



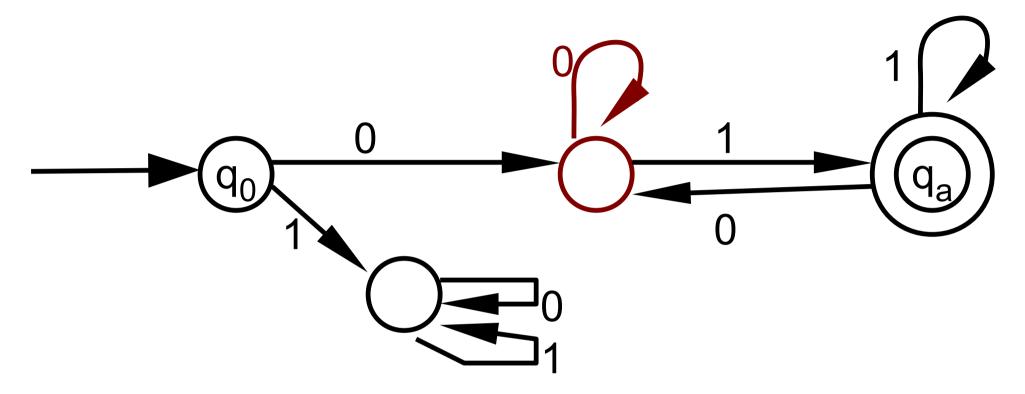
Example: Input string



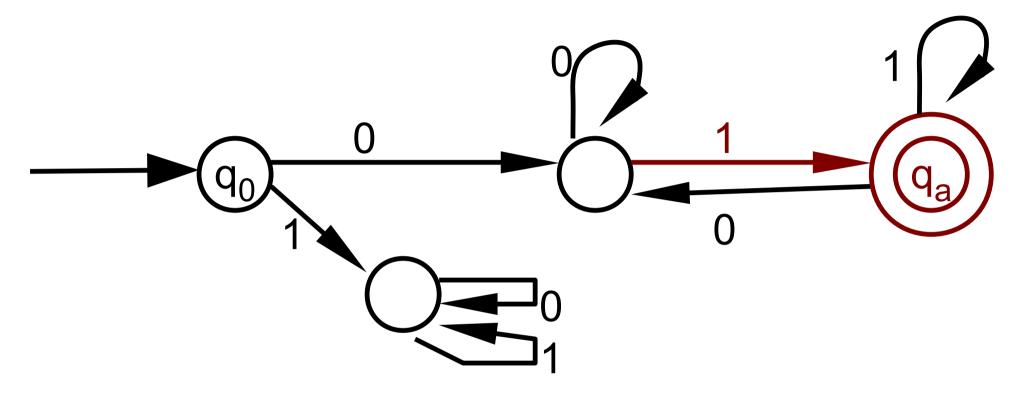
Example: Input string



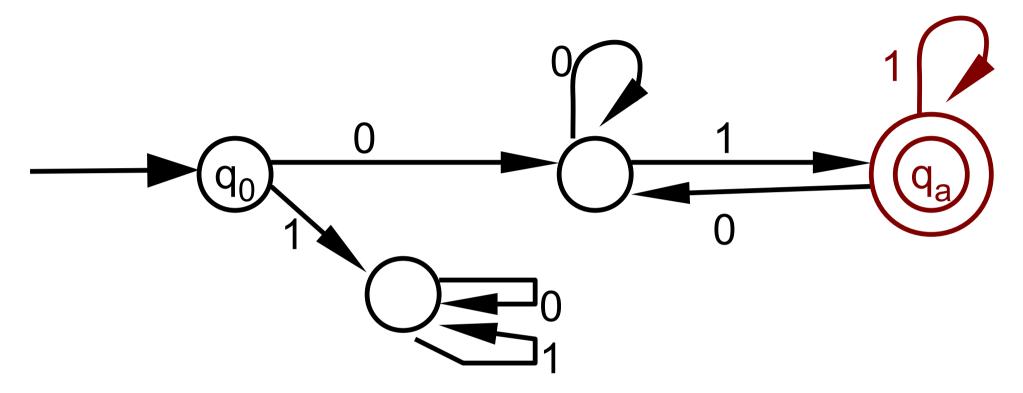
Example: Input string



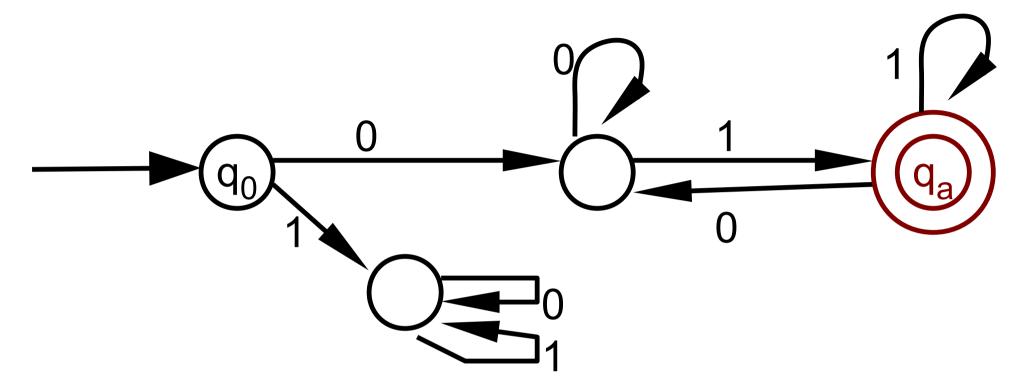
Example: Input string



Example: Input string



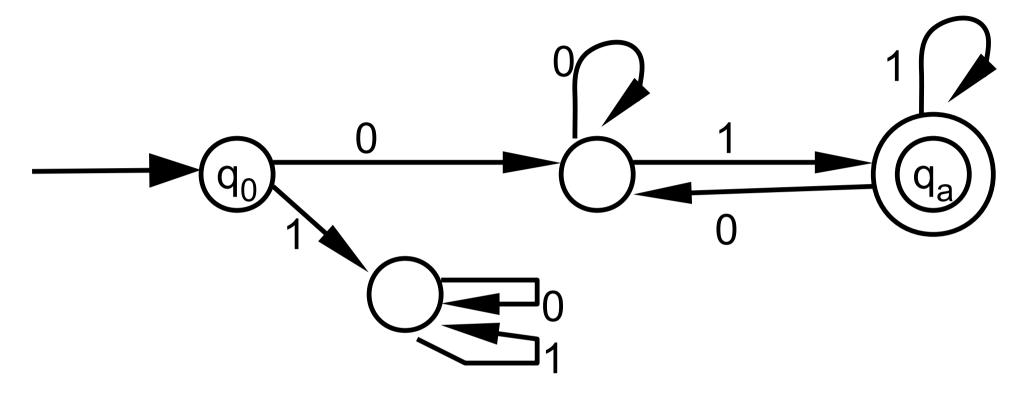
Example: Input string



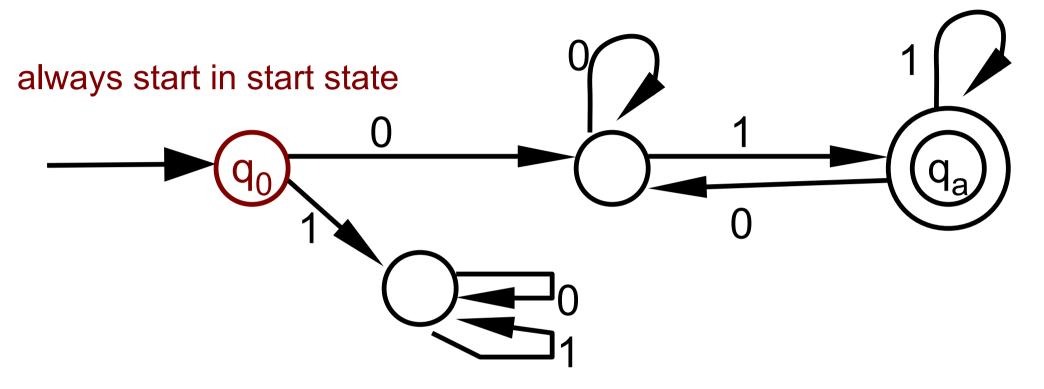
Example: Input string

w = 0011 ACCEPT because end in

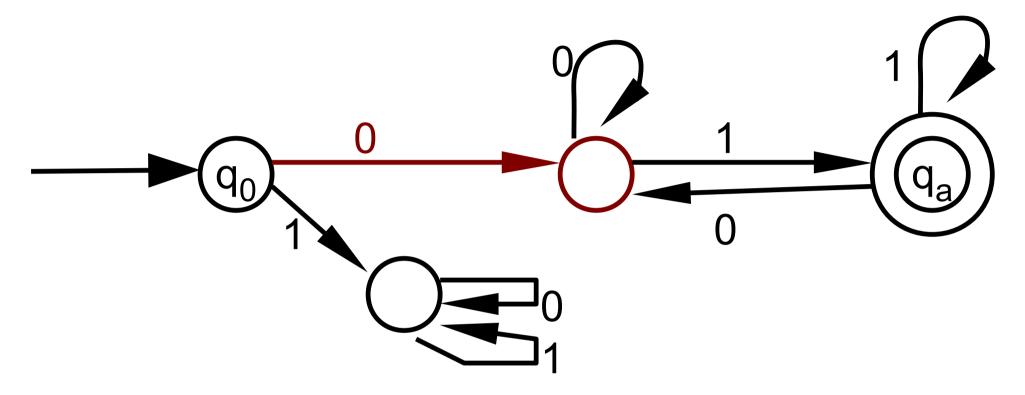
accept state



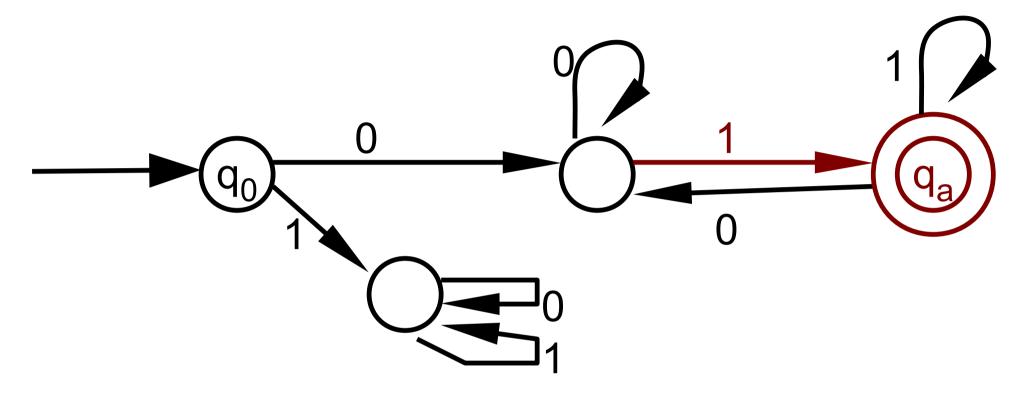
Example: Input string



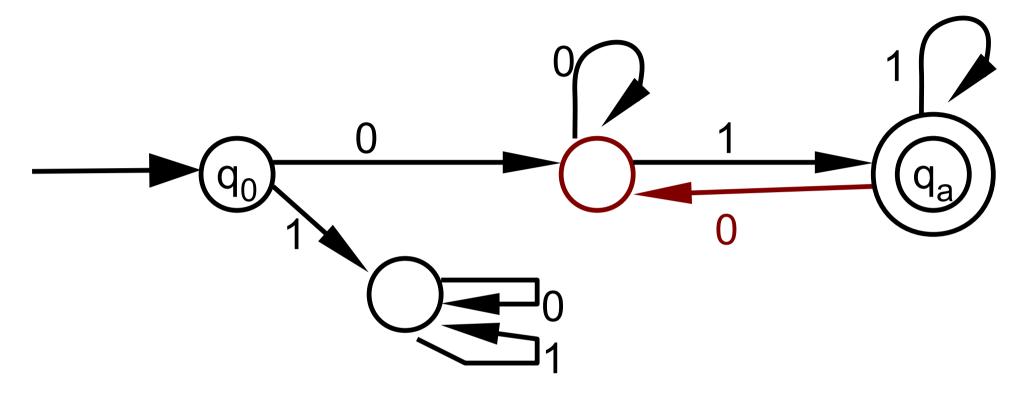
Example: Input string



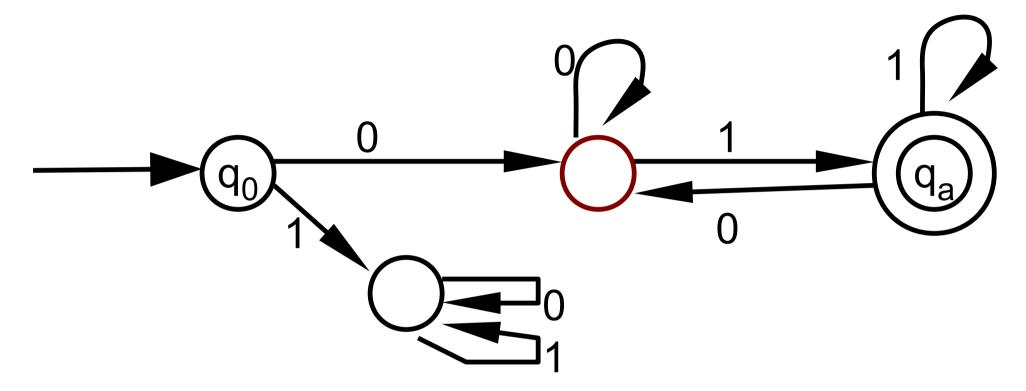
Example: Input string



Example: Input string



Example: Input string

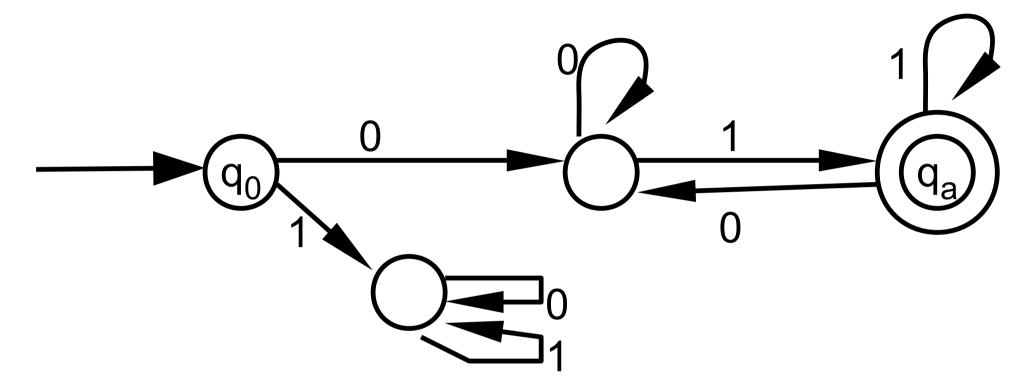


Example: Input string

w = 010 **REJECT**

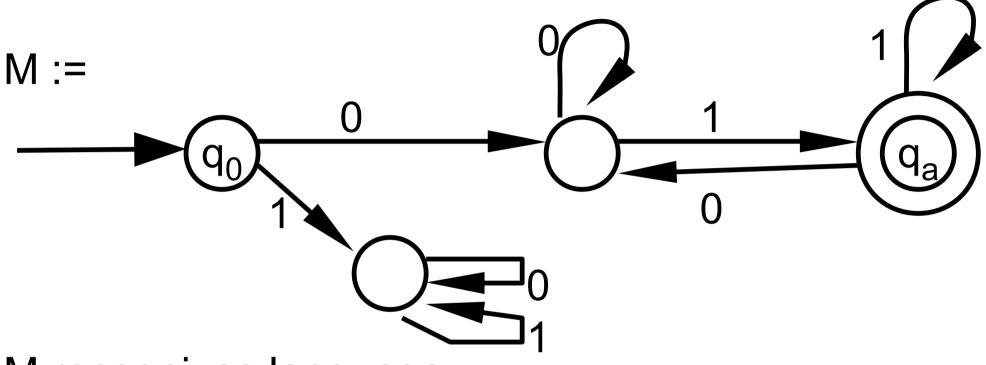
because does not

end in accept state



Example: Input string w = 01 ACCEPT

- w = 010 REJECT
- w = 0011 ACCEPT
- w = 00110 REJECT

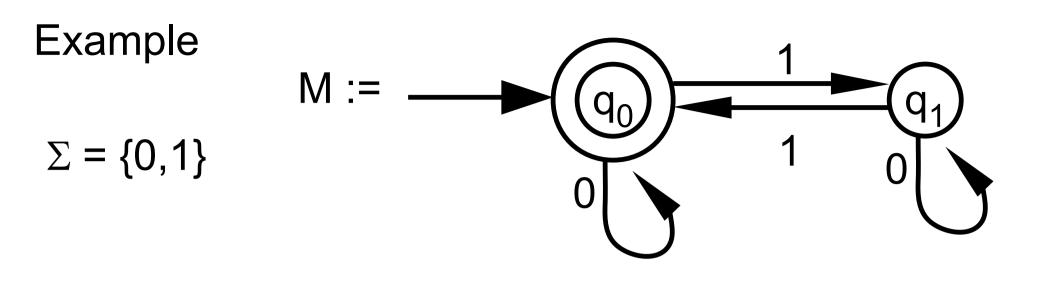


M recognizes language

L(M) = { w : w starts with 0 and ends with 1 }

L(M) is the language of strings causing M to accept

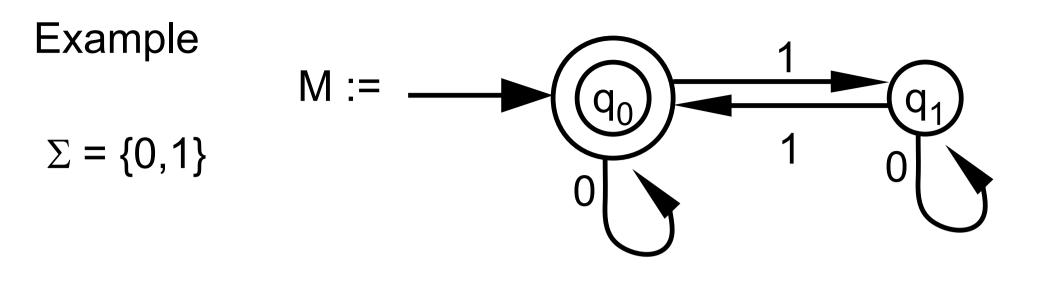
Example: 0101 is an element of L(M), 0101 $\in L(M)$



- 00 causes M to accept, so 00 is in $L(M) = 00 \in L(M)$
- 01 does not cause M to accept, so 01 not in L(M),

01 ∉ L(M)

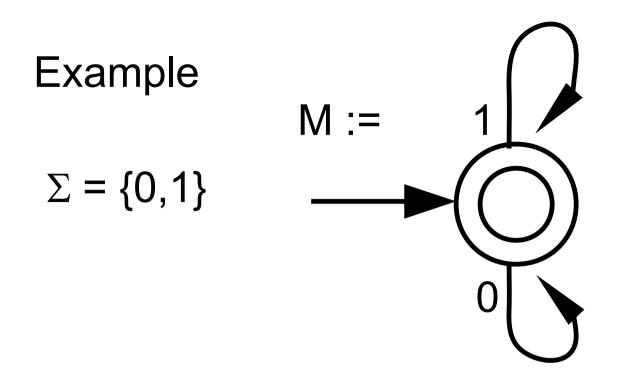
- 0101 ∈ L(M)
- 01101100 $\in L(M)$
- 011010 ∉ L(M)

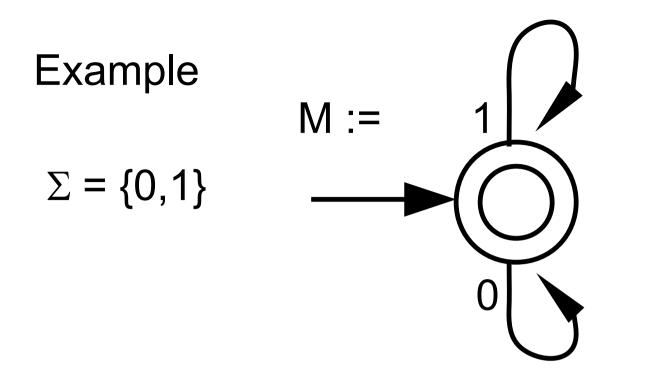


L(M) = {w : w has an even number of 1 }

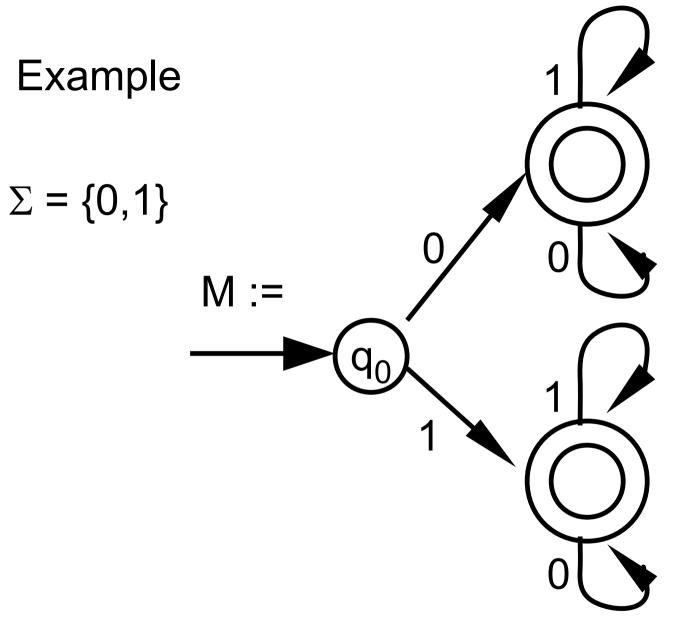
Note: If there is no 1, then there are zero 1, zero is an even number, so M should accept.

Indeed 0000000 $\in L(M)$

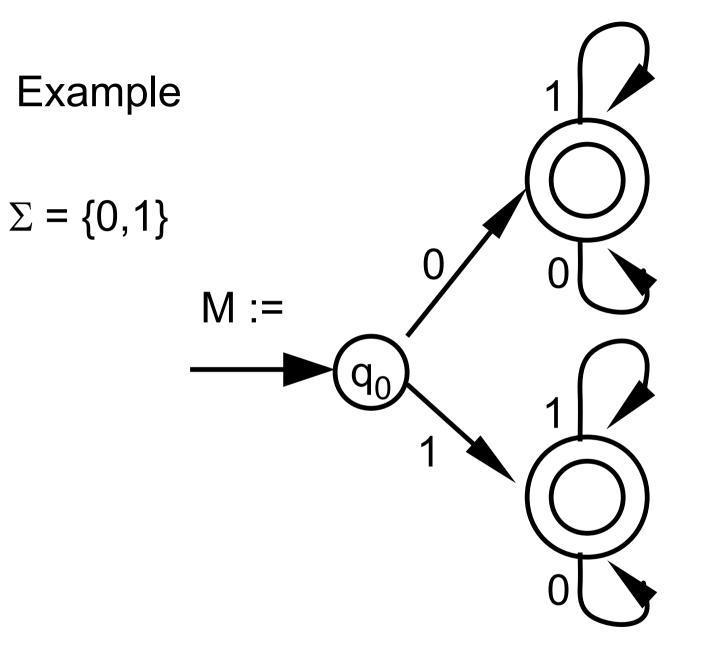




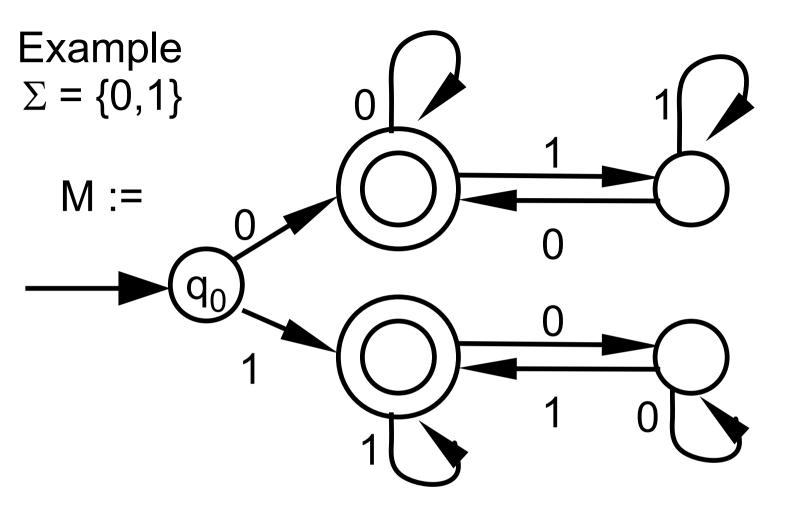
• L(M) = every possible string over {0,1}



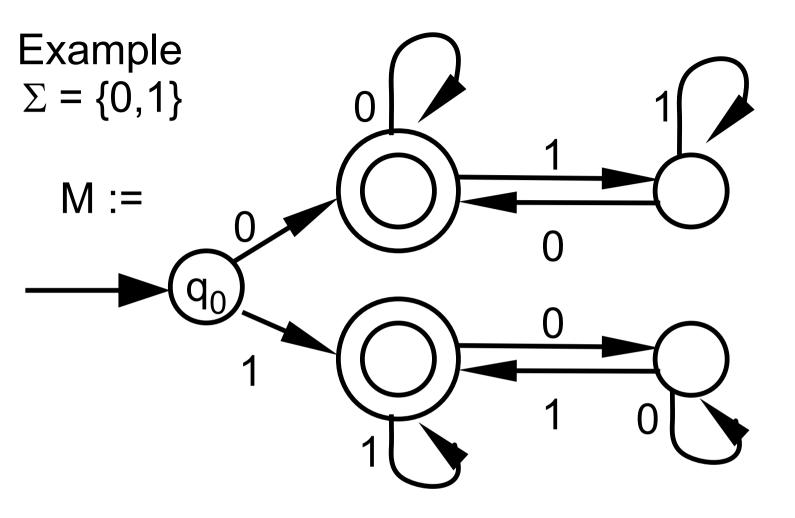
• L(M) = ?



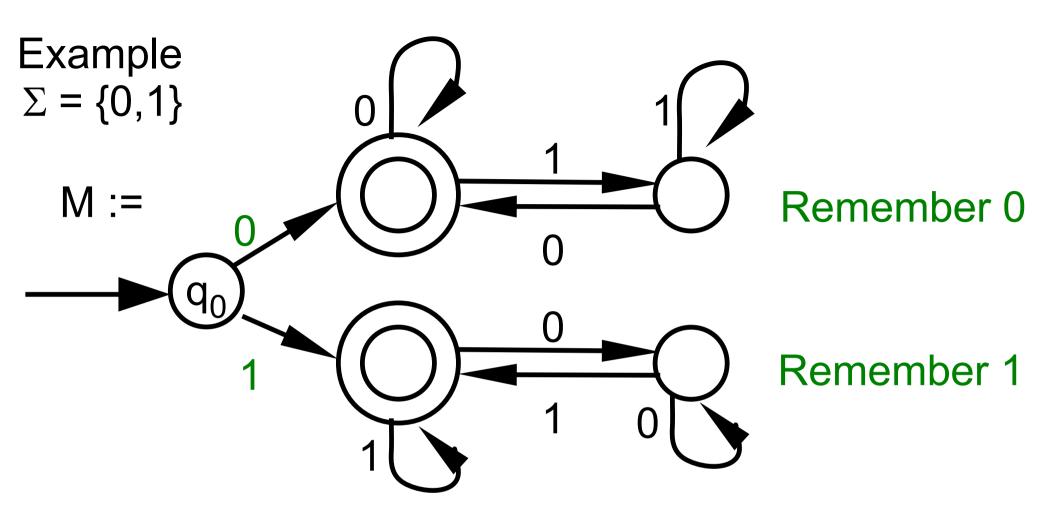
L(M) = all strings over {0,1} except empty string ε
 = {0,1}* - { ε }



• L(M) = ?

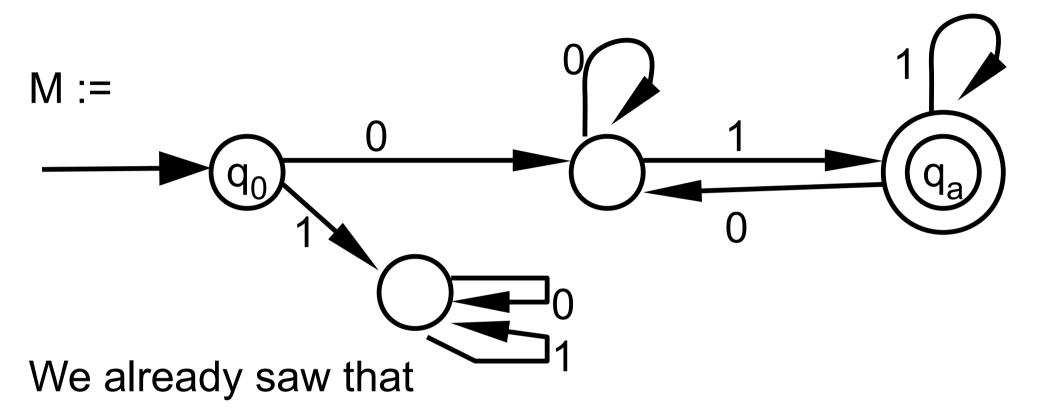


- L(M) = { w : w starts and ends with same symbol }
- Memory is encoded in ... what ?

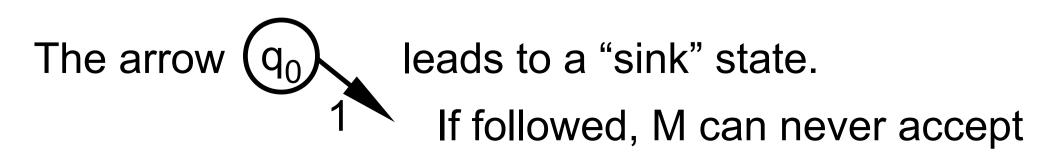


- L(M) = { w : w starts and ends with same symbol }
- Memory is encoded in states.
 DFA have finite states, so finite memory

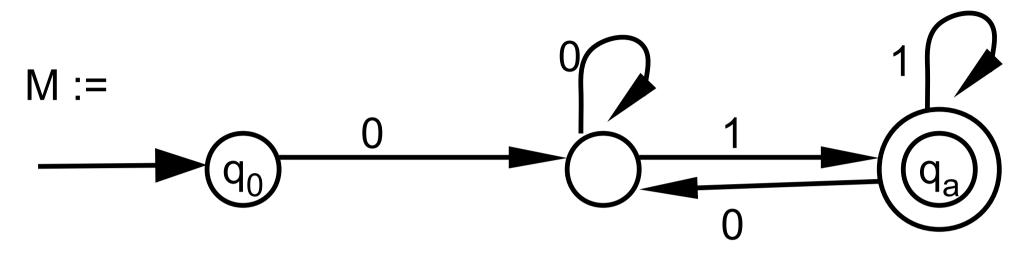
Convention:



L(M) = { w : w starts with 0 and ends with 1 }



Convention:



Don't need to write such arrows:

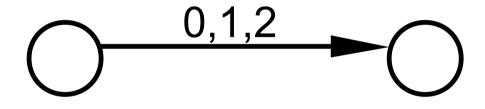
If, from some state, read symbol with no

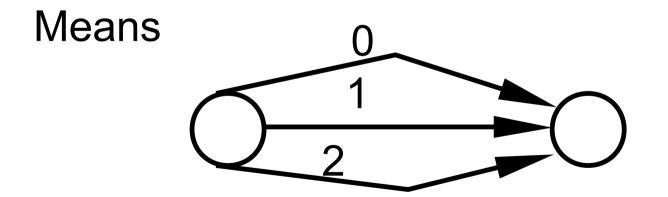
corresponding arrow, imagine M goes into "sink state" that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

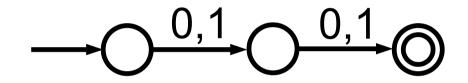
List multiple transition on same arrow:





This makes pictures more compact.

Example $\sum = \{0,1\}$



$$L(M) = ?$$

Example
$$\sum = \{0,1\}$$

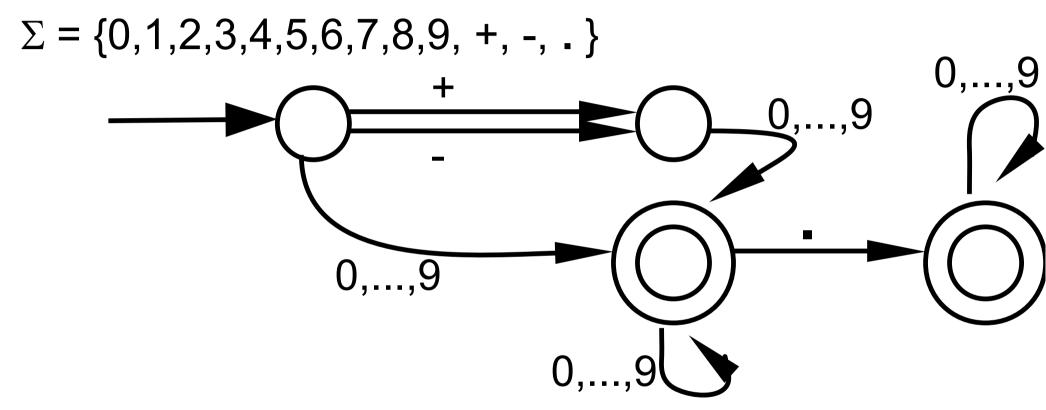
$$M =$$

$$\rightarrow O \xrightarrow{0,1} O \xrightarrow{0,1} O$$

$$L(M) = \sum^{2} = \{00, 01, 10, 11\}$$

Example from programming languages:

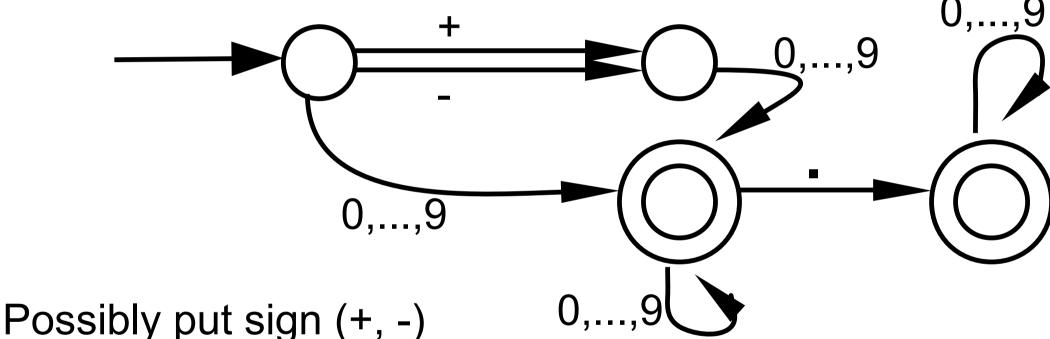
Recognize strings representing numbers:



Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

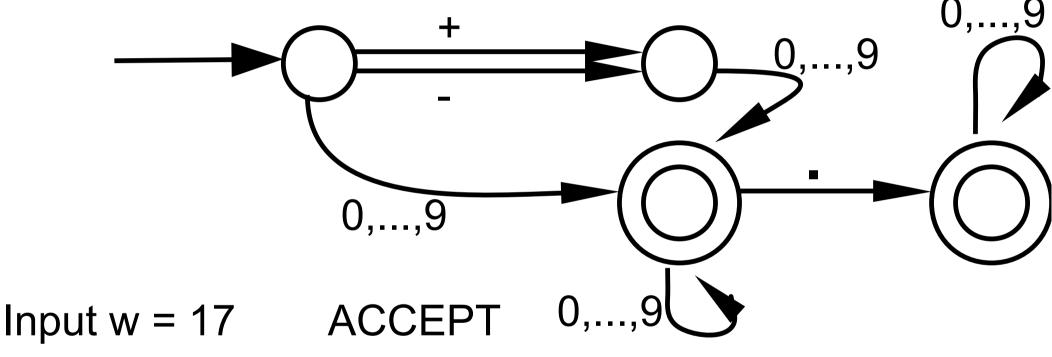
Recognize strings representing numbers:



- Follow with arbitrarily many digits, but at least one
- Possibly put decimal point
- Follow with arbitrarily many digits, possibly none

Example from programming languages:

Recognize strings representing numbers:



- Input w = + REJECT
- Input w = -3.25 ACCEPT
- Input w = +2.35-. REJECT

Example $\Sigma = \{0, 1\}$

What about { w : w has same number of 0 and 1 }

• Can you design a DFA that recognizes that?

• It seems you need infinite memory

• We will prove later that there is no DFA that recognizes that language !

Next: formal definition of DFA

Useful to prove various properties of DFA

Especially important to prove that things CANNOT be

recognized by DFA.

Useful to practice mathematical notation

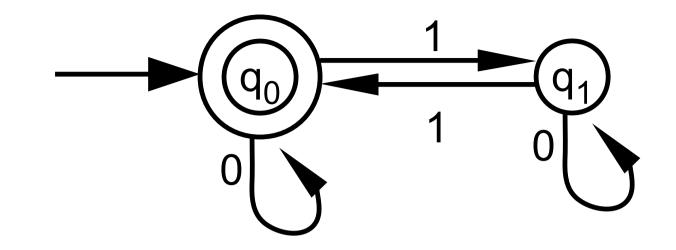
State diagram of a DFA:

- One or more states
- Some number of accept states O
- Labelled transitions exiting each state, _____ for every symbol in $\boldsymbol{\Sigma}$

Definition: A finite automaton (DFA) is a 5-tuple (Q, Σ, δ, q₀, F) where

- Q is a finite set of states
- $\boldsymbol{\Sigma}$ is the input alphabet
- δ : Q X $\Sigma \rightarrow$ Q is the transition function
- $\bullet q_0$ in Q is the start state
- $F \subseteq Q$ is the set of accept states

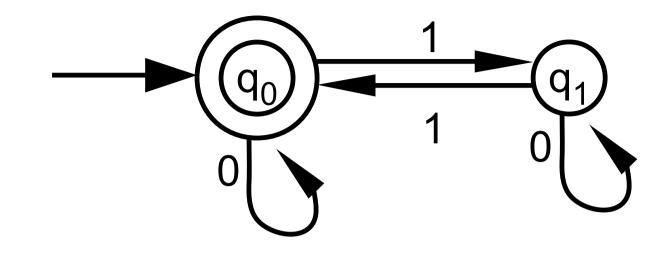
Q X Σ is the set of ordered pairs (a,b) : a \in Q, b \in Σ Example {q,r,s}X{0,1}={(q,0),(q,1),(r,0),(r,1),(s,0),(s,1)}



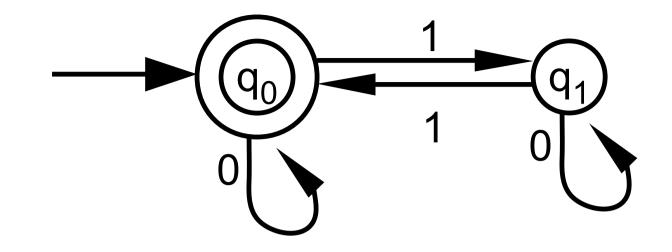
- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- Q = { q_0, q_1 }
- $\Sigma = \{0, 1\}$
- $\delta(q_0, 0) = ?$



- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = ?$



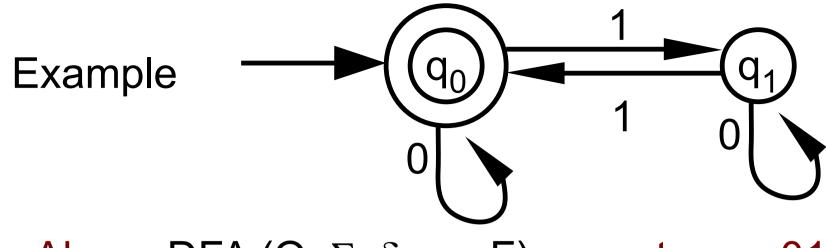
- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1$ $\delta(q_1, 0) = q_1 \quad \delta(q_1, 1) = q_0$
- ${\scriptstyle \bullet}\, q_0$ in Q is the start state
- F = ?



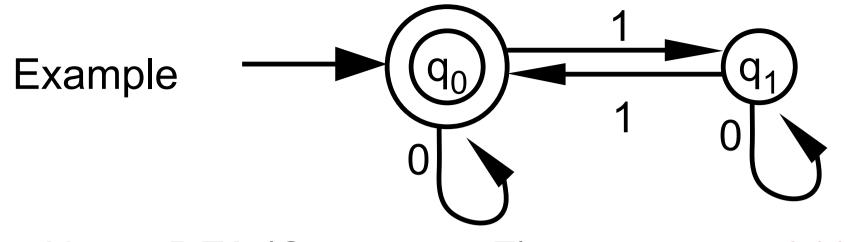
- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = q_0$ $\delta(q_0, 1) = q_1$ $\delta(q_1, 0) = q_1$ $\delta(q_1, 1) = q_0$
- $\bullet q_0$ in Q is the start state
- F = { q_0 } \subseteq Q is the set of accept states

• Definition: A DFA (Q, Σ , δ , q_0 , F) accepts a string w if • w = w₁ w₂ ... w_k where, $\forall 1 \le i \le k$, w_i is in Σ (the k symbols of w)

- The sequence of k+1 states r_0 , r_1 , ..., r_k where $r_i = is$ state DFA is in after reading i-th symbol in w: (1) $r_0 = q_0$, and (2) $r_{i+1} = \delta(r_i, w_{i+1}) \forall 0 \le i < k$ has r_k in F
- We call this sequence the trace of the DFA on w

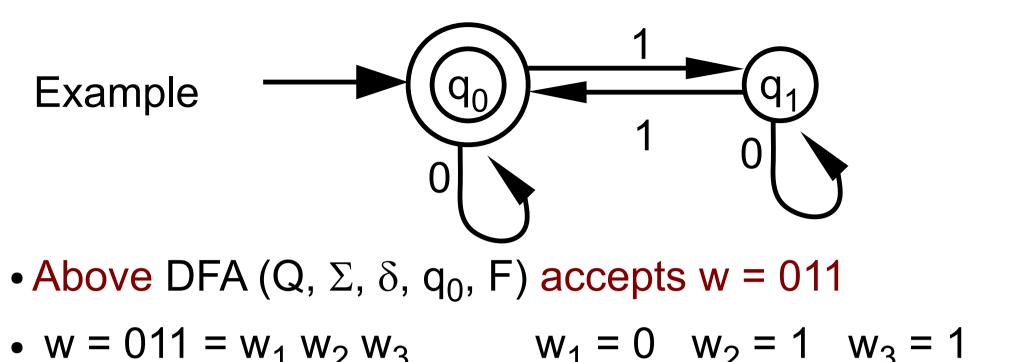


• Above DFA (Q, Σ , δ , q₀, F) accepts w = 011



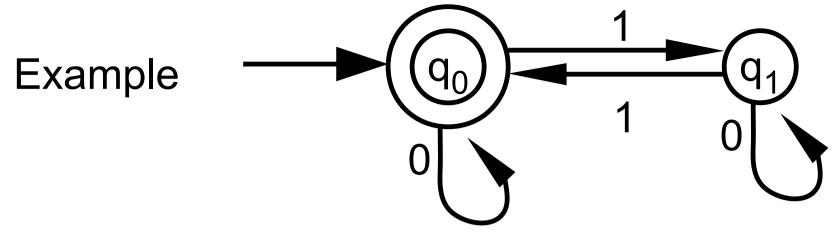
• Above DFA (Q, Σ , δ , q₀, F) accepts w = 011

• $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$



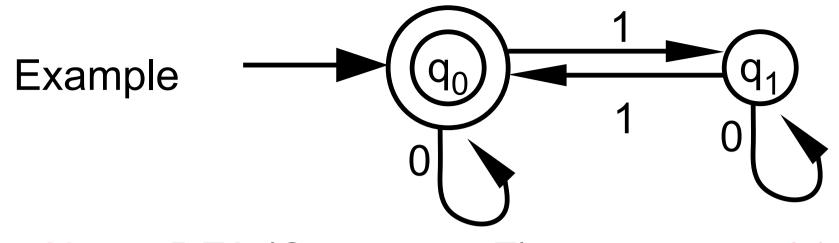
We must show trace of DFA on w ends in F, that is:

• The sequence of 3+1=4 states r_0 , r_1 , r_2 , r_3 such that: (1) $r_0 = q_0$ (2) $r_{i+1} = \delta(r_i, w_{i+1}) \forall 0 \le i < 3$ has r_3 in F



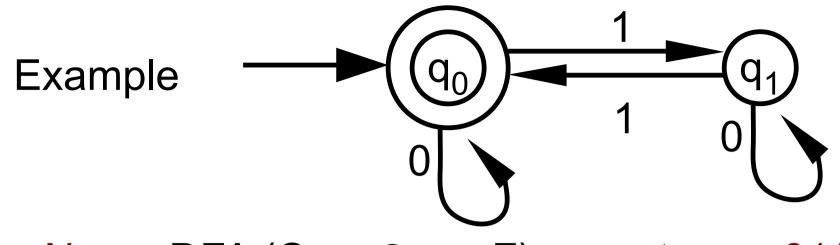
- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- r₁ := ?



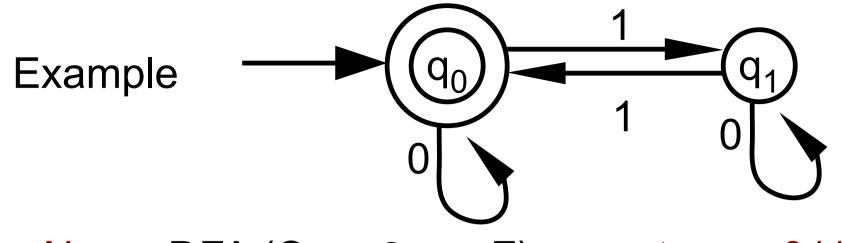
- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$ • $r_2 := ?$



- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$
- $r_2 = \delta(r_1, w_2) = \delta(q_0, 1) = q_1$
- r₃ := ?



- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

ONH

- $r_0 = q_0$
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$
- $r_2 = \delta(r_1, w_2) = \delta(q_0, 1) = q_1$
- $r_3 = \delta(r_2, w_3) = \delta(q_1, 1) = q_0$
- $r_3 = q_0$ in F

 Definition: For a DFA M, we denote by L(M) the set of strings accepted by M:

L(M) := { w : M accepts w}

We say M accepts or recognizes the language L(M)

Definition: A language L is regular
 if ∃ DFA M : L(M) = L

In the next lectures we want to:

• Understand power of regular languages

Develop alternate, compact notation to specify regular languages

Example: Unix command *grep '*\<*c.*h*\>' file selects all words starting with c and ending with h in *file*

• Understand power of regular languages:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2$: w_1 in A and w_2 in B }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \; : k \geq 0$, $w_i \; in \; A \; \; for \; every \; i \; \}$

• Are these languages regular?

• Understand power of regular languages:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2$: w_1 in A and w_2 in B }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

 Terminology: Are regular languages closed under not, U, o, * ?

If A is a regular language, then so is (not A)

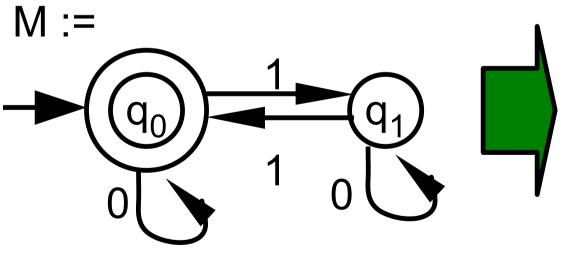
If A is a regular language, then so is (not A)

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example:

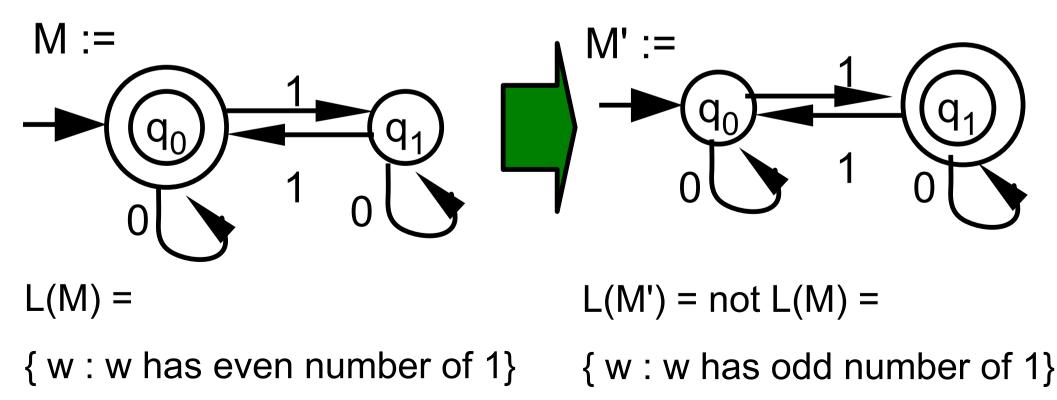


L(M) =

{ w : w has even number of 1}

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example:



- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A.

This definition is the creative step of this proof, the rest is (perhaps complicated but) mechanical "unwrapping definitions"

- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A. Define DFA M' = (Q, Σ , δ , q₀, F'), where F' := not F.

- We need to show L(M') = not L(M), that is:

- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A. Define DFA M' = (Q, Σ , δ , q₀, F'), where F' := not F.

We need to show L(M') = not L(M), that is:
 for any w, M' accepts w ←→ M does not accept w.

• Note that the traces of M and M' on w ... ?

- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A. Define DFA M' = (Q, Σ , δ , q₀, F'), where F' := not F.

We need to show L(M') = not L(M), that is:
 for any w, M' accepts w ←→ M does not accept w

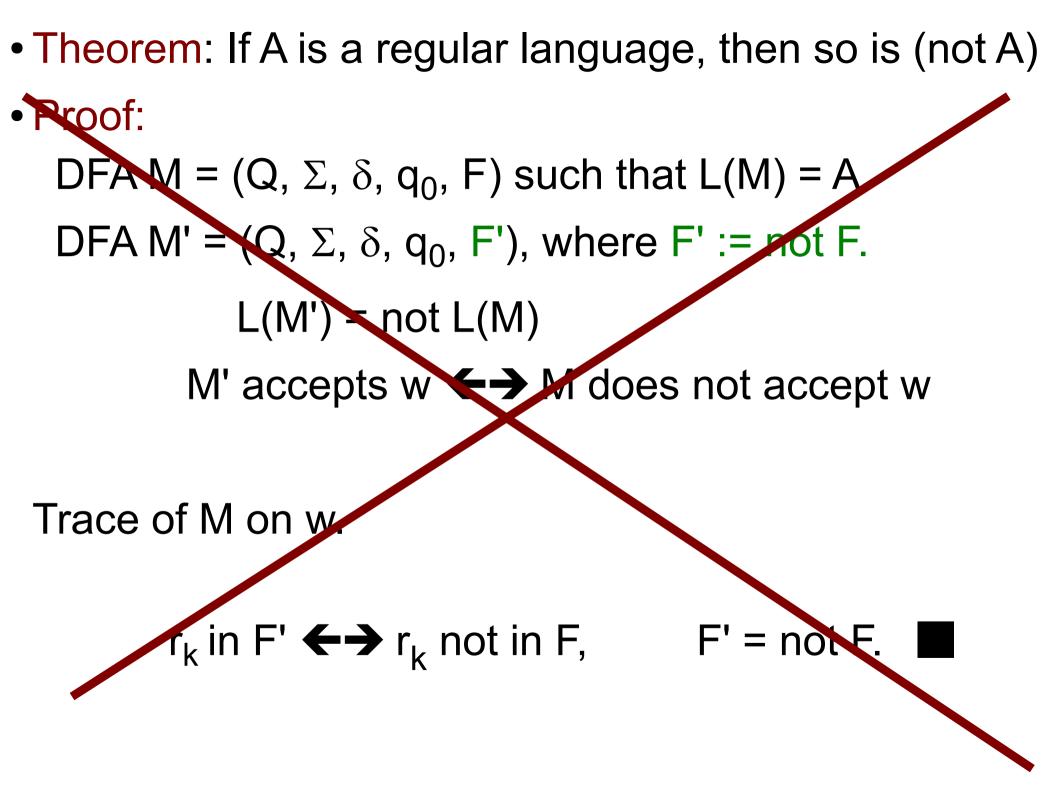
- Note that the traces of M and M' on w are equal
- \bullet Let r_k be the last state in this trace
- Note that r_k in F' $\leftarrow \rightarrow r_k$ not in F, since F' = not F.

What is a proof?

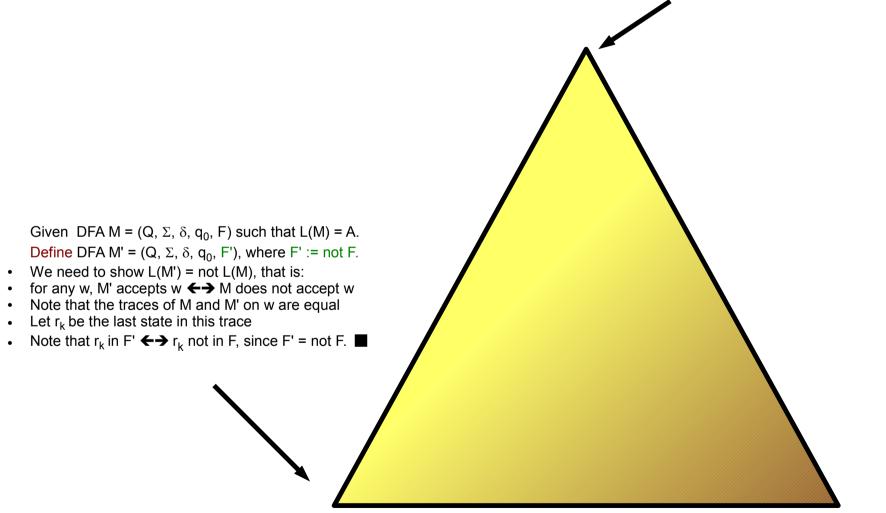
 A proof is an explanation, written in English, of why something is true.

• Every sentence must be logically connected to the previous ones, often by "so", "hence", "since", etc.

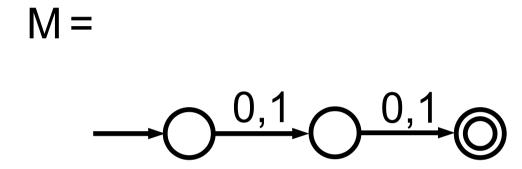
• Your audience is a human being, NOT a machine.



What is a proof?



To know a proof means to know all the pyramid



$$L(M) = \sum^2 = \{00, 01, 10, 11\}$$

What is a DFA M' : L(M') = not \sum^2 = all strings except those of length 2 ? Example $\sum = \{0,1\}$

$$\longrightarrow \bigcirc 0,1 \bigcirc$$

$$L(M') = not \sum^2 = \{0,1\}^* - \{00,01,10,11\}$$

Do not forget the convention about the sink state!

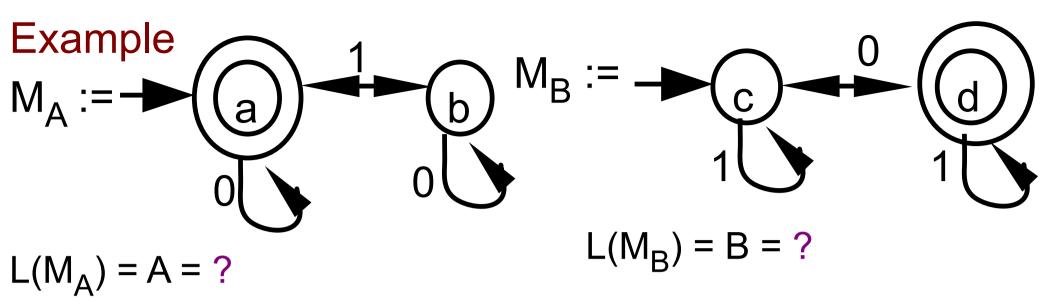
- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }REGULAR
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2$: w_1 in A and w_2 in B }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

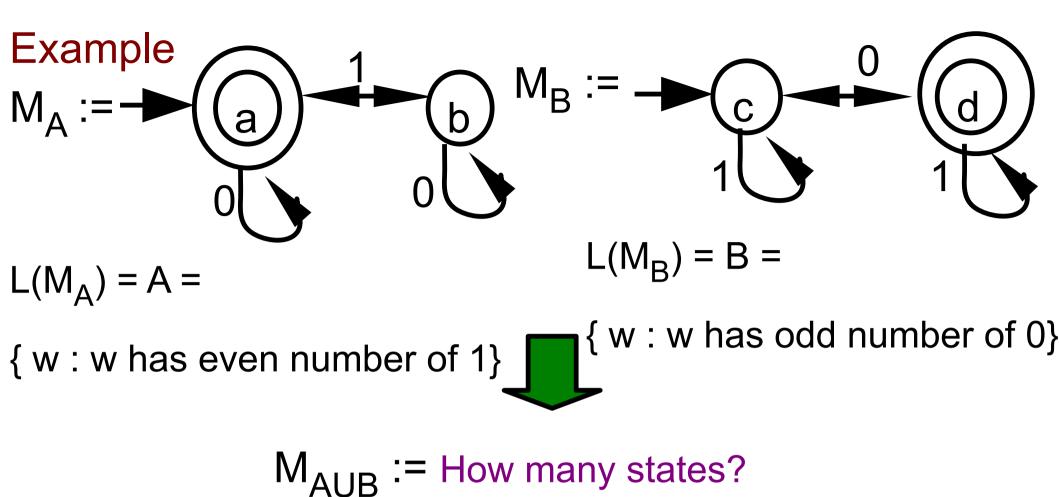
• Theorem: If A, B are regular, then so is A U B

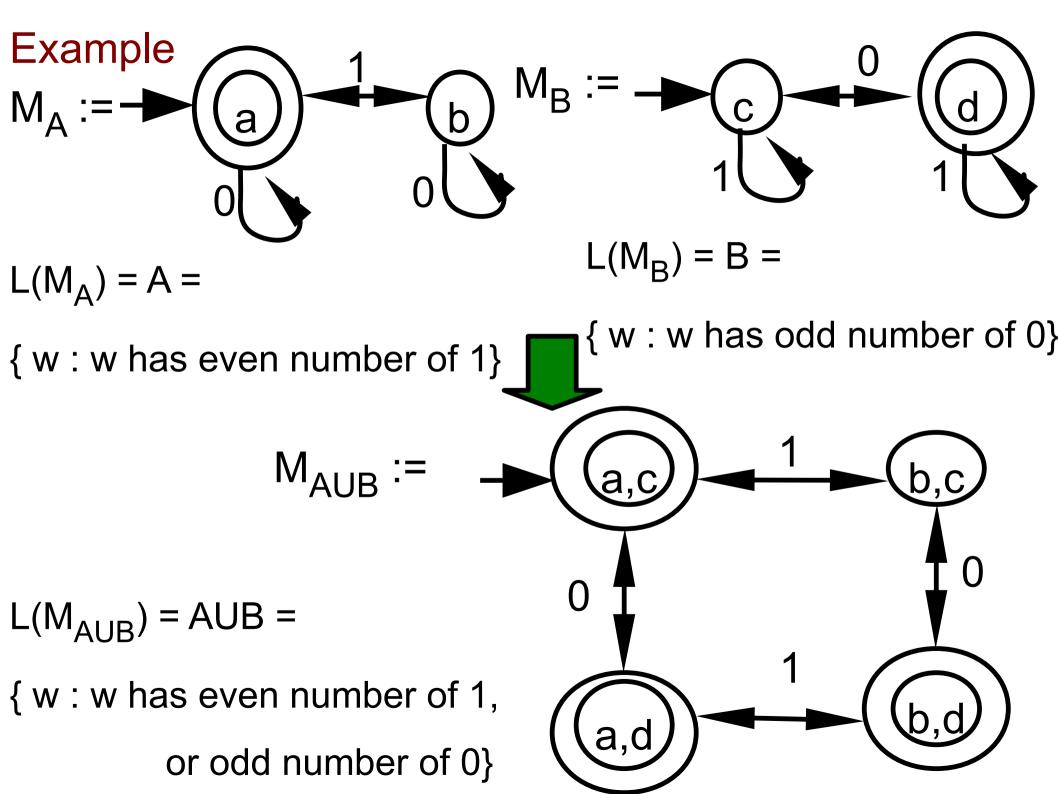
Proof idea: Take Cartesian product of states

In a pair (q,q'), q tracks DFA for A, q' tracks DFA for B.

Next we see an example.
 In it we abbreviate
 with







- Theorem: If A, B are regular, then so is A U B
- Proof:

Given DFA M_A = (Q_A, Σ , δ_A ,q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, Σ , δ_B ,q_B, F_B) such that L(M) = B. **Define** DFA M = (Q, Σ , δ , q₀, F), where

Q := ?

- Theorem: If A, B are regular, then so is A U B
- Proof:
 - Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ such that L(M) = A, DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ such that L(M) = B. Define DFA M = (Q, Σ, δ, q_0, F), where $Q := Q_A X Q_B$ $q_0 := ?$

- Theorem: If A, B are regular, then so is A U B
- Proof:
 - Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) such that L(M) = B. Define DFA M = (Q, Σ , δ , q₀, F), where Q := Q_A X Q_B q₀ := (q_A, q_B) F := ?

- Theorem: If A, B are regular, then so is A U B
- Proof:

Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) such that L(M) = B. **Define** DFA M = (Q, Σ , δ , q_0 , F), where $Q := Q_A X Q_B$ $q_0 := (q_A, q_B)$ $F := \{(q,q') \in Q : q \in F_A \text{ or } q' \in F_B \}$ δ((q,q'), v) := (?, ?)

- Theorem: If A, B are regular, then so is A U B
- Proof:

Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) such that L(M) = B. **Define** DFA M = (Q, Σ , δ , q_0 , F), where $Q := Q_A X Q_B$ $q_0 := (q_A, q_B)$ $F := \{(q,q') \in Q : q \in F_A \text{ or } q' \in F_B \}$

- δ ((q,q'), ν) := (δ_A (q,ν), δ_B (q',ν))
- We need to show L(M) = A U B that is, for any w:
 M accepts w ←→ M_A accepts w or M_B accepts w

- Proof M accepts $w \rightarrow M_A$ accepts w or M_B accepts w
- Suppose that M accepts w of length k.
- From the definitions of accept and M, the trace (s₀ , t₀) , ..., (s_k , t_k) of M on w has (s_k,t_k)∈?

- Proof M accepts $w \rightarrow M_A$ accepts w or M_B accepts w
- Suppose that M accepts w of length k.
- From the definitions of accept and M, the trace $(s_0, t_0), ..., (s_k, t_k)$ of M on w has $(s_k, t_k) \in F$.
- By our definition of F, what can we say about (s_k, t_k) ?

- Proof M accepts $w \rightarrow M_A$ accepts w or M_B accepts w
- Suppose that M accepts w of length k.
- From the definitions of accept and M, the trace (s_0, t_0) , ..., (s_k, t_k) of M on w has $(s_k, t_k) \in F$.
- \bullet By our definition of F, $s_k \in F_A$ or $t_k \in F_B.$
- Without loss of generality, assume $s_k \in F_A$. Then M_A accepts w because s_0 , ..., s_k is the trace of M_A on w, and $s_k \in F_A$.

- Proof M accepts w ←M_A accepts w or M_B accepts w
- W/out loss of generality, assume M_A accepts w, |w|=k

- From the definition of M_A accepts w, the trace r_0 , ..., r_k of M_A on w has r_k in F_A
- \bullet Let t_0 , …, t_k be the trace of M_B on w

• M accepts w because the trace of M on w is ??????????

- Proof M accepts w ←M_A accepts w or M_B accepts w
- W/out loss of generality, assume M_A accepts w, |w|=k

• From the definition of M_A accepts w, the trace r_0 , ..., r_k of M_A on w has r_k in F_A

• Let t_0 , ..., t_k be the trace of M_B on w

• M accepts w because the trace of M on w is $(r_0, t_0), ..., (r_k, t_k)$ and (r_k, t_k) is in F, by our definition of F.

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

• Other two are more complicated!

 Plan: we introduce NFA prove that NFA are equivalent to DFA reprove A U B, prove A o B, A* regular, using NFA

Big picture

- All languages
- Decidable

Turing machines

- NP
- P
- Context-free

Context-free grammars, push-down automata

Regular

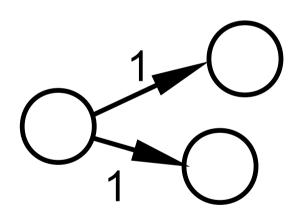
Automata, non-deterministic automata, regular expressions

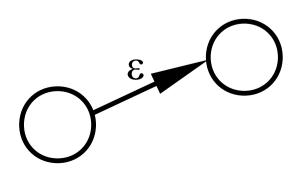
Non deterministic finite automata (NFA)

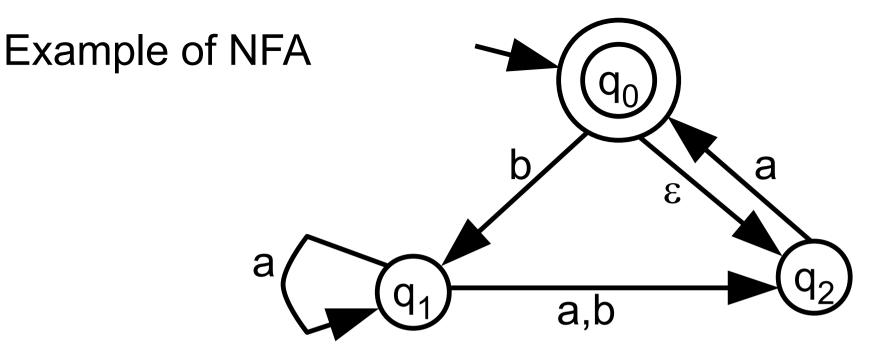
 DFA: given state and input symbol, unique choice for next state, deterministic:

 Next we allow multiple choices, non-deterministic

We also allow ε-transitions:
 can follow without reading anything

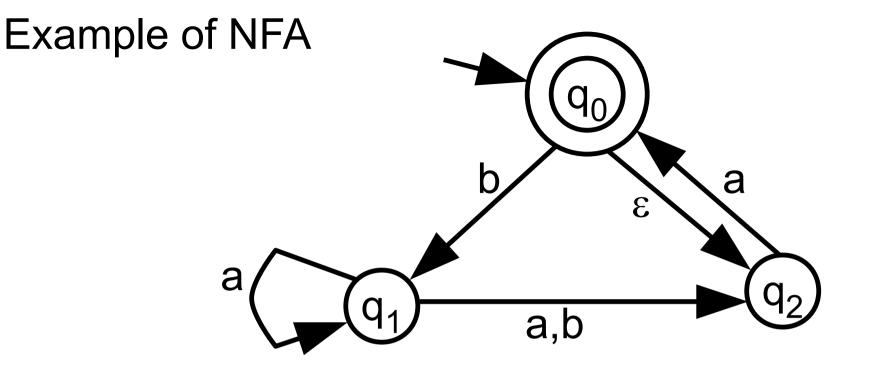






Intuition of how it computes:

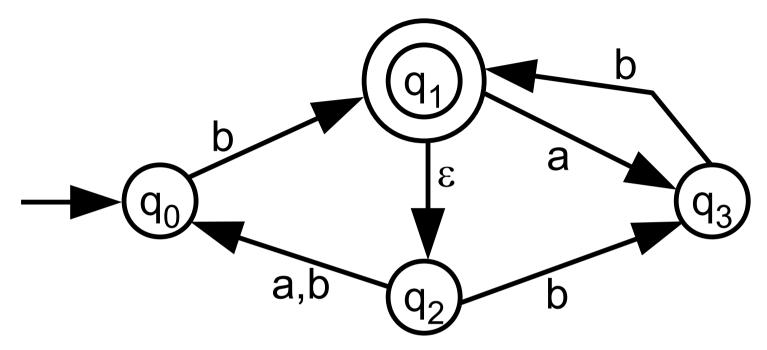
- Accept string w if there is a way to follow transitions that ends in accept state
- Transitions labelled with symbol in $\Sigma = \{a, b\}$ must be matched with input
- ϵ transitions can be followed without matching



Example:

- Accept a (first follow ε -transition)
- Accept baaa

ANOTHER Example of NFA



Example:

Accept bab (two accepting paths, one

uses the ε -transition)

 Reject ba (two possible paths, but neither has final state = q₁) • Definition: A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ , δ , q₀, F) where

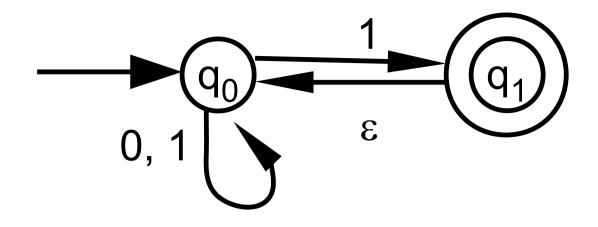
- Q is a finite set of states
- Σ is the input alphabet
- δ : Q X (Σ U { ϵ }) \rightarrow Powerset(Q)
- q₀ in Q is the start state
- $F \subseteq Q$ is the set of accept states

Recall: Powerset(Q) = set of all subsets of Q
 Example: Powerset({1,2}) = ?

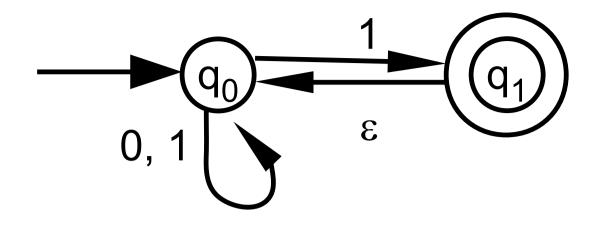
Definition: A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ, δ, q₀, F) where

- Q is a finite set of states
- Σ is the input alphabet
- δ : Q X (Σ U { ϵ }) \rightarrow Powerset(Q)
- q₀ in Q is the start state
- $F \subseteq Q$ is the set of accept states

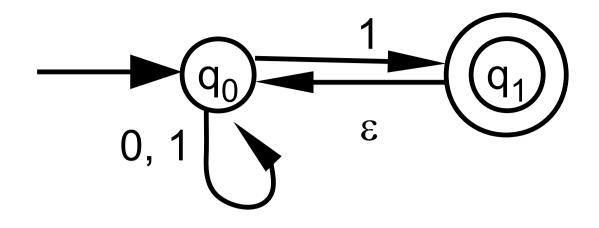
Recall: Powerset(Q) = set of all subsets of Q
 Example: Powerset({1,2}) = {Ø, {1}, {2}, {1,2} }



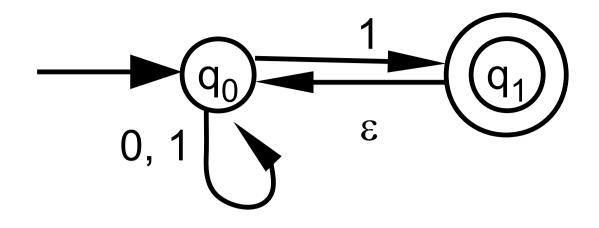
- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = ?$



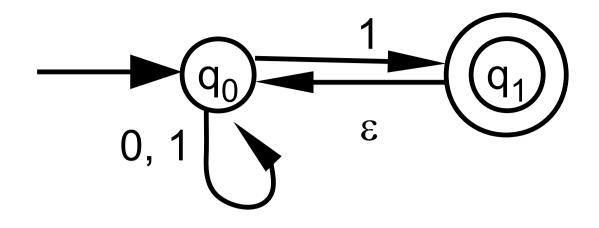
- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = ?$



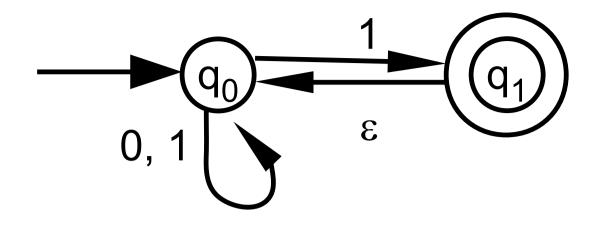
- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \quad \delta(q_0, \varepsilon) = ?$



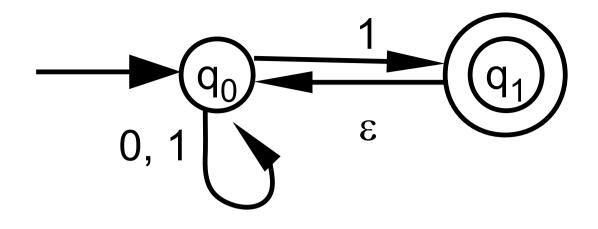
- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \quad \delta(q_0, \varepsilon) = \emptyset$ $\delta(q_1, 0) = ?$



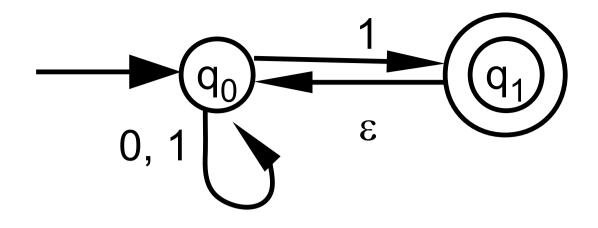
- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\begin{aligned} \bullet \, \delta(q_0 \ , 0) &= \{q_0\} \quad \delta(q_0 \ , 1) &= \{q_0, q_1\} \quad \delta(q_0 \ , \varepsilon) &= \varnothing \\ \delta(q_1 \ , 0) &= \varnothing \quad \delta(q_1 \ , 1) &= ? \end{aligned}$



- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\begin{aligned} \bullet \, \delta(q_0 \ , 0) &= \{q_0\} \quad \delta(q_0 \ , 1) = \{q_0, q_1\} & \delta(q_0 \ , \varepsilon) = \emptyset \\ \delta(q_1 \ , 0) &= \emptyset & \delta(q_1 \ , 1) = \emptyset & \delta(q_1 \ , \varepsilon) = ? \end{aligned}$



- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\bullet \Sigma = \{0,1\}$
- $\begin{aligned} \bullet \, \delta(q_0 \ , 0) &= \{q_0\} \quad \delta(q_0 \ , 1) = \{q_0, q_1\} \quad \delta(q_0 \ , \varepsilon) = \emptyset \\ \delta(q_1 \ , 0) &= \emptyset \quad \delta(q_1 \ , 1) = \emptyset \quad \delta(q_1 \ , \varepsilon) = \{q_0\} \end{aligned}$
- $\bullet q_0$ in Q is the start state
- F = ?

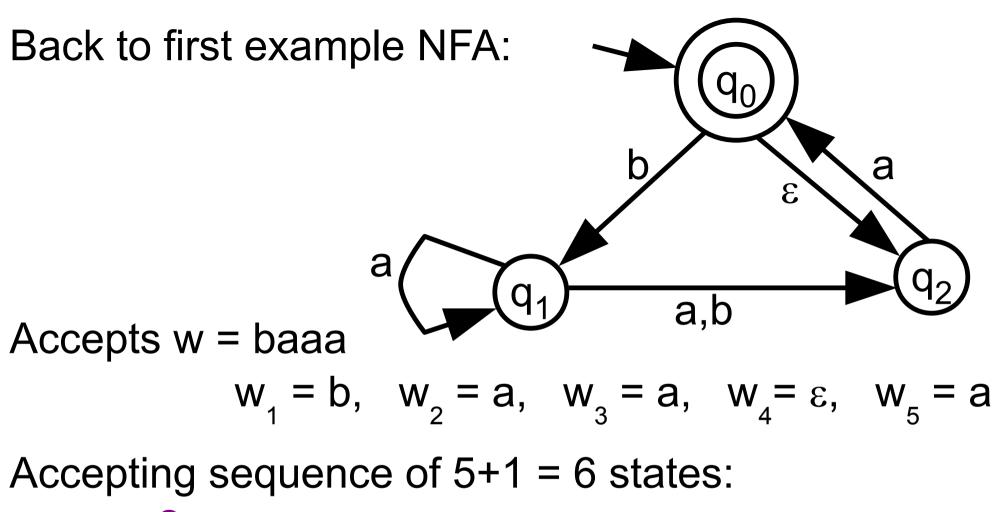


- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- Q = { q_0, q_1 }
- $\Sigma = \{0,1\}$
- $\begin{aligned} \bullet \, \delta(q_0 \ , 0) &= \{q_0\} \quad \delta(q_0 \ , 1) = \{q_0, q_1\} \quad \delta(q_0 \ , \varepsilon) = \emptyset \\ \delta(q_1 \ , 0) &= \emptyset \quad \delta(q_1 \ , 1) = \emptyset \quad \delta(q_1 \ , \varepsilon) = \{q_0\} \end{aligned}$
- $\bullet q_0$ in Q is the start state
- \bullet F = { q1} \subseteq Q is the set of accept states

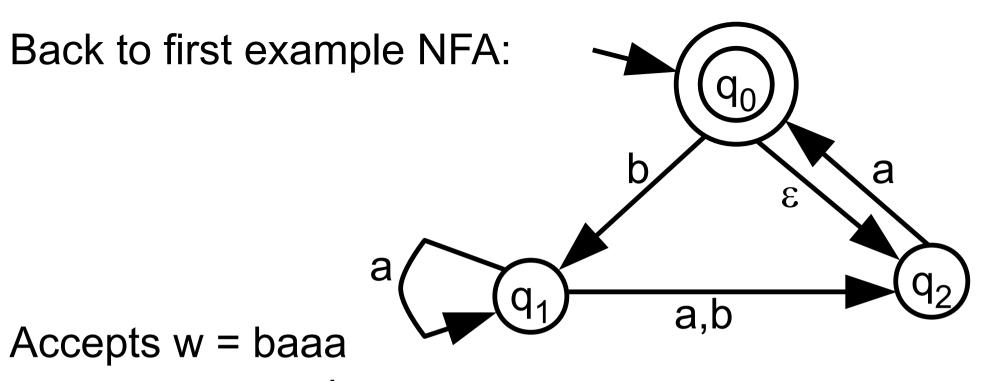
Definition: A NFA (Q, Σ, δ, q₀, F) accepts a string w if ∃ integer k, ∃k strings w₁, w₂, ..., w_k such that
w = w₁ w₂ ... w_k where ∀ 1 ≤ i ≤ k, w_i ∈ Σ U {ε} (the symbols of w, or ε)

- \exists sequence of k+1 states $r_0, r_1, ..., r_k$ in Q such that:
- $r_0 = q_0$
- $r_{i+1} \in \delta(r_i, w_{i+1}) \forall 0 \le i < k$
- r_k is in F

• Differences with DFA are in green

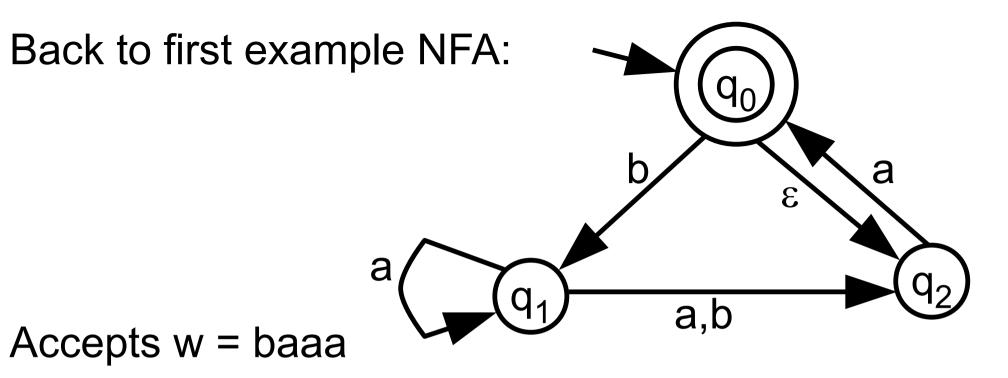


 $r_0 = ?$



$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

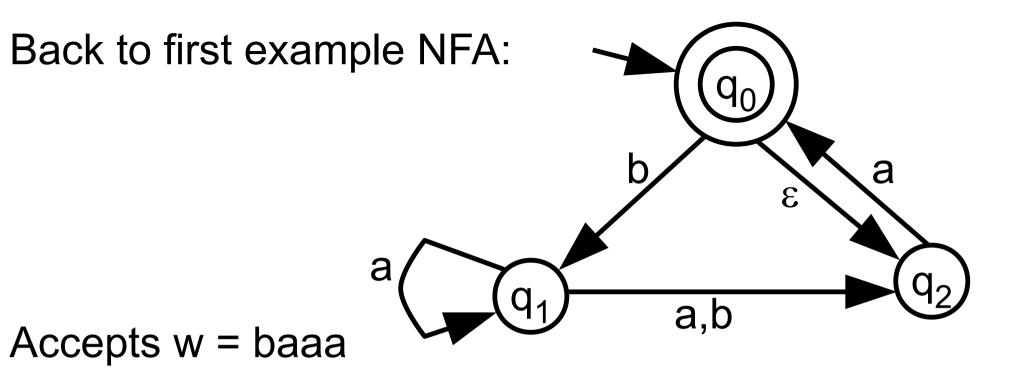
$$r_0 = q_0, r_1 = ?$$



$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = ?$$

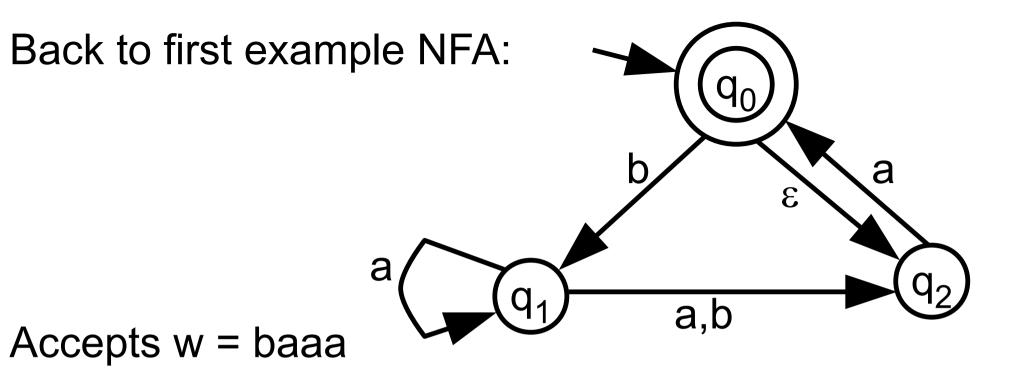
$$\mathsf{r}_1 \in \delta(\mathsf{r}_{_0},\mathsf{b}) = \{\mathsf{q}_{_1}\}$$



$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = ?$$

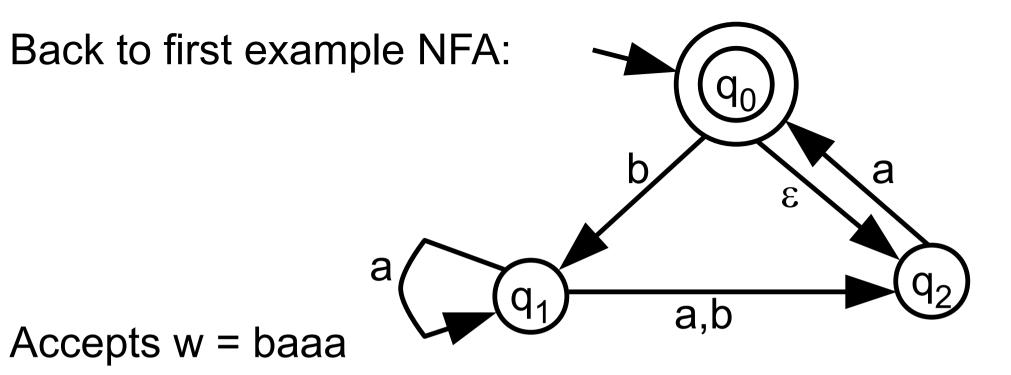
$$r_1 \in \delta(r_0, b) = \{q_1\} \quad r_2 \in \delta(r_1, a) = \{q_1, q_2\}$$



$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = q_0, r_4 = ?$$

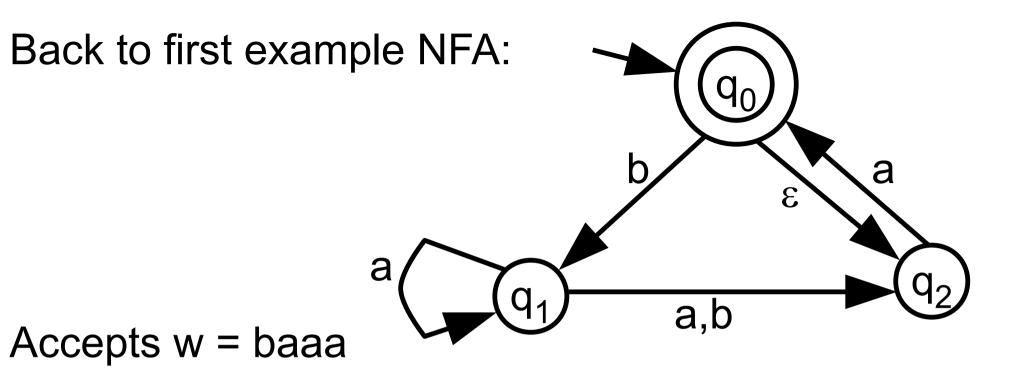
$$\begin{split} \mathbf{r}_1 &\in \delta(\mathbf{r}_0, \mathbf{b}) = \{\mathbf{q}_1\} \quad \mathbf{r}_2 \in \delta(\mathbf{r}_1, \mathbf{a}) = \{\mathbf{q}_1, \mathbf{q}_2\} \\ \mathbf{r}_3 &\in \delta(\mathbf{r}_2, \mathbf{a}) = \{\mathbf{q}_0\} \end{split}$$



$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$\mathbf{r}_{0} = \mathbf{q}_{0}, \quad \mathbf{r}_{1} = \mathbf{q}_{1}, \quad \mathbf{r}_{2} = \mathbf{q}_{2}, \quad \mathbf{r}_{3} = \mathbf{q}_{0}, \quad \mathbf{r}_{4} = \mathbf{q}_{2}, \quad \mathbf{r}_{5} = \mathbf{?}$$

$$\begin{split} \mathbf{r}_{1} &\in \delta(\mathbf{r}_{_{0}}, \mathbf{b}) = \{\mathbf{q}_{_{1}}\} \quad \mathbf{r}_{2} \in \delta(\mathbf{r}_{_{1}}, \mathbf{a}) = \{\mathbf{q}_{_{1}}, \mathbf{q}_{_{2}}\} \\ \mathbf{r}_{3} &\in \delta(\mathbf{r}_{_{2}}, \mathbf{a}) = \{\mathbf{q}_{_{0}}\} \quad \mathbf{r}_{4} \in \delta(\mathbf{r}_{_{3}}, \varepsilon) = \{\mathbf{q}_{_{2}}\} \end{split}$$



$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$\mathbf{r}_{0} = \mathbf{q}_{0}, \quad \mathbf{r}_{1} = \mathbf{q}_{1}, \quad \mathbf{r}_{2} = \mathbf{q}_{2}, \quad \mathbf{r}_{3} = \mathbf{q}_{0}, \quad \mathbf{r}_{4} = \mathbf{q}_{2}, \quad \mathbf{r}_{5} = \mathbf{q}_{0}$$

Transitions:

$$\begin{aligned} \mathbf{r}_{1} \in \delta(\mathbf{r}_{0}, \mathbf{b}) &= \{\mathbf{q}_{1}\} & \mathbf{r}_{2} \in \delta(\mathbf{r}_{1}, \mathbf{a}) &= \{\mathbf{q}_{1}, \mathbf{q}_{2}\} \\ \mathbf{r}_{3} \in \delta(\mathbf{r}_{2}, \mathbf{a}) &= \{\mathbf{q}_{0}\} & \mathbf{r}_{4} \in \delta(\mathbf{r}_{3}, \mathbf{\epsilon}) &= \{\mathbf{q}_{2}\} & \mathbf{r}_{5} \in \delta(\mathbf{r}_{4}, \mathbf{a}) &= \{\mathbf{q}_{0}\} \end{aligned}$$

 NFA are at least as powerful as DFA, because DFA are a special case of NFA

• Are NFA more powerful than DFA?

• Surprisingly, they are not:

• Theorem:

For every NFA N there is DFA M : L(M) = L(N)

• Theorem:

For every NFA N there is DFA M : L(M) = L(N)

- Construction without ϵ transitions
- Given NFA N (Q, Σ , δ , q, F)
- Construct DFA M (Q', Σ , δ ', q', F') where:
- Q' := Powerset(Q)
- q' = {q}
- F' = { S : S \in Q' and S contains an element of F}
- δ'(S, a) := U_{s ∈ S} δ(s,a)
 = { t : t ∈ δ (s,a) for some s ∈ S }

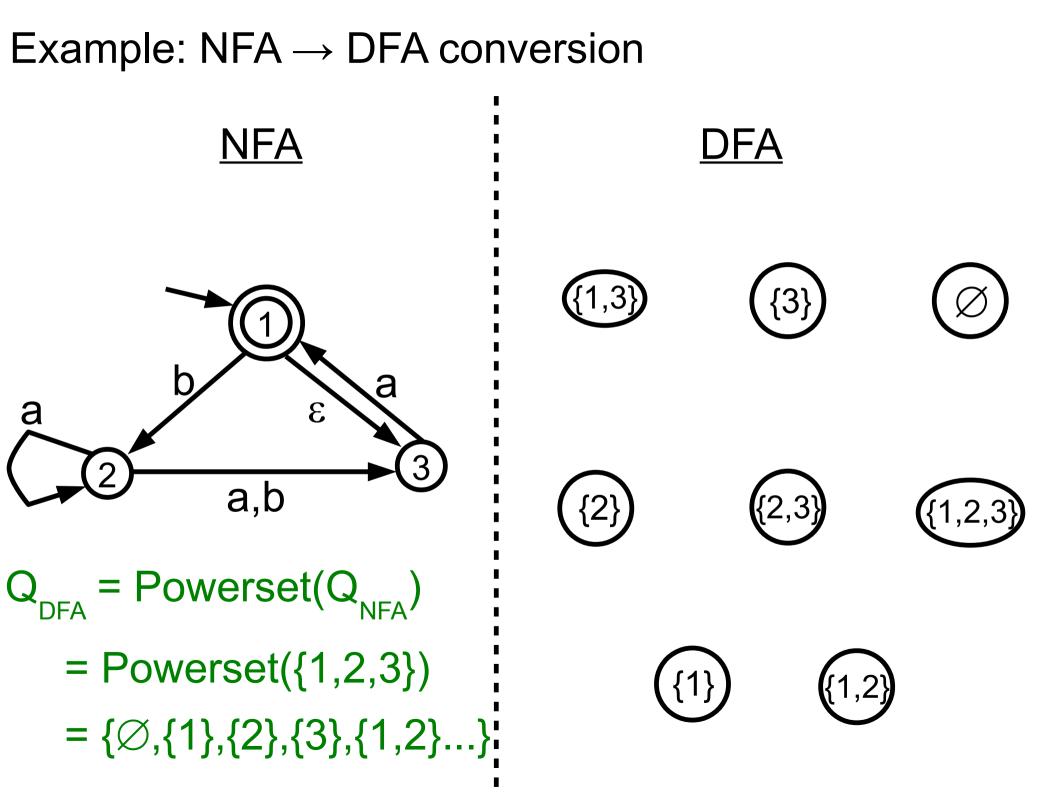
• It remains to deal with $\boldsymbol{\epsilon}$ transitions

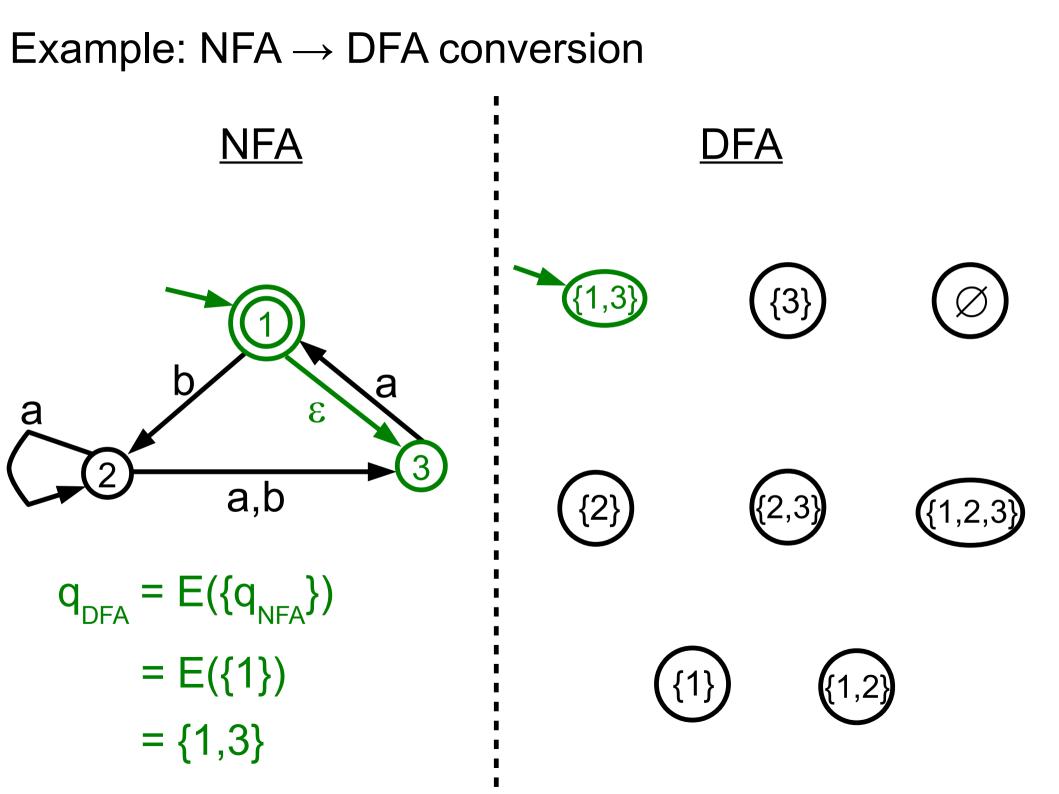
 Definition: Let S be a set of states.
 E(S) := { q : q can be reached from some state s in S traveling along 0 or more ε transitions }

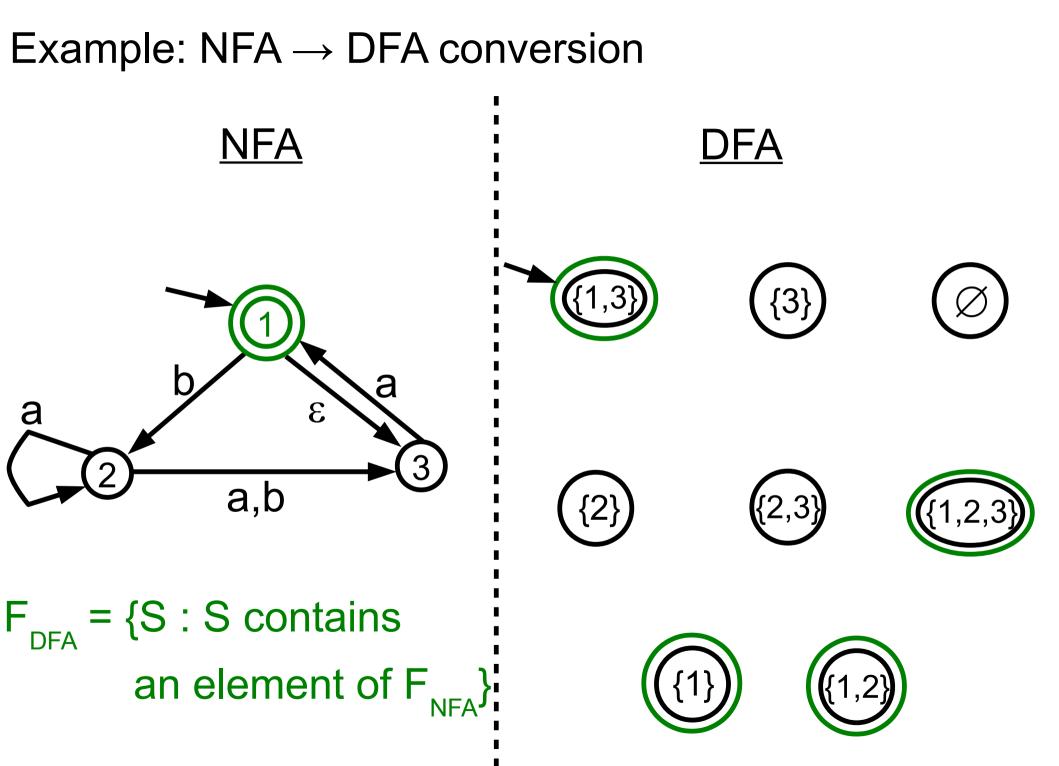
• We think of following ϵ transitions at beginning, or right after reading an input symbol in Σ

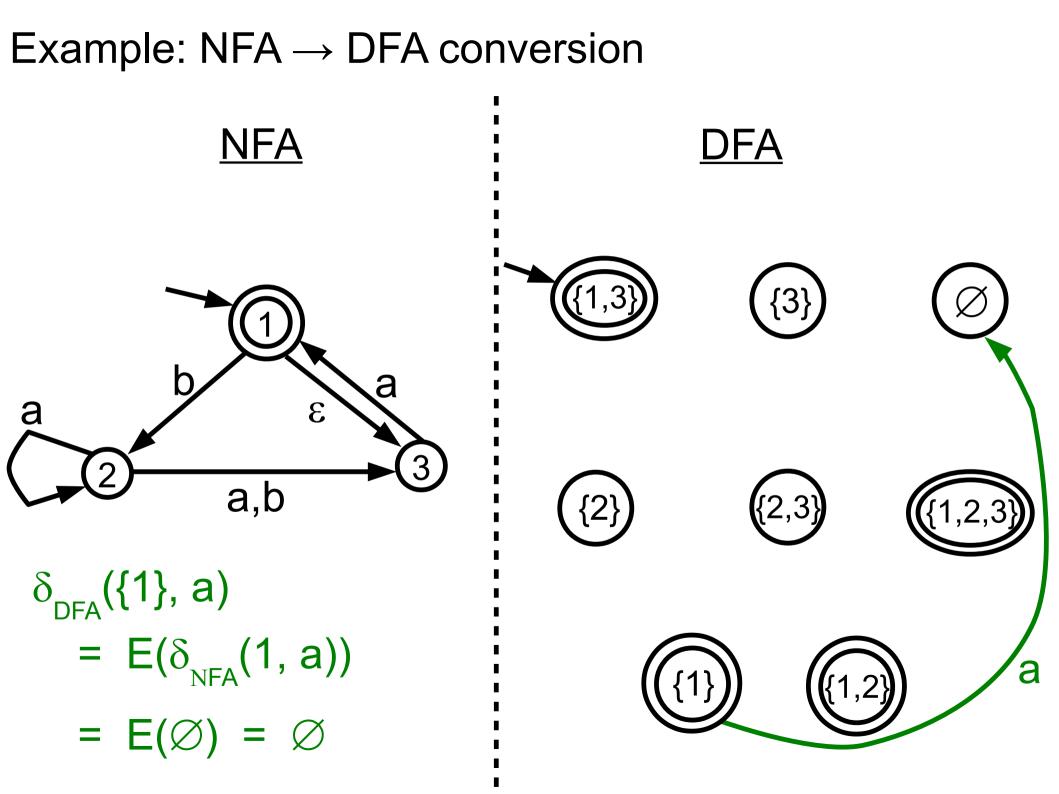
- Theorem:
- For every NFA N there is DFA M : L(M) = L(N)

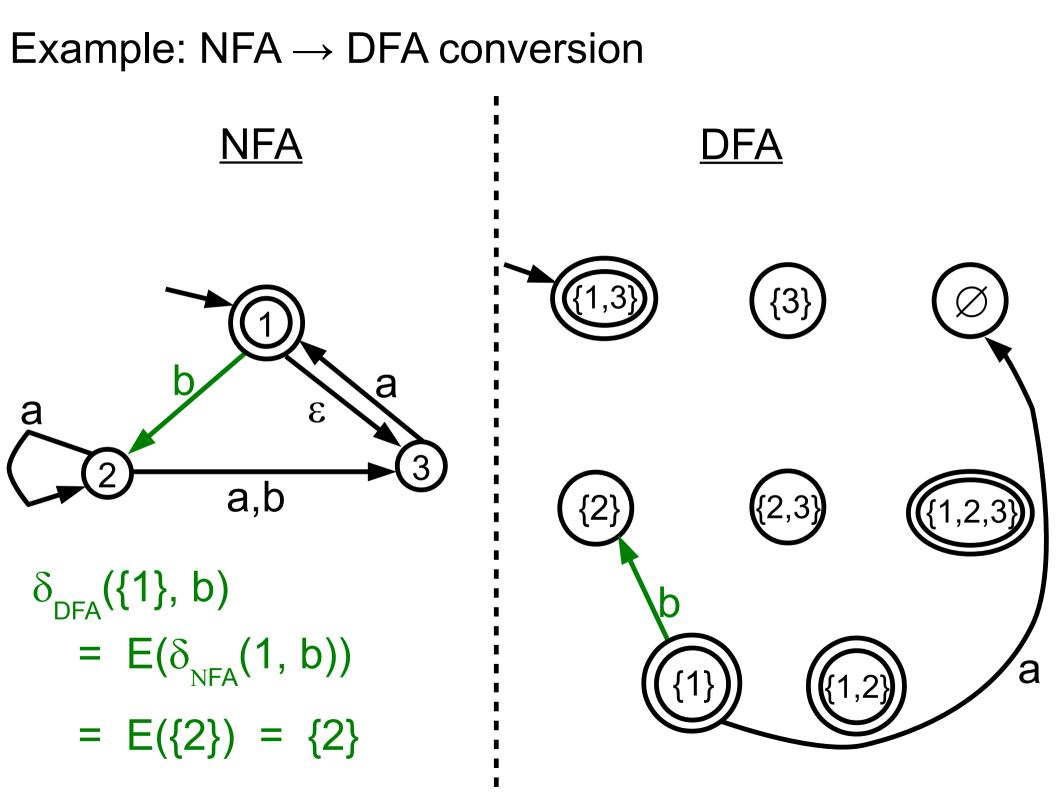
- Construction including ϵ transitions
- Given NFA N (Q, Σ , δ , q, F)
- Construct DFA M (Q', Σ , δ ', q', F') where:
- Q' := Powerset(Q)
- q' = E({q})
- $\bullet \ F' = \{ \ S : S \in Q' \ and \ S \ contains \ an \ element \ of \ F \}$
- δ'(S, a) := E(U_{s ∈ S} δ(s,a))
 = { t : t ∈ E(δ (s,a)) for some s ∈ S }

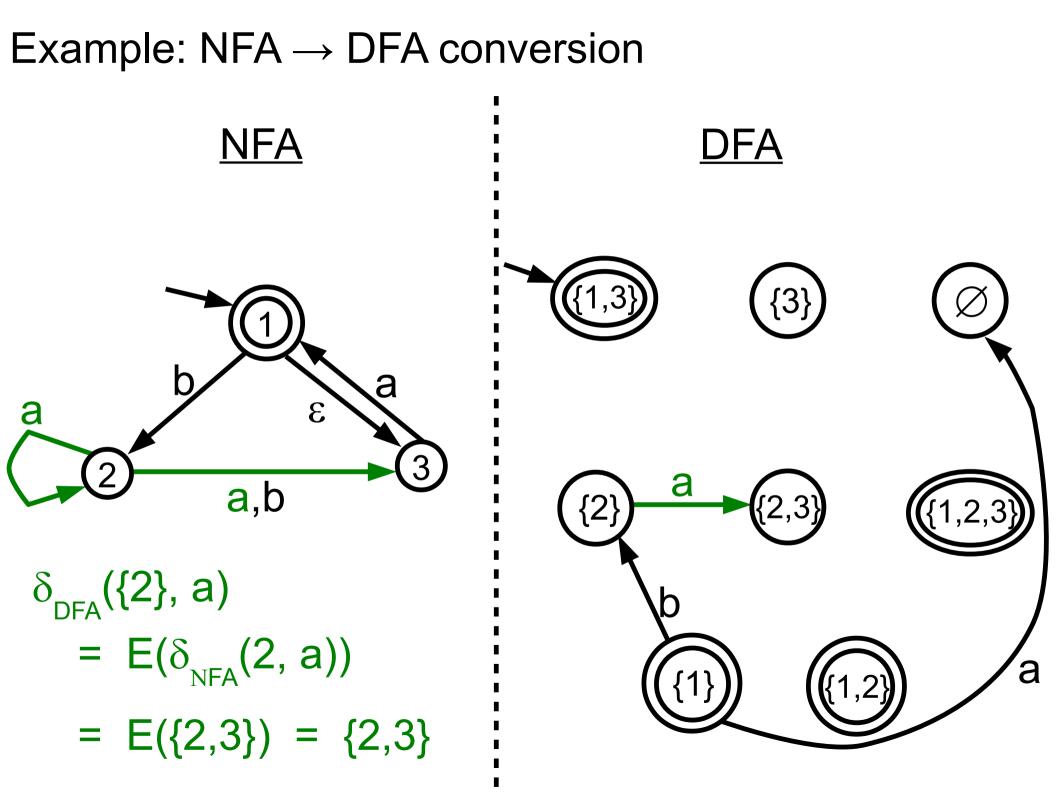


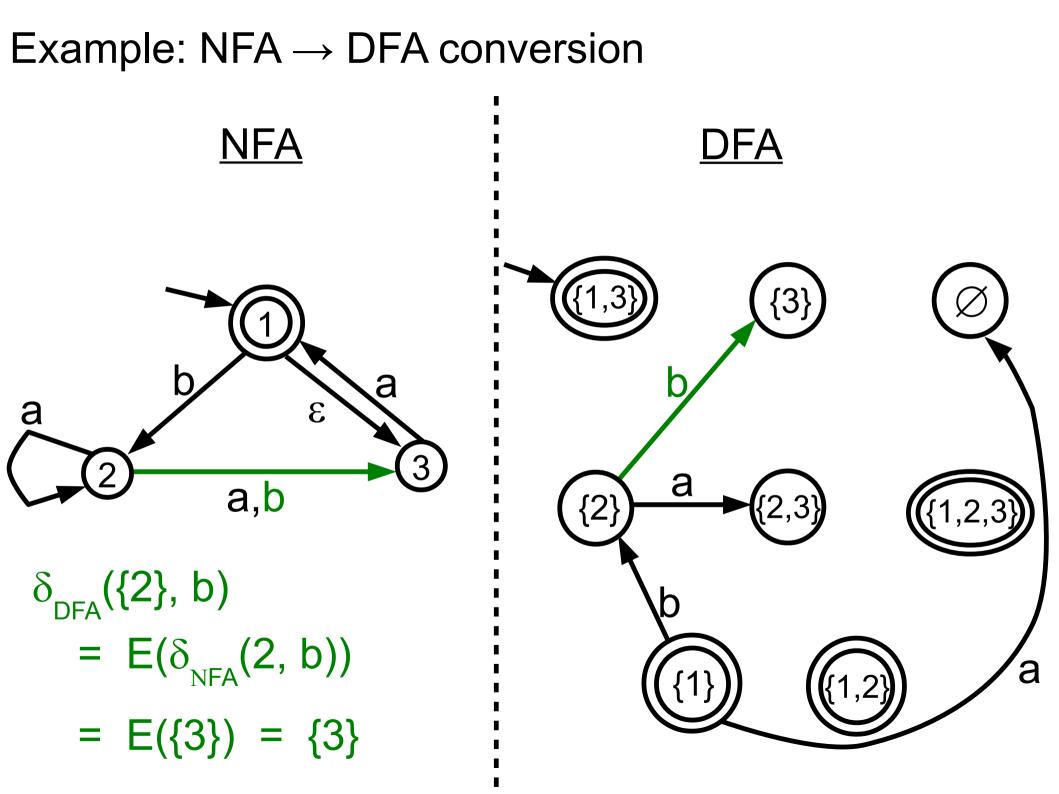


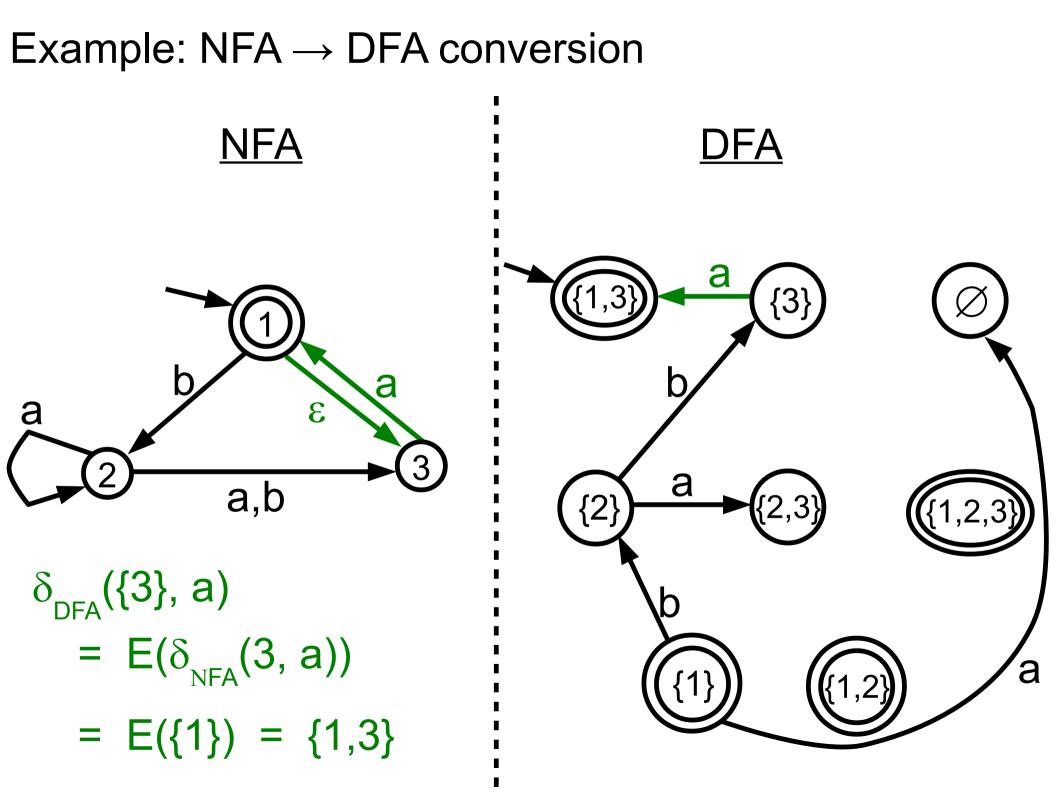


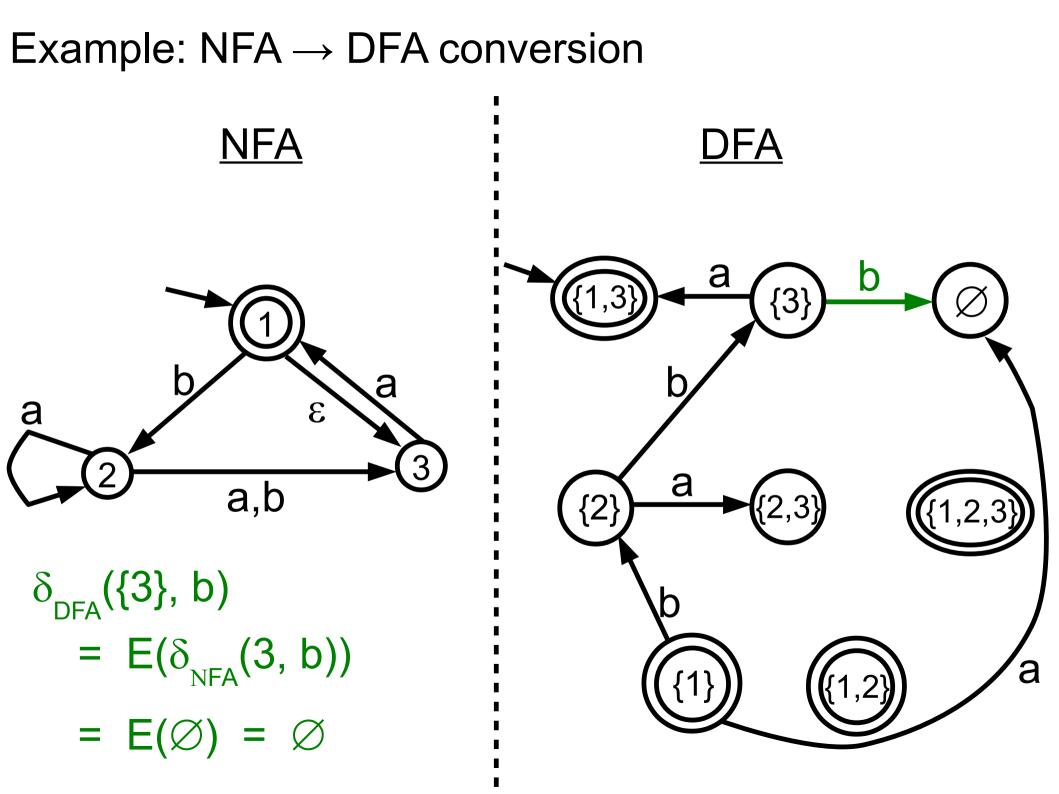


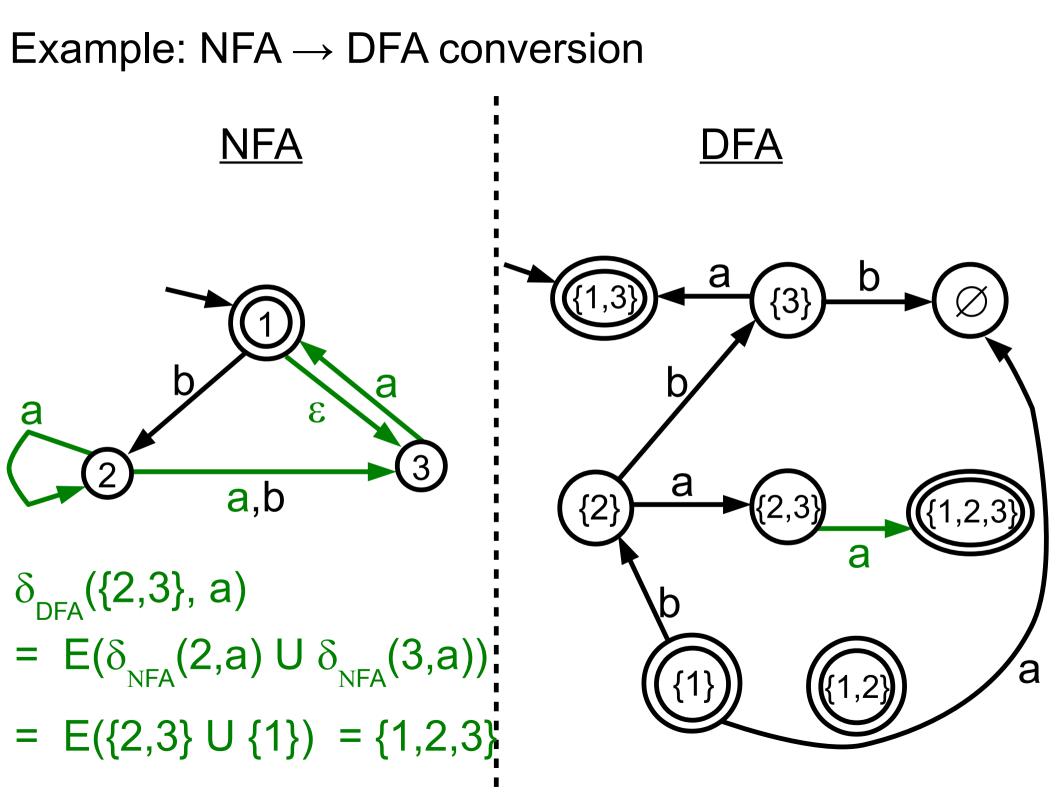




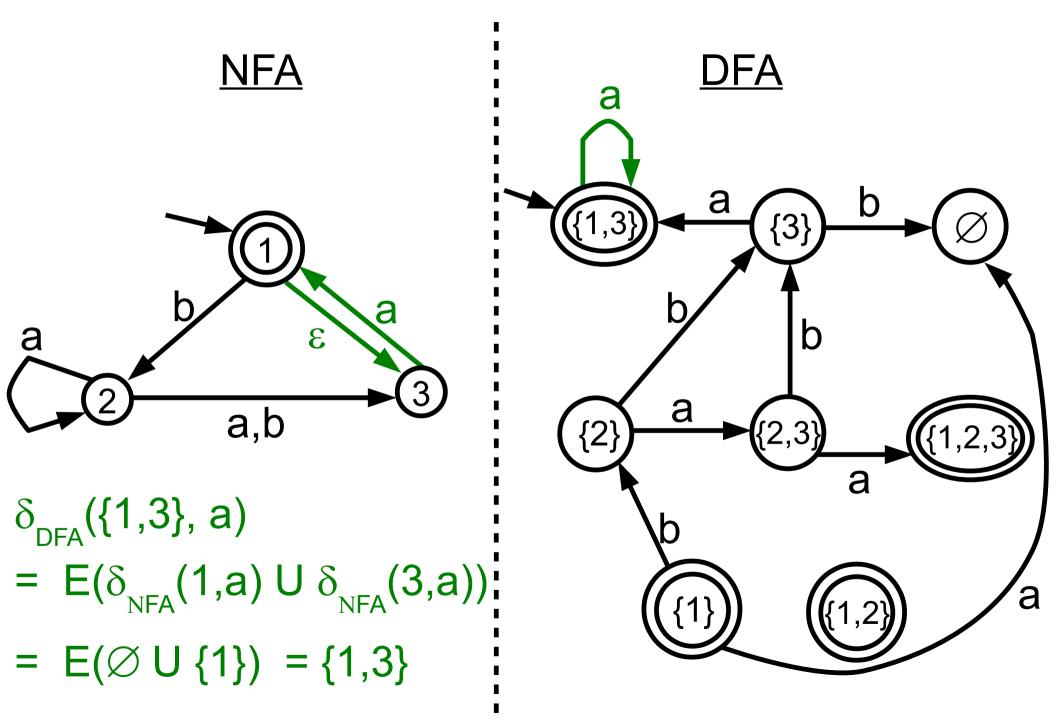


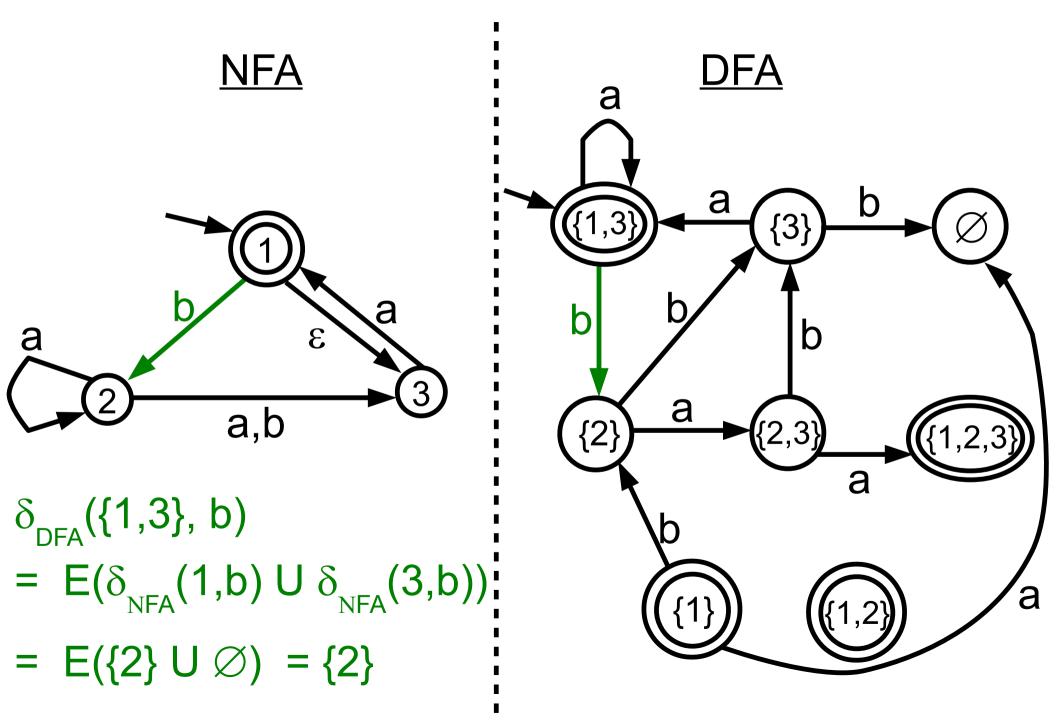


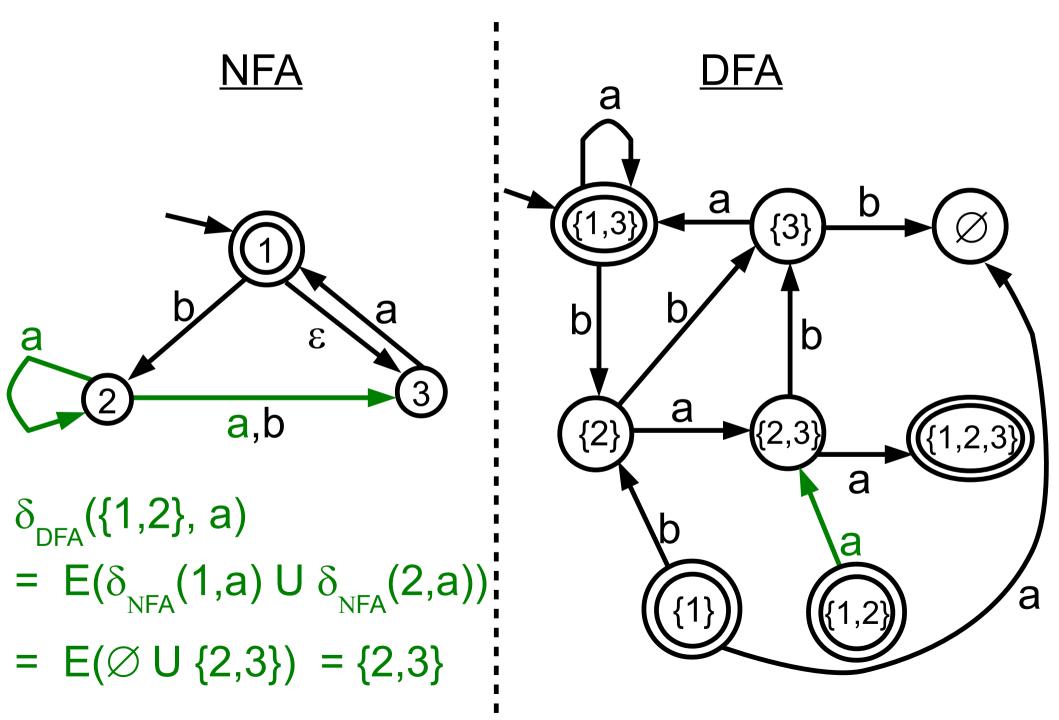


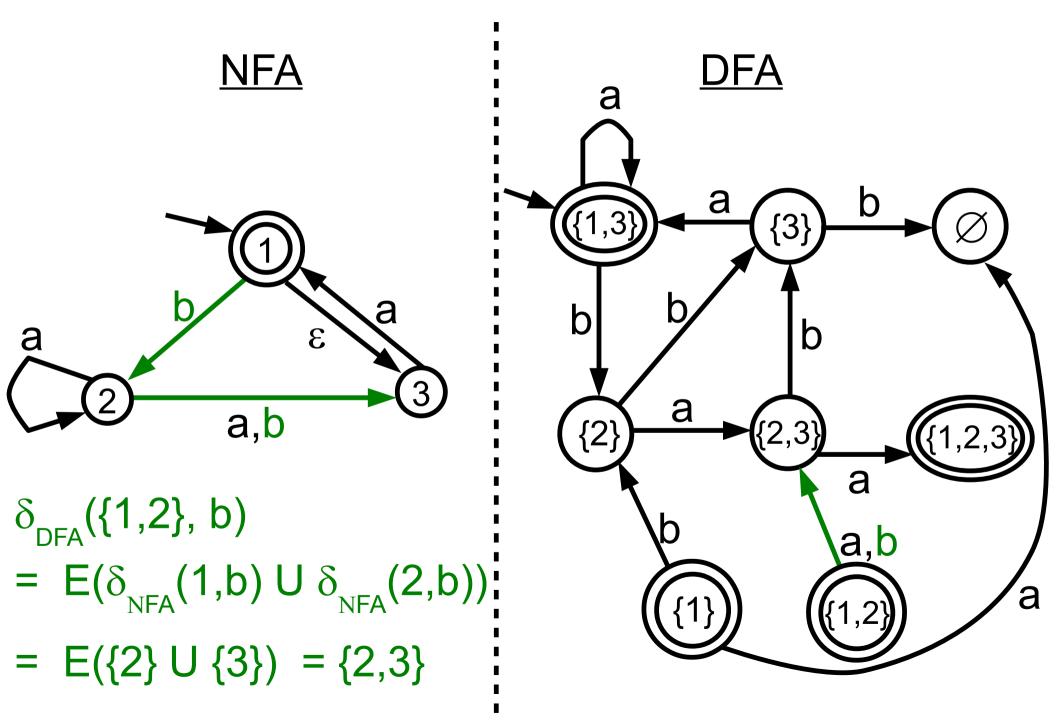


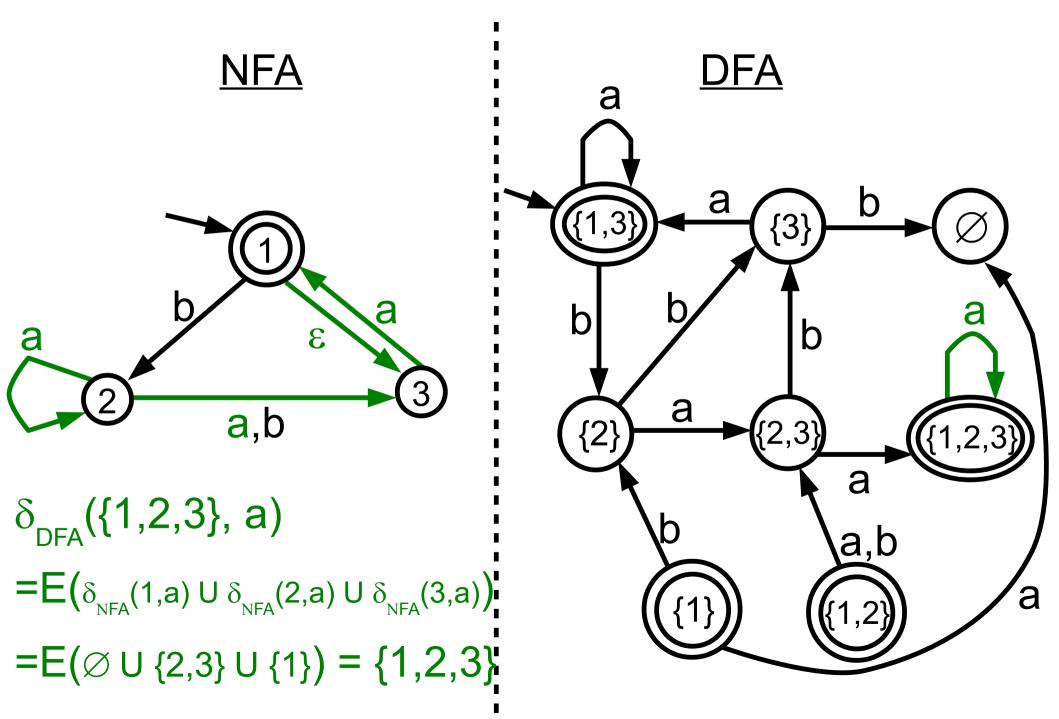
Example: NFA \rightarrow DFA conversion <u>NFA</u> **DFA** b a {3} 1,3 а h 3 a 3 a a,b {2} 2,32,3Э δ_{DFA}({2,3}, b) = $E(\delta_{NFA}(2,b) \cup \delta_{NFA}(3,b))$ a $= E({3} \cup \emptyset) = {3}$

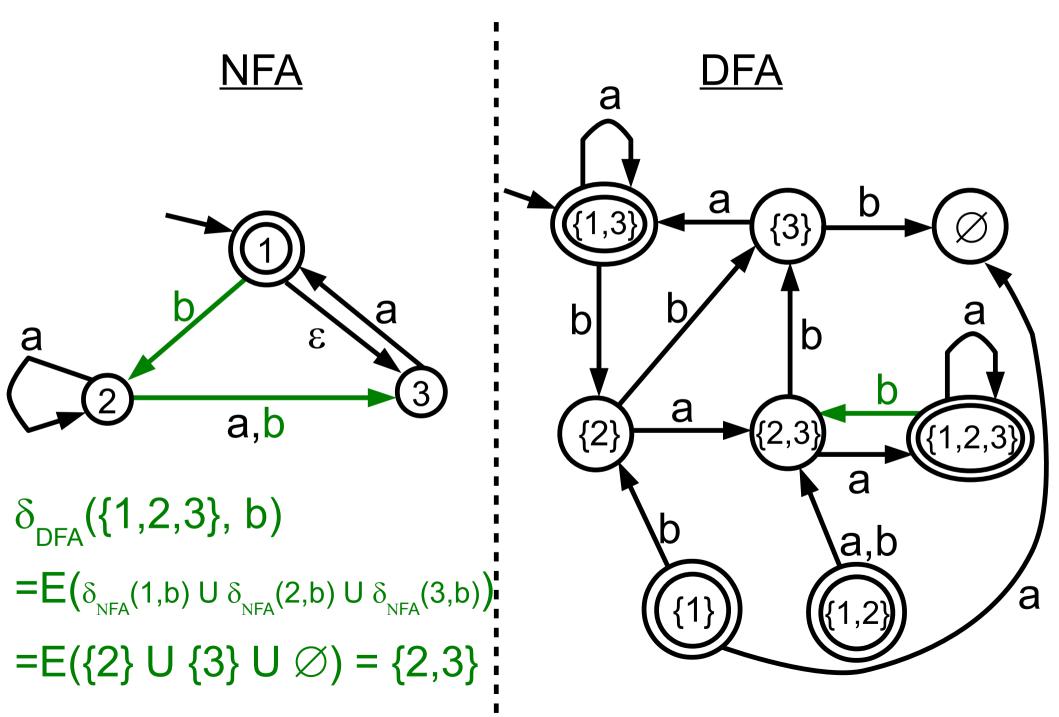


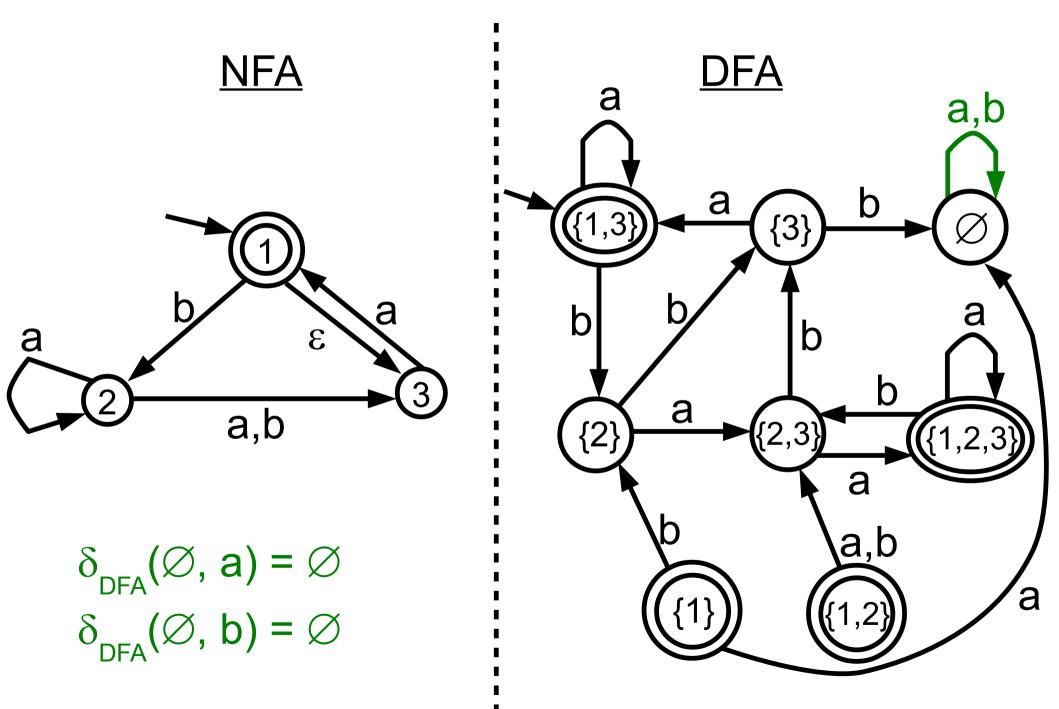


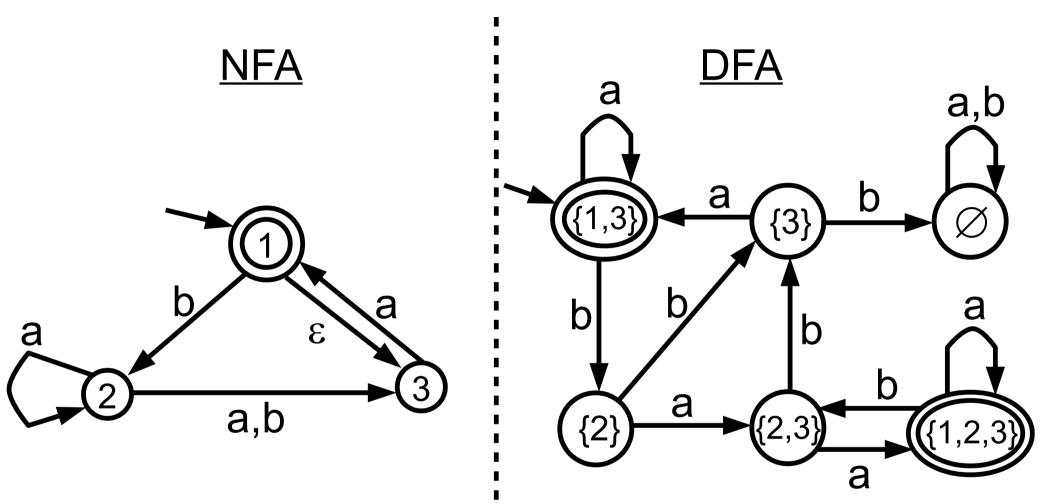




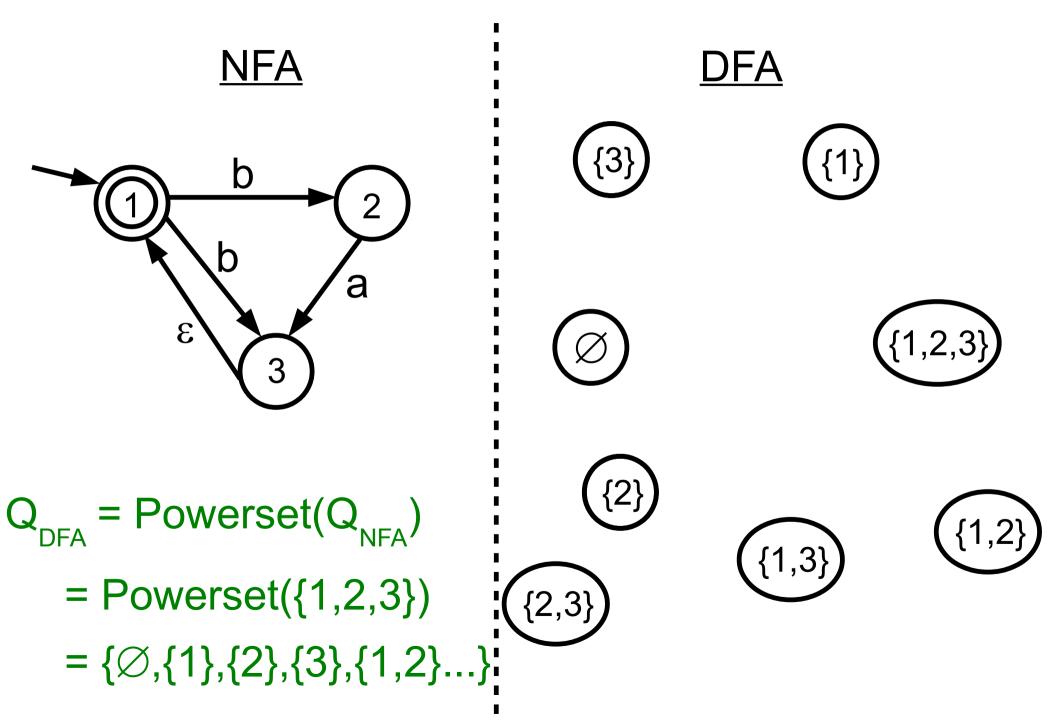


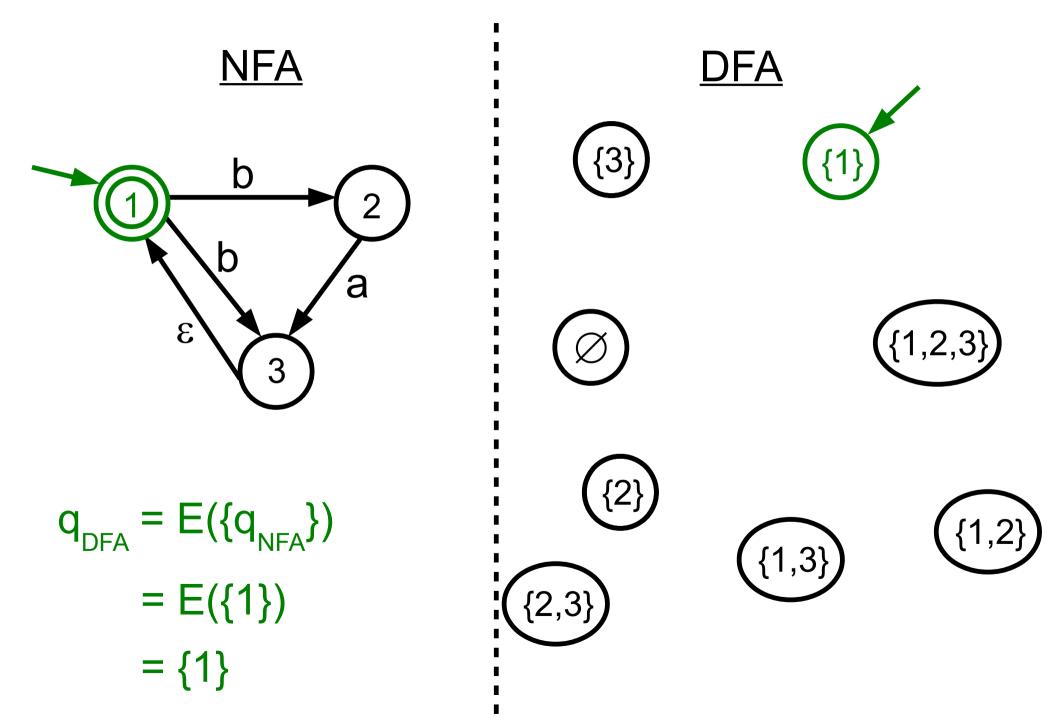


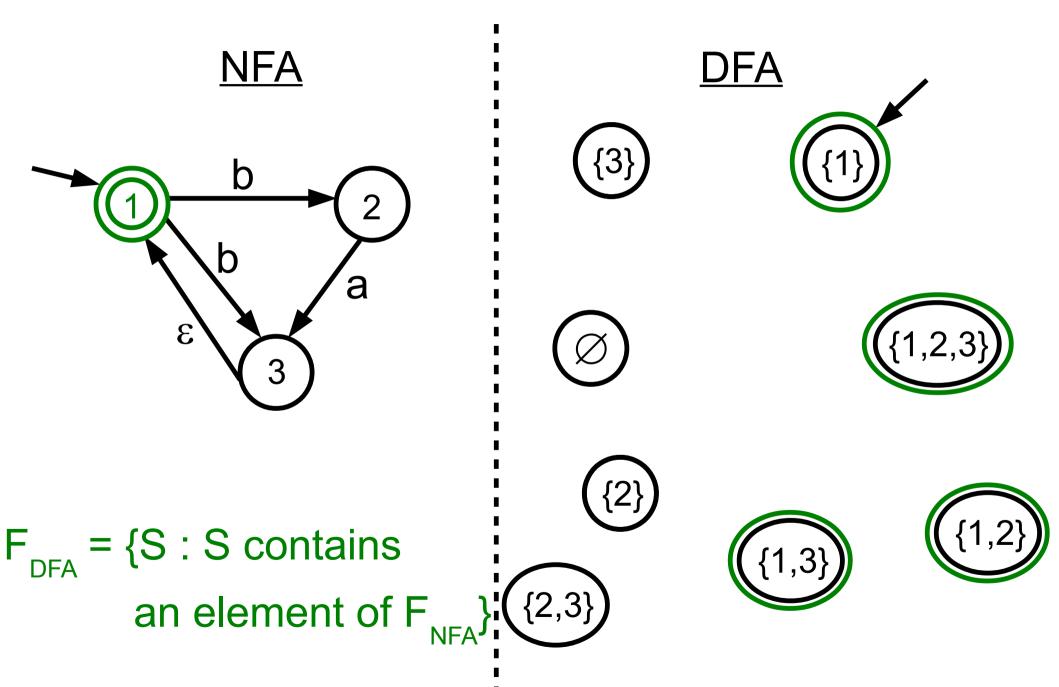


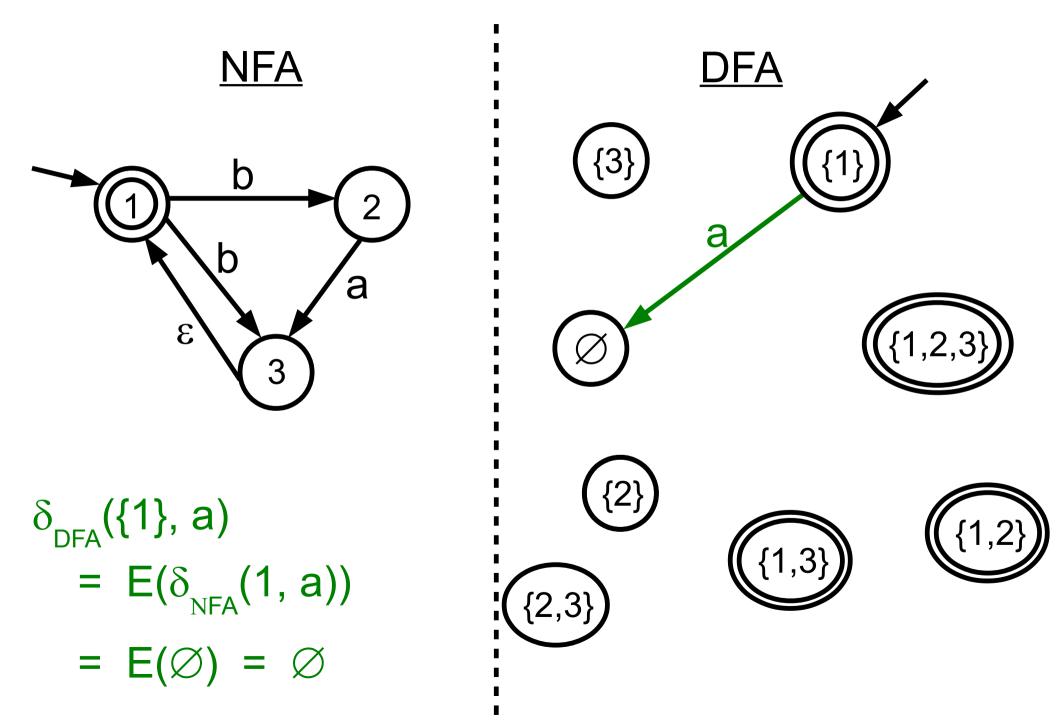


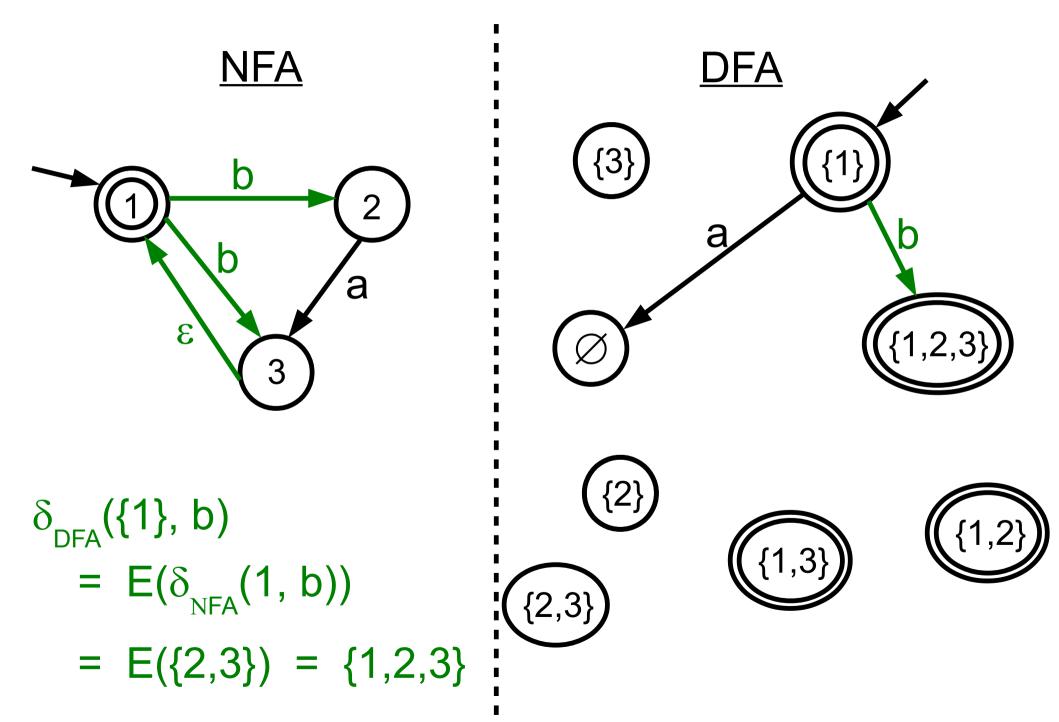
We can delete the unreachable states.

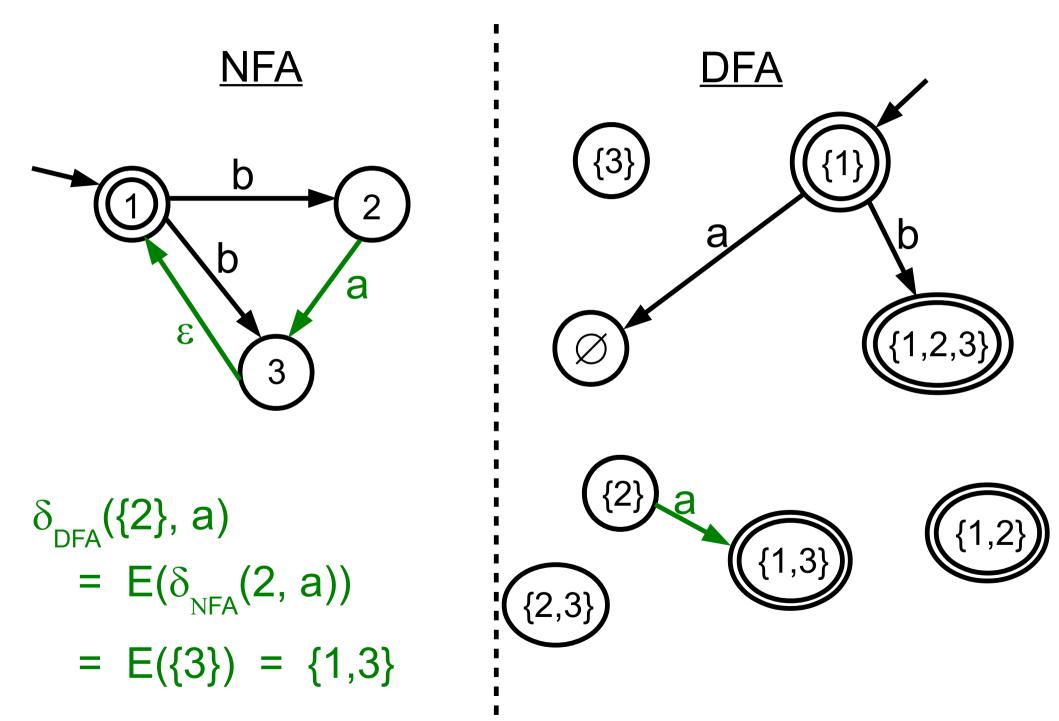


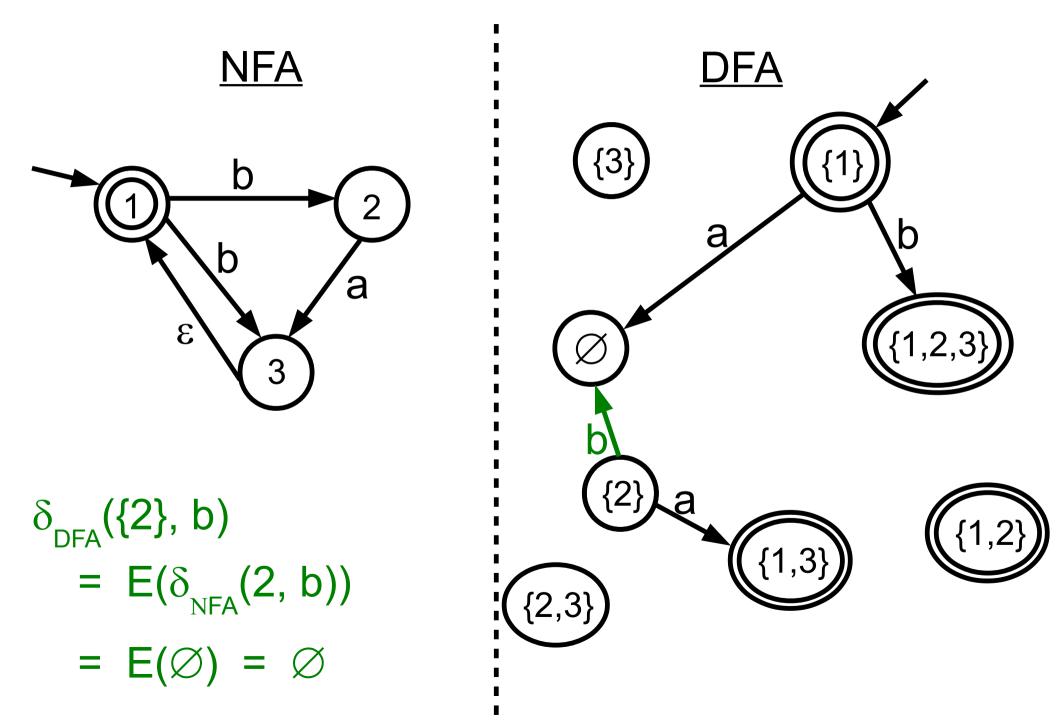


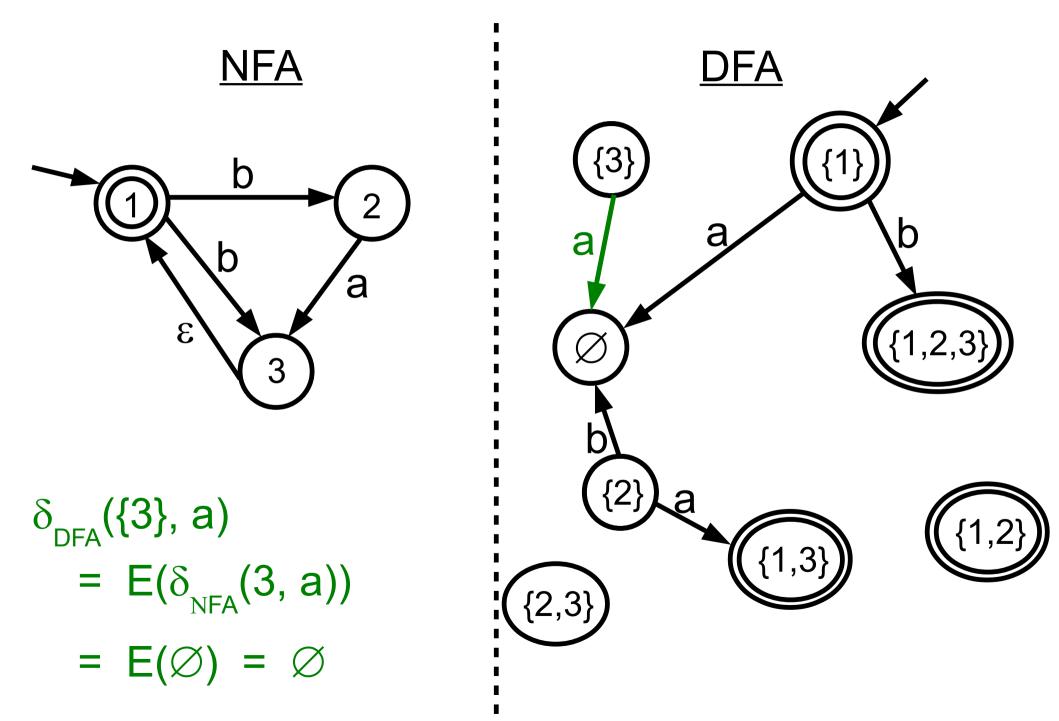


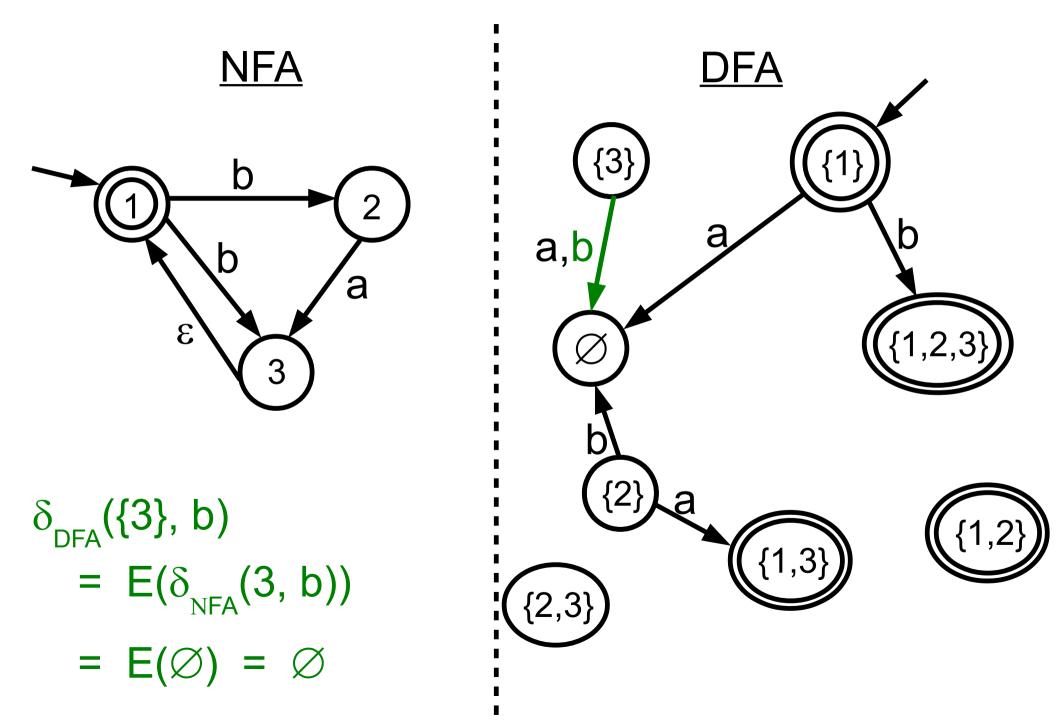


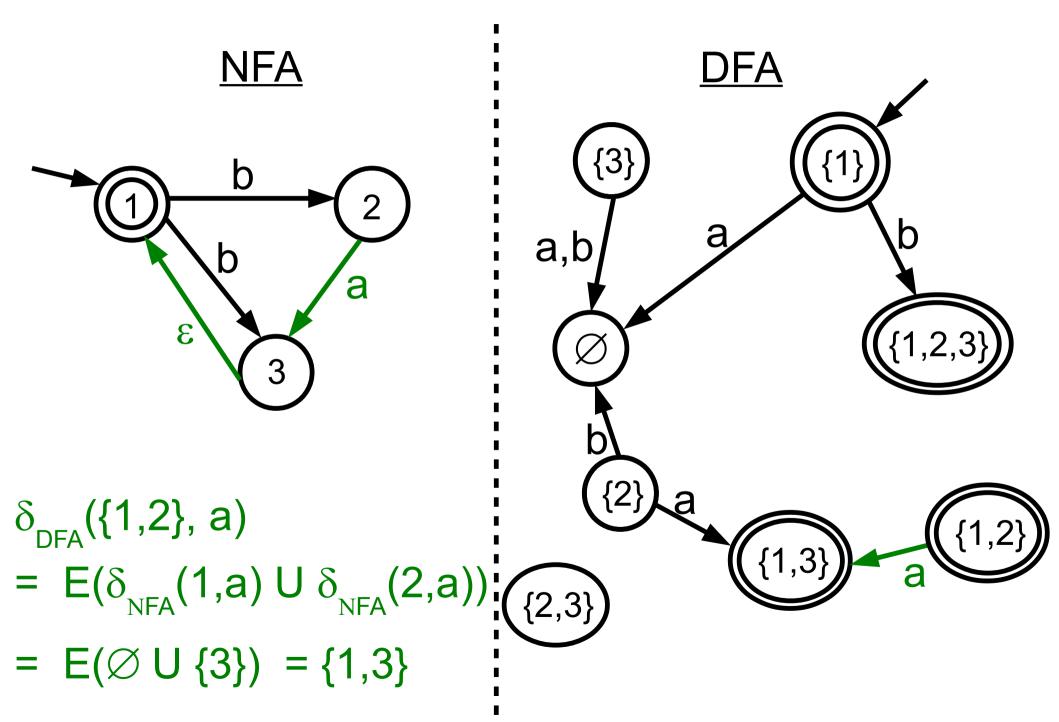


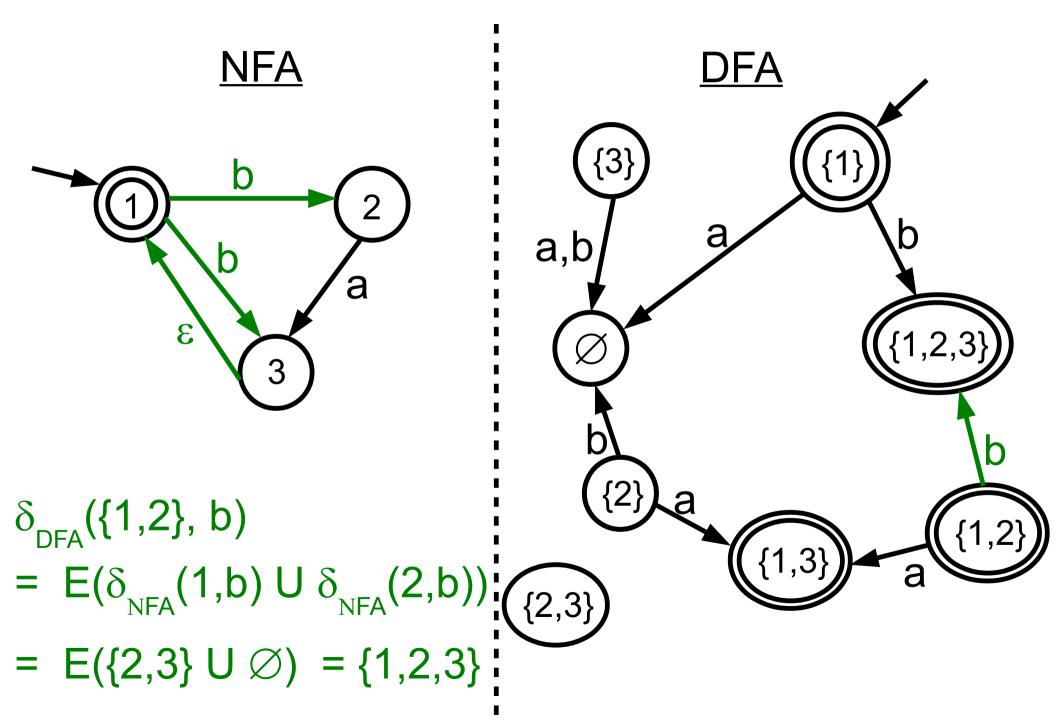


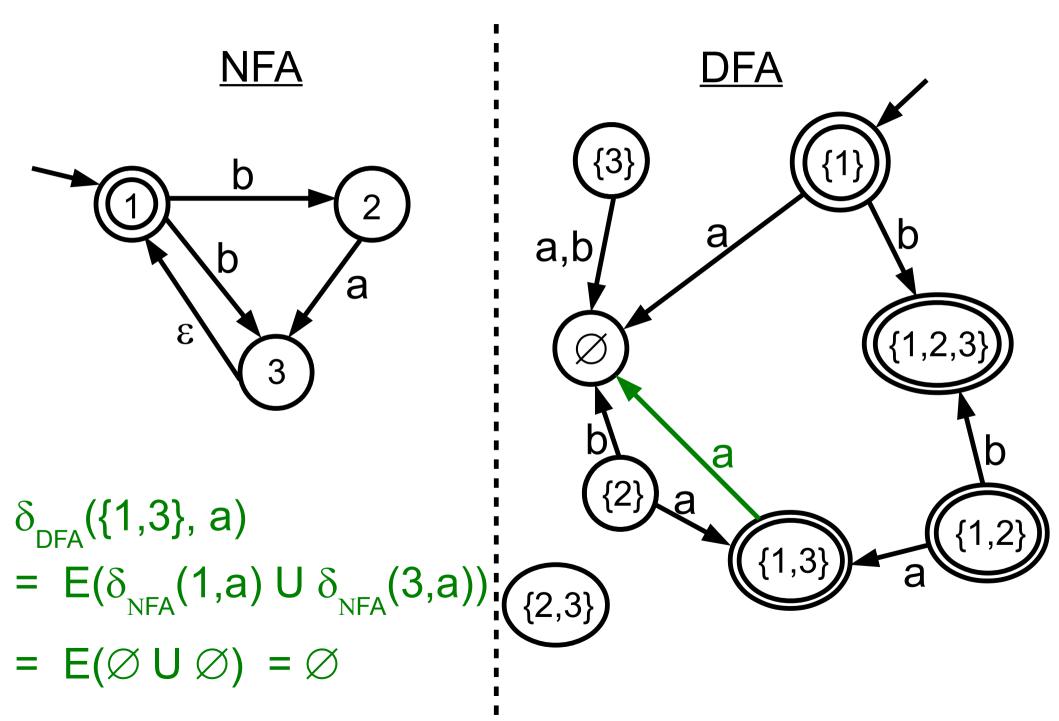


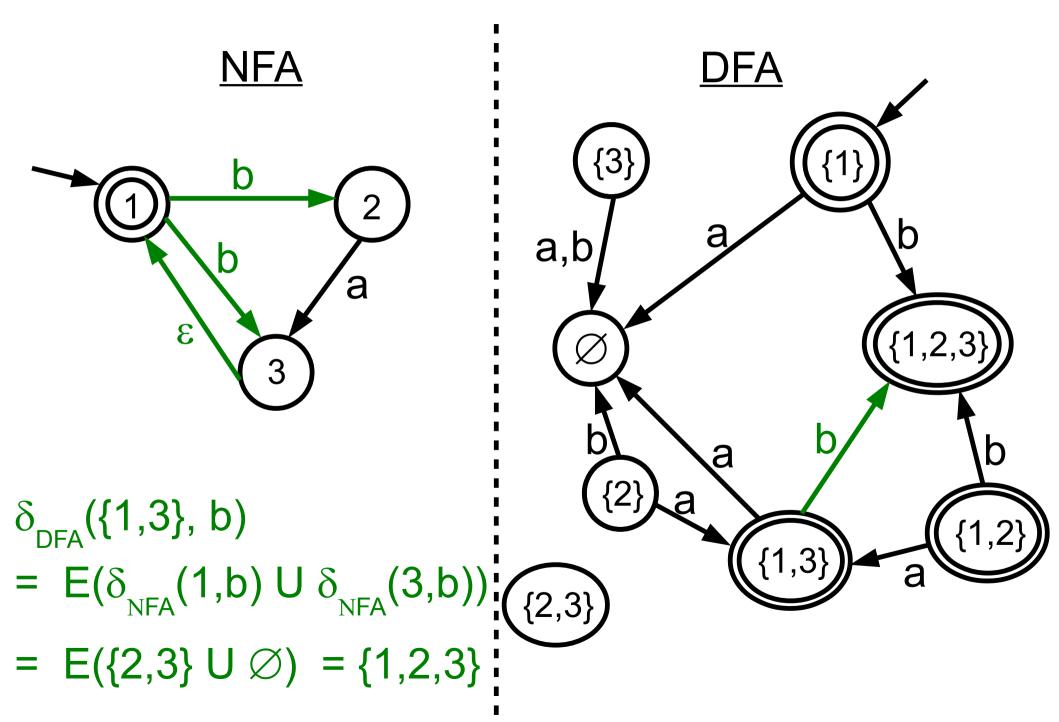


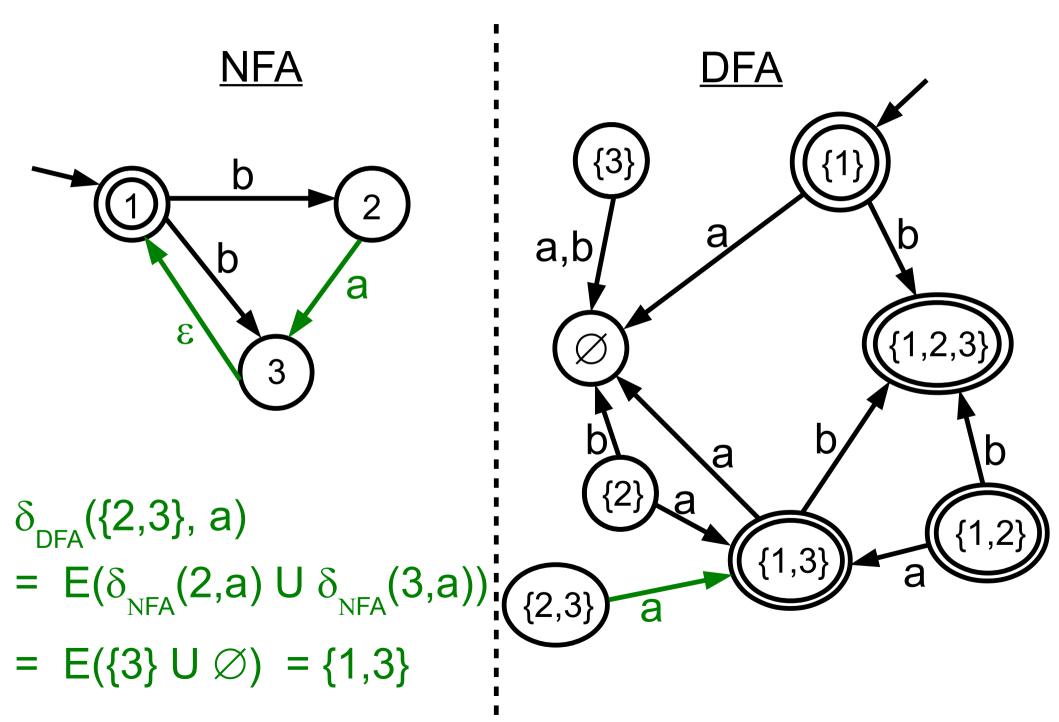


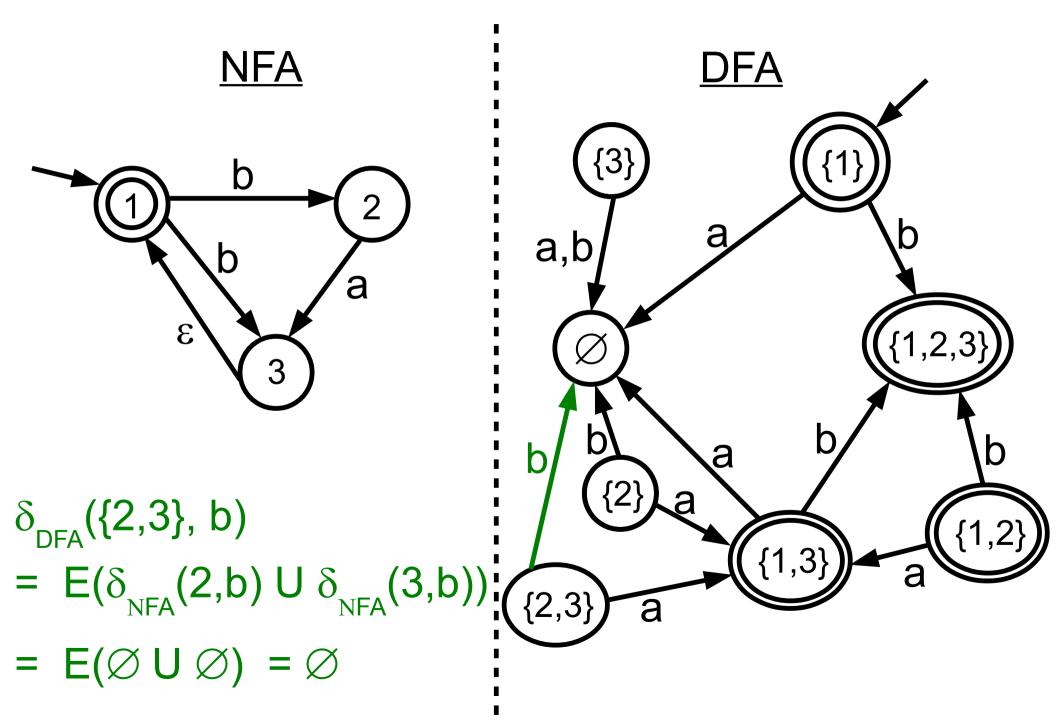


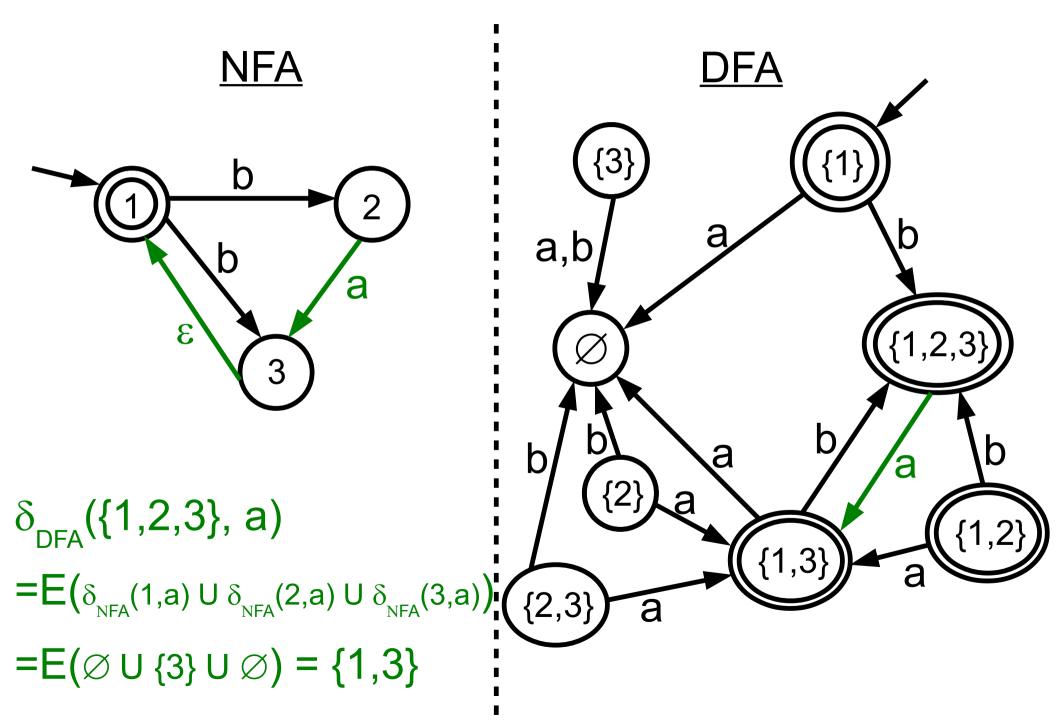


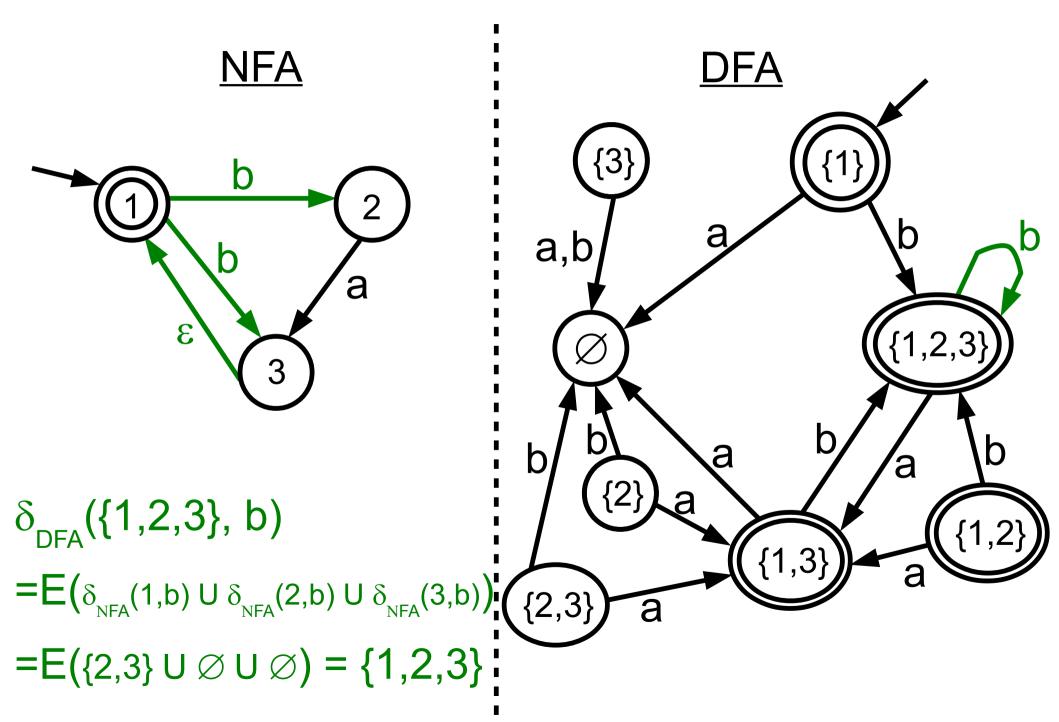


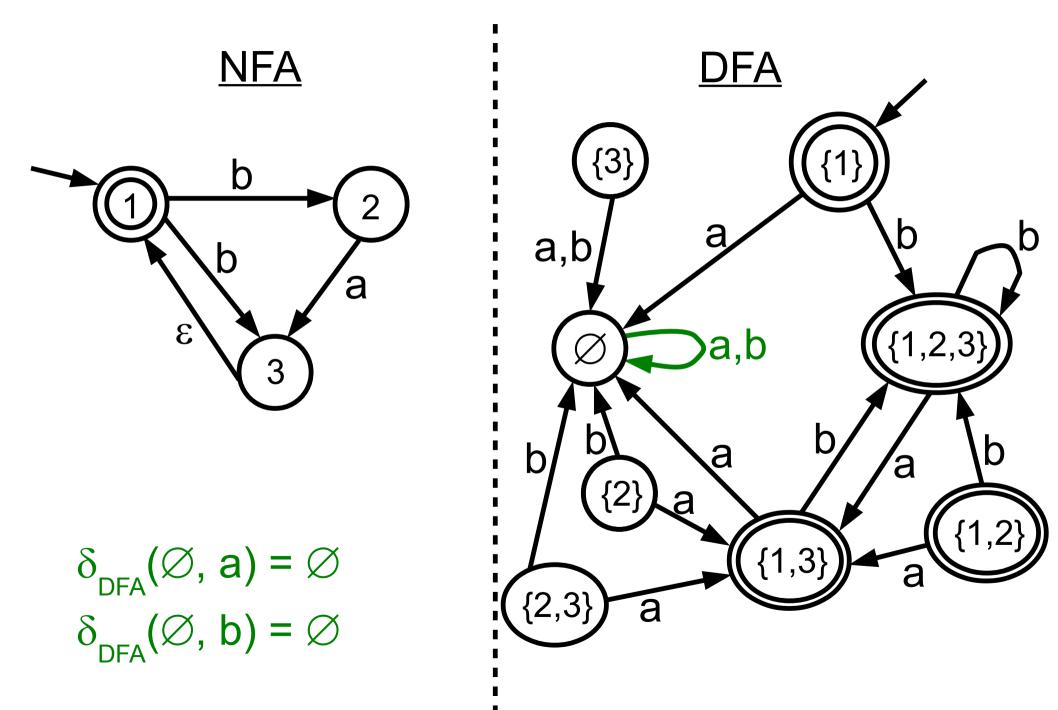


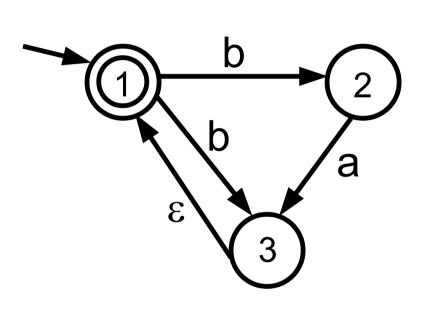






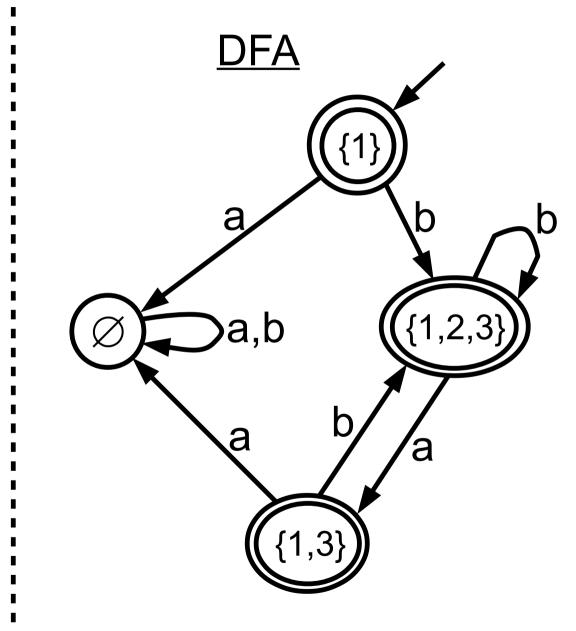






NFA

We can delete the unreachable states.



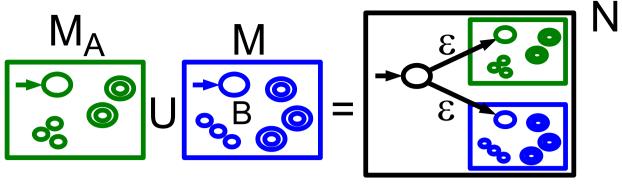
Summary: NFA and DFA recognize the same languages

We now return to the question:

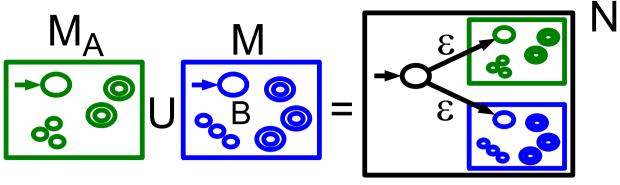
- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := { $w_1 w_2$: w_1 in A and w_2 in B }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

Theorem: If A, B are regular languages, then so is A U B := { w : w in A or w in B }

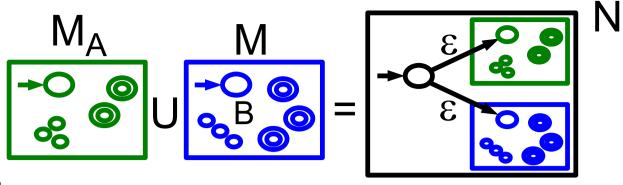
• Proof idea: Given DFA M_A : $L(M_A) = A$, $DFAM_B : L(M_B) = B$, • Construct NFA N : L(N) = A U BΜ M 3 3



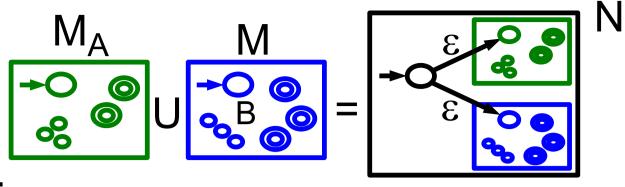
- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := ?



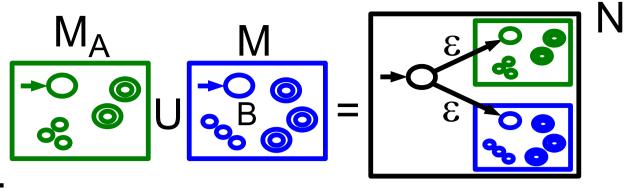
- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := {q} U Q_A U Q_B , F := ?



- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := {q} U Q_A U Q_B , F := $F_A U F_B$
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(\mathbf{r}, \mathbf{x}) :=$? if r in \mathbf{Q}_{B} and $\mathbf{x} \neq \varepsilon$



- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := {q} U Q_A U Q_B , F := $F_A U F_B$
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_B(\mathbf{r}, \mathbf{x}) \}$ if r in Q_B and $\mathbf{x} \neq \epsilon$
- δ(q,ε) := **?**



- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := {q} U Q_A U Q_B , F := $F_A U F_B$
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_B(\mathbf{r}, \mathbf{x}) \}$ if r in Q_B and $\mathbf{x} \neq \epsilon$
- $\delta(q,\epsilon) := \{q_A, q_B\}$
- We have L(N) = A U B

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

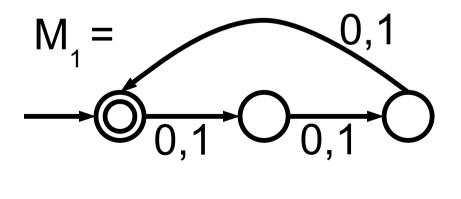
Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular

- Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?
- OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

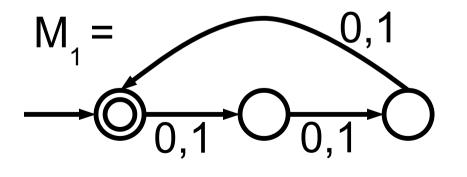
OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$



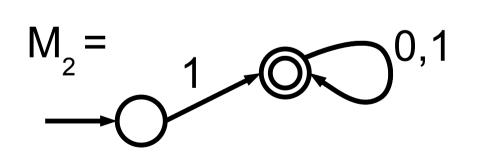
$$L(M_{1}) = L_{1}$$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$



 $L(M_{1}) = L_{1}$



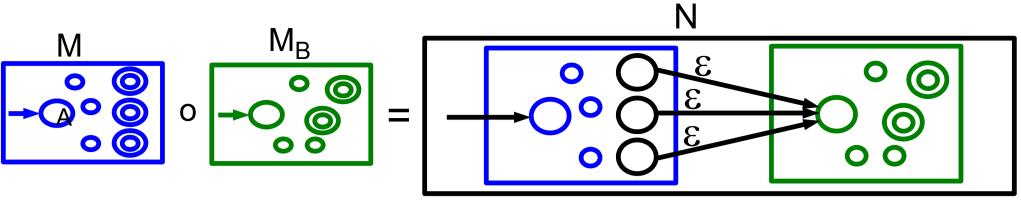
 $L(M_{2}) = L_{2}$

- Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?
- OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_{1} = \{w : |w| \text{ is div. by 3} \\ L_{2} = \{w : w \text{ starts with a 1}\}$ 0,1 $L(M) = L(M_1) U L(M_2)$ M = $= L_1 U L_2$ 3 = 12 \Rightarrow L is regular.

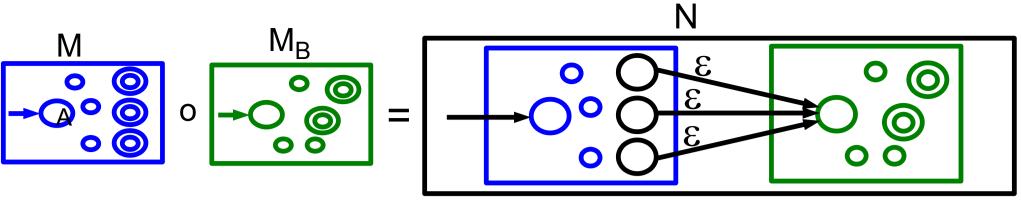
We now return to the question:

- Suppose A, B are regular languages, then
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := { $w_1 w_2 : w_1$ in A and w_2 in B }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

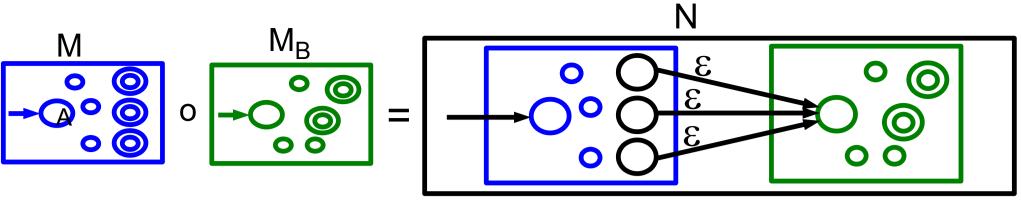
Theorem: If A, B are regular languages, then so is A o B := { w : w = xy for some x in A and y in B. • Proof idea: Given DFAs M_A, M_B for A, B construct NFA N : $L(N) = A \circ B$. Μ Μ Ο OB Α Ν 3



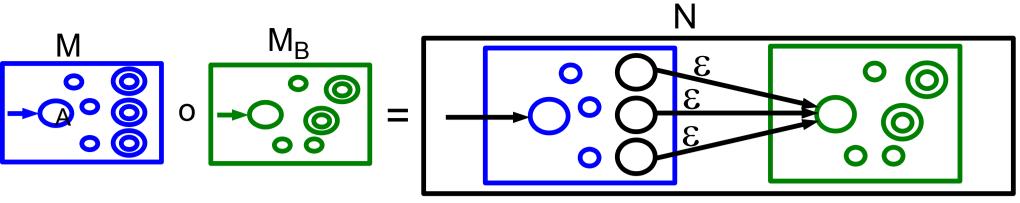
- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- •Q := ?



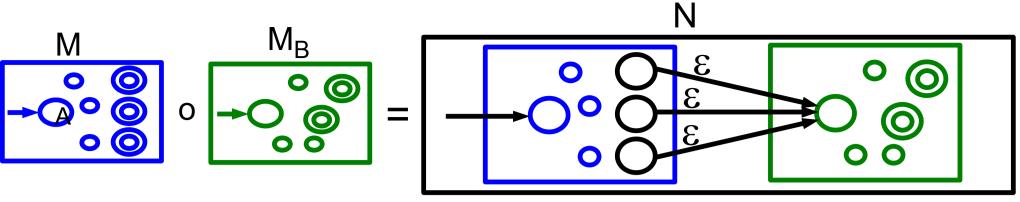
- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $Q := Q_A U Q_B$, q := ?



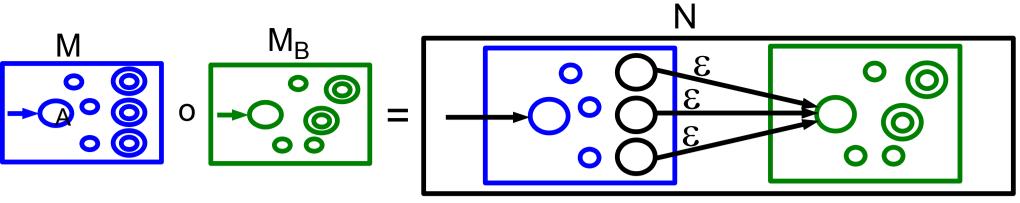
- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := Q_A U Q_B , q := q_A , F := ?



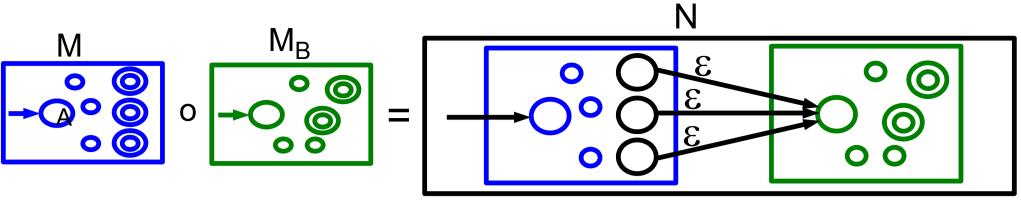
- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := Q_A U Q_B , q := q_A , F := F_B
- $\delta(\mathbf{r}, \mathbf{x}) :=$? if r in Q_A and $\mathbf{x} \neq \epsilon$



- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := Q_A U Q_B , q := q_A , F := F_B
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(\mathbf{r}, \varepsilon) := ?$ if r in \mathbf{F}_A



- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := Q_A U Q_B , q := q_A , F := F_B
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(r,\epsilon) := \{ q_B \} \text{ if } r \text{ in } F_A$
- $\delta(\mathbf{r}, \mathbf{x}) := ?$ if \mathbf{r} in Q_B and $\mathbf{x} \neq \varepsilon$



- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := Q_A U Q_B , q := q_A , F := F_B
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(r,\epsilon) := \{ q_B \} \text{ if } r \text{ in } F_A$
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_B(\mathbf{r}, \mathbf{x}) \}$ if r in Q_B and $\mathbf{x} \neq \epsilon$
- We have $L(N) = A \circ B$

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Note: L = {01, 0001001, 111001, ... }

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \circ L_1$.

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \circ L_1$.

$$M_0 = 1 \quad 0,1$$

$$M_0 = 0$$

$$L(M_0) = L_0$$

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

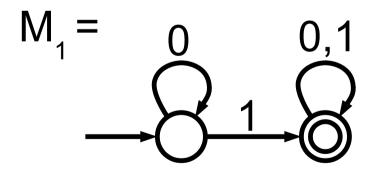
Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \circ L_1$.

$$M_0 = 1 \quad 0,1$$

$$M_0 = 0,1$$

$$L(M_0) = L_0$$



 $L(M_{1}) = L_{1}$

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a } 0\}$$

 $L_1 = \{w : w \text{ contains a } 1\}$. Then $L = L_0 \circ L_1$.
 $M = 1 \quad 0, 1 \quad 0 \quad 0, 1$
 $I = 0 \quad 0 \quad \varepsilon \quad 0 \quad 1 \quad 0$
 $L(M) = L(M_0) \circ L(M_1) = L_0 \circ L_1 = L$

 \Rightarrow L is regular.

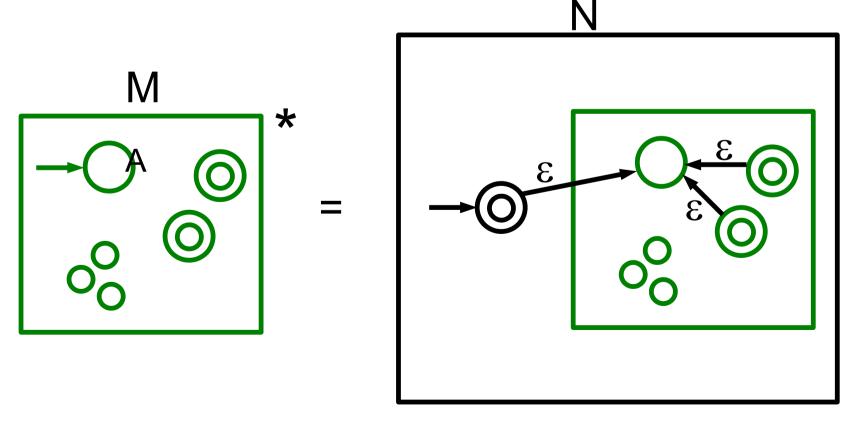
We now return to the question:

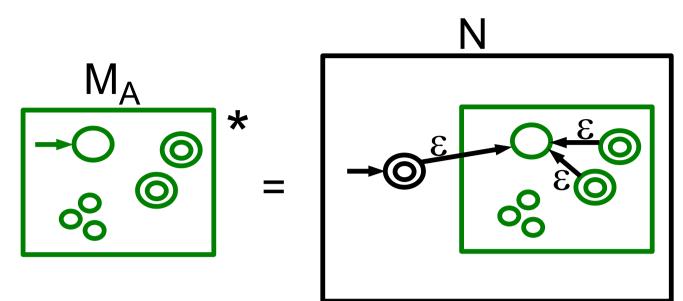
- Suppose A, B are regular languages, then
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := { $w_1 \, w_2 : \, w_1 \in A \text{ and } w_2 \in B$ } REGULAR
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

Theorem: If A is a regular language, then so is $A^* := \{ w : w = w_1 ... w_k, w_i \text{ in A for } i=1,...,k \}$

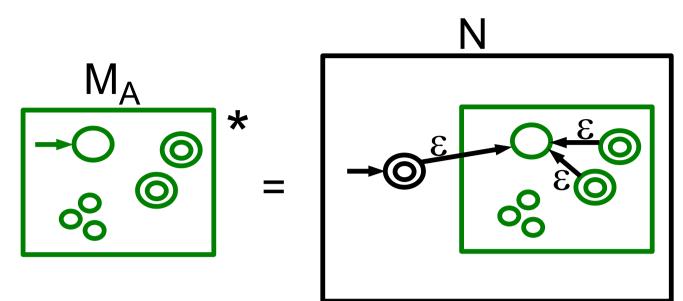
• Proof idea: Given DFA M_A : $L(M_A) = A$,

Construct NFA N : L(N) = A*

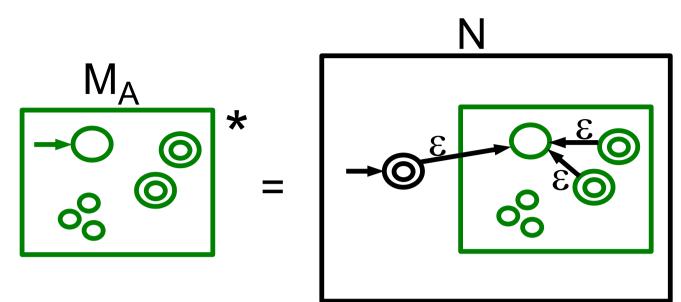




- Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := ?



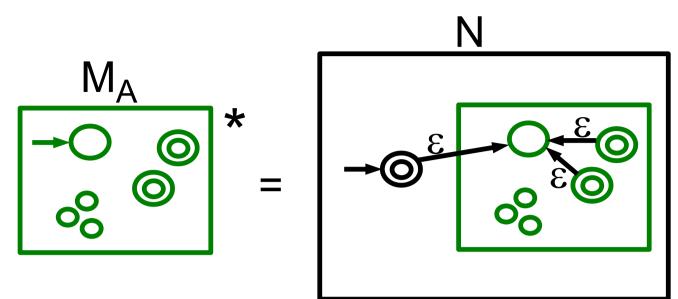
Given DFA M_A = (Q_A, Σ, δ_A, q_A, F_A) : L(M_A) = A, Construct NFA N = (Q, Σ, δ, q, F) where:
Q := {q} U Q_A, F := ?



• Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A,

Construct NFA N = (Q, Σ , δ , q, F) where:

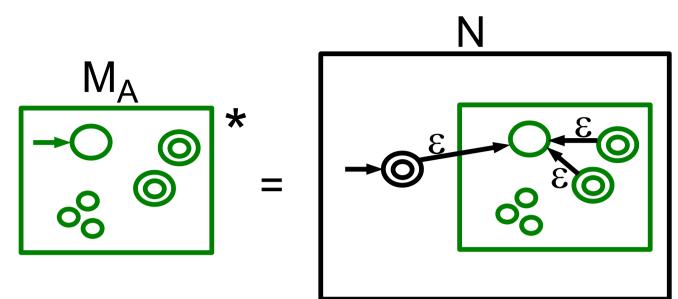
- Q := {q} U Q_A, F := {q} U F_A
- $\delta(\mathbf{r}, \mathbf{x}) := ?$ if r in Q_A and $\mathbf{x} \neq \varepsilon$



• Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A,

Construct NFA N = (Q, Σ , δ , q, F) where:

- Q := {q} U Q_A, F := {q} U F_A
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \} \text{ if } \mathbf{r} \text{ in } Q_A \text{ and } \mathbf{x} \neq \epsilon$
- $\delta(r,\epsilon) := ?$ if r in {q} U F_A



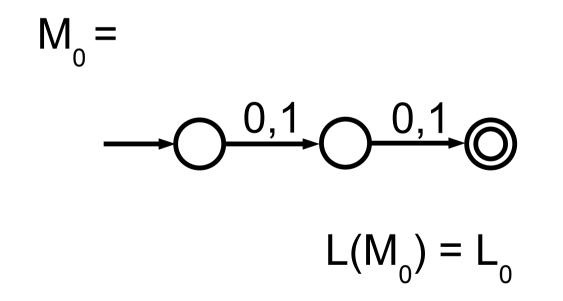
• Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A,

Construct NFA N = (Q, Σ , δ , q, F) where:

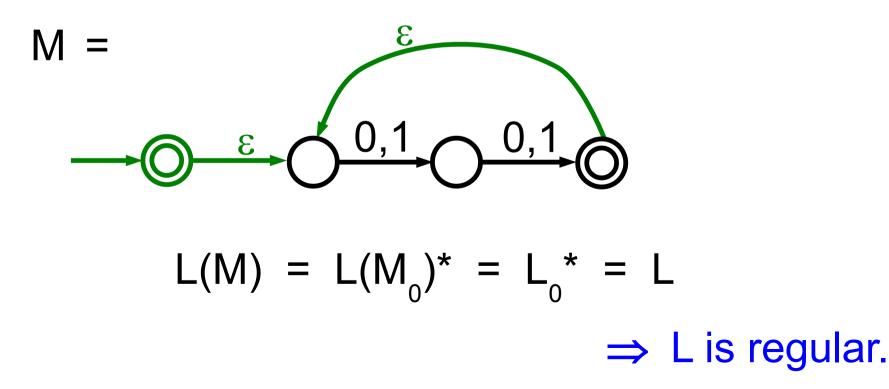
- Q := {q} U Q_A, F := {q} U F_A
- $\delta(\mathbf{r}, \mathbf{x}) := \{ \delta_A(\mathbf{r}, \mathbf{x}) \}$ if r in Q_A and $\mathbf{x} \neq \epsilon$
- $\delta(r,\epsilon) := \{ q_A \} \text{ if } r \text{ in } \{q\} U F_A$
- We have $L(N) = A^*$

Let
$$L_0 = \{w : w \text{ has length } = 2\}$$
. Then $L = L_0^*$.

Let
$$L_0 = \{w : w \text{ has length} = 2\}$$
. Then $L = L_0^*$.



Let
$$L_0 = \{w : w \text{ has length } = 2\}$$
. Then $L = L_0^*$.



- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \; : k \geq 0$, $w_i \; in \; A \; \; for \; every \; i$ }

are all regular!

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \;$ }

What about $A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \}$?

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1$ in A and w_2 in B }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$

De Morgan's laws: $A \cap B = not ((not A) U(not B))$ By above, (not A) is regular, (not B) is regular, (not A) U (not B) is regular, not ((not A) U(not B)) = $A \cap B$ regular

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- A* := { $w_1 \; w_2 \; \ldots \; w_k \;$: $k \geq 0$, $w_i \; in \; A \;$ for every $i \; \}$
- $A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \}$

are all regular

Big picture

- All languages
- Decidable

Turing machines

- NP
- P
- Context-free

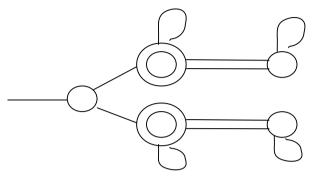
Context-free grammars, push-down automata

Regular

Automata, non-deterministic automata, regular expressions

How to specify a regular language?

Write a picture \rightarrow complicated



Write down formal definition \rightarrow complicated $\delta(q_0, 0) = q_{0, \dots}$

Use symbols from Σ and operations *, o, U \rightarrow good

({0} * U {1}) o {001}

Regular expressions: anything you can write with \varnothing , ϵ , symbols from Σ , and operations *, o, U

Conventions:

- Write a instead of {a}
- Write AB for A o B
- Write \sum for $\ U_{a\in \sum} a$. So if \sum = {a,b} then \sum = a U b
- Operation * has precedence over o, and o over U so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, Σ*, Σ*001Σ*, (ΣΣ)*, 01 U 10

Definition Regular expressions RE over Σ are: Ø 3 if a in Σ a RR' if R, R' are RE RUR' if R, R' are RE **R*** if R is RE

Definition The language described by RE: $L(\emptyset) = \emptyset$

L(a) = {a} if a in ∑ L(R R') = L(R) o L(R') L(R U R') = L(R) U L(R') L(R*) = L(R)*

 $L(\epsilon) = \{\epsilon\}$

Example $\sum = \{ a, b \}$ RE Language

- ab U ba ?
- a*
- (a U b)*
- a*ba*
- ∑*b∑*
- ∑*aab∑*
- (∑∑)*
- a*(a*ba*ba*)*
- a*baba*a Ø

Example $\sum = \{ a, b \}$ RE Language

- ab U ba {ab, ba}
- a*
- (a U b)*
- a*ba*
- ∑*b∑*
- ∑*aab∑*
- (∑∑)*
- a*(a*ba*ba*)*
- a*baba*a Ø

Example $\sum = \{a, b\}$

RE Language

- ab U ba {ab, ba}
- a* {ε, a, aa, ... } = { w : w has only a}
- (a U b)*
- a*ba*
- ∑*b∑*
- ∑*aab∑*
- (∑∑)*
- a*(a*ba*ba*)*
- a*baba*a Ø

Example $\sum = \{a, b\}$

RE Language

- ab U ba {ab, ba}
- a* {ε, a, aa, ... } = { w : w has only a}

all strings

- (a U b)*
- a*ba*
- ∑*b∑*
- ∑*aab∑*
- (∑∑)*
- a*(a*ba*ba*)*
- a*baba*a Ø

Example $\Sigma = \{a, b\}$

- RE Language
- ab U ba {ab, ba}
- $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$ • a*
- (a U b)*
- a*ba*
- Σ*bΣ*
- ∑*aab∑*
- $(\sum \sum)^*$
- a*(a*ba*ba*)*
- a*baba*a Ø

- all strings
 - {w : w has exactly one b}

Example $\Sigma = \{a, b\}$

- RE Language
- ab U ba {ab, ba}
- a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- (a U b)*
- a*ba*
- Σ*bΣ*
- ∑*aab∑*
- $(\sum \sum)^*$
- a*(a*ba*ba*)*
- a*baba*a Ø

- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}

Example $\Sigma = \{a, b\}$ RE Language

- ab U ba {ab, ba}
- a*
- (a U b)*
- a*ba*
- Σ*bΣ*
- ∑*aab∑*
- $(\sum \sum)^*$
- a*(a*ba*ba*)*
- a*baba*a Ø

- $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}

Example $\Sigma = \{a, b\}$ RE Language

- ab U ba {ab, ba}
- a*
 - (a U b)*
 - a*ba*
 - Σ*bΣ*
 - ∑*aab∑*
 - $(\sum \sum)^*$
 - a*(a*ba*ba*)*
 - a*baba*a Ø

- $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}
 - {w : w has even length}

Example $\Sigma = \{a, b\}$ RE Language ab U ba {ab, ba} • a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$ • (a U b)* all strings a*ba* {w : w has exactly one b} Σ*bΣ* {w : w has at least one b} {w : w contains the string aab} ∑*aab∑* {w : w has even length} • $(\sum \sum)^*$ a*(a*ba*ba*)* {w : w contains even number of b} a*baba*a Ø

Example $\Sigma = \{a, b\}$ RE Language ab U ba {ab, ba} • a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$ • (a U b)* all strings a*ba* {w : w has exactly one b} Σ*bΣ* {w : w has at least one b} ∑*aab∑* {w : w contains the string aab} • $(\sum \sum)^*$ {w : w has even length} a*(a*ba*ba*)* {w : w contains even number of b} a*baba*a Ø (anything o $\emptyset = \emptyset$) Ø

Theorem: For every RE R there is NFA M: L(M) = L(R)

• R = Ø M := ?

- R = Ø M := ----
- R = ε M := ?

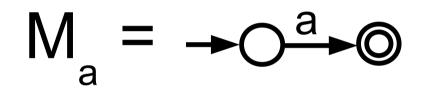
- R = Ø M := ----
- R = ε M := -----Ο
- R = a M := ?

- R = Ø M := ----
- R = ε M := -----Ο
- R = R U R' ?

- R = Ø M := ----
- R = ε M := ____O
- R = R U R' use construction for A U B seen earlier
- R = R o R' ?

- R = Ø M := ----
- R = ε M := ----Ο
- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* ?

- R = Ø M := ----
- R = ε M := ____
- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* use construction for A* seen earlier

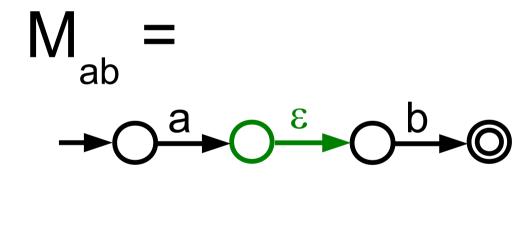


 $L(M_a)=L(a)$

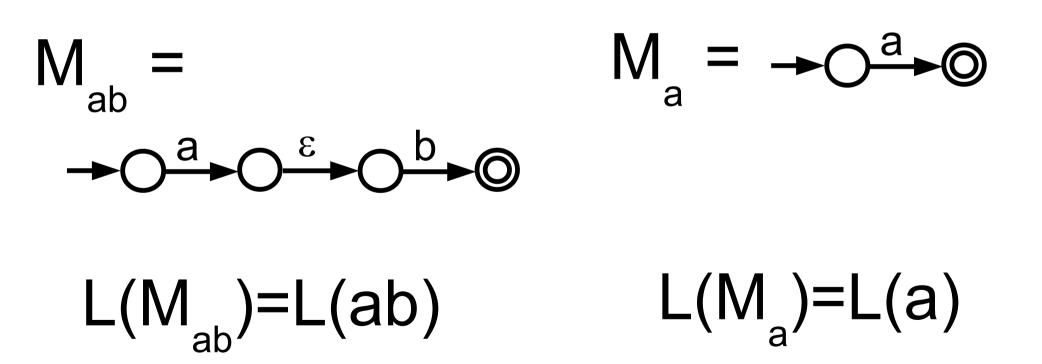
 $L(M_a)=L(a)$

 $L(M_b)=L(b)$

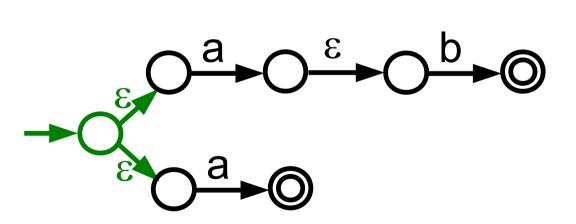
$RE = (ab U a)^*$



 $L(M_{ab})=L(ab)$

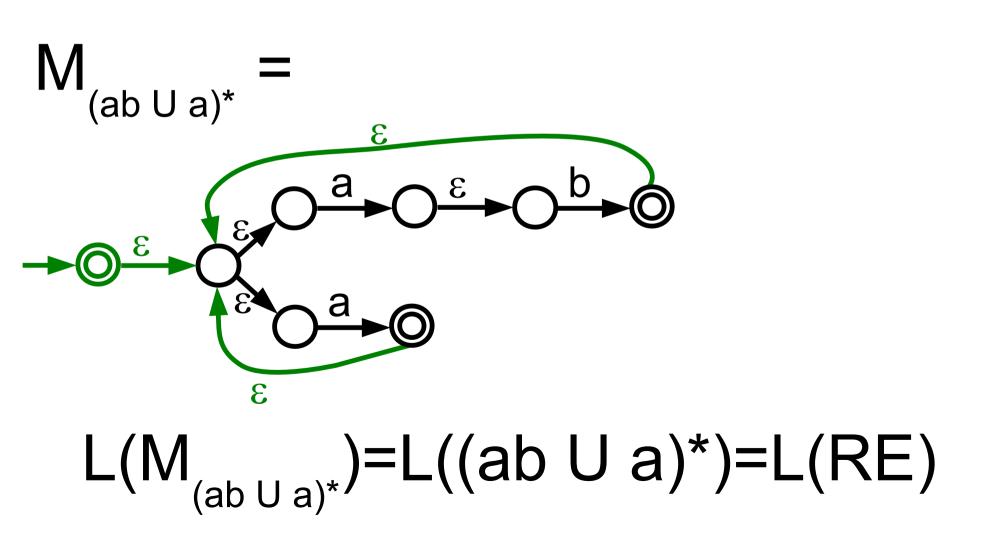


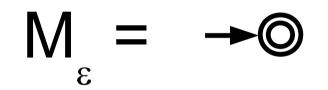
$RE = (ab U a)^*$



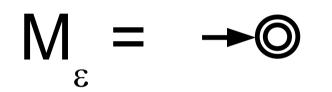
$L(M_{ab \cup a})=L(ab \cup a)$

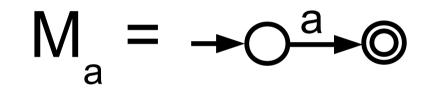
 $RE = (ab U a)^*$





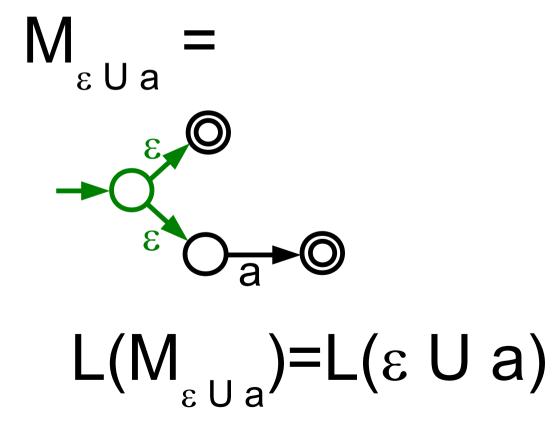
 $L(M_{\varepsilon})=L(\varepsilon)$

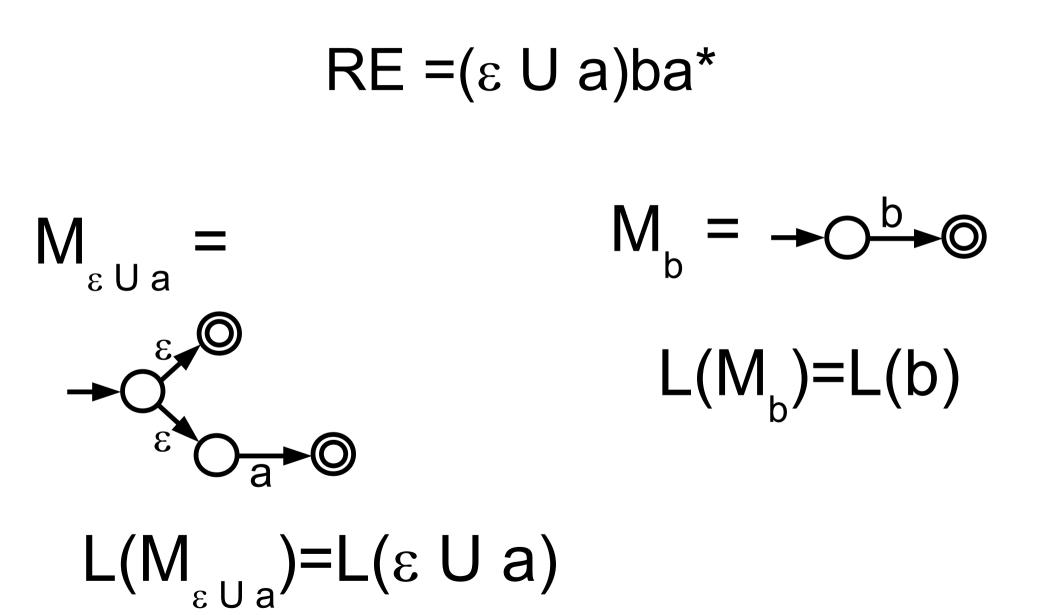


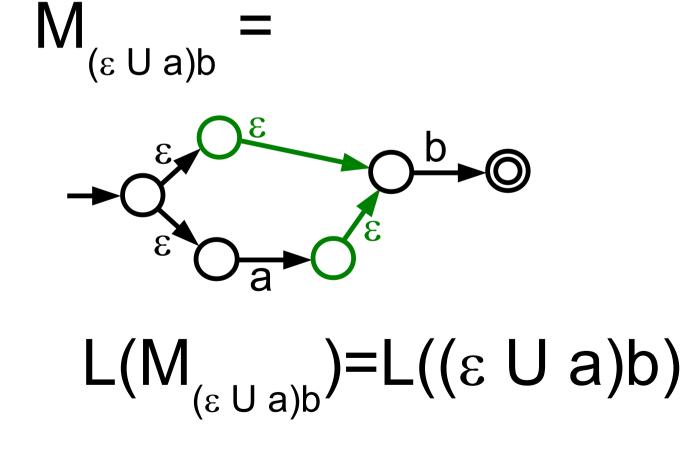


 $L(M_{2})=L(\varepsilon)$

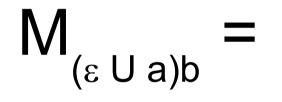
 $L(M_a)=L(a)$

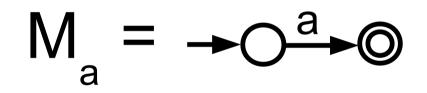


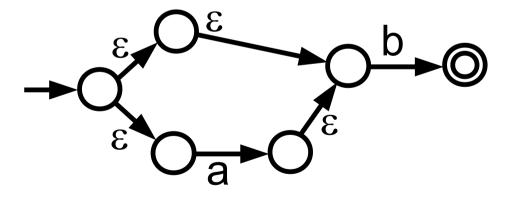




RE =(ε U a)ba*

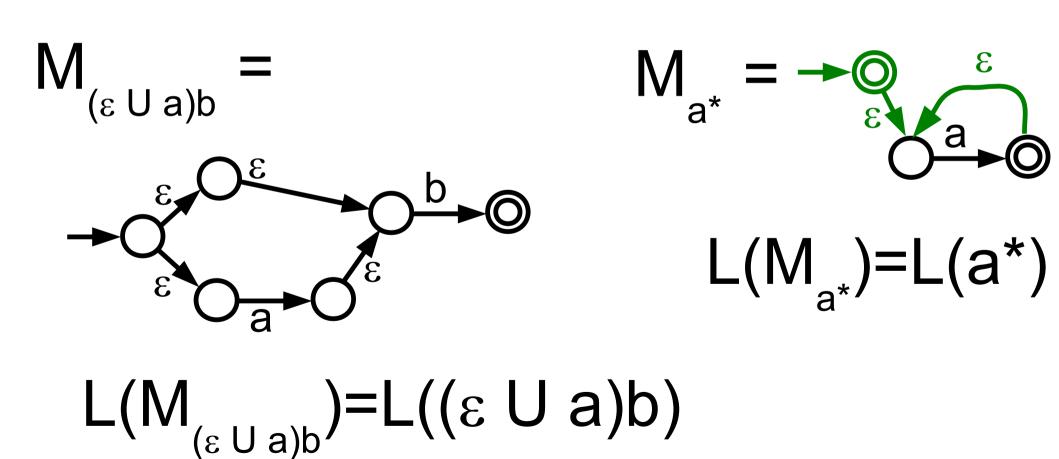




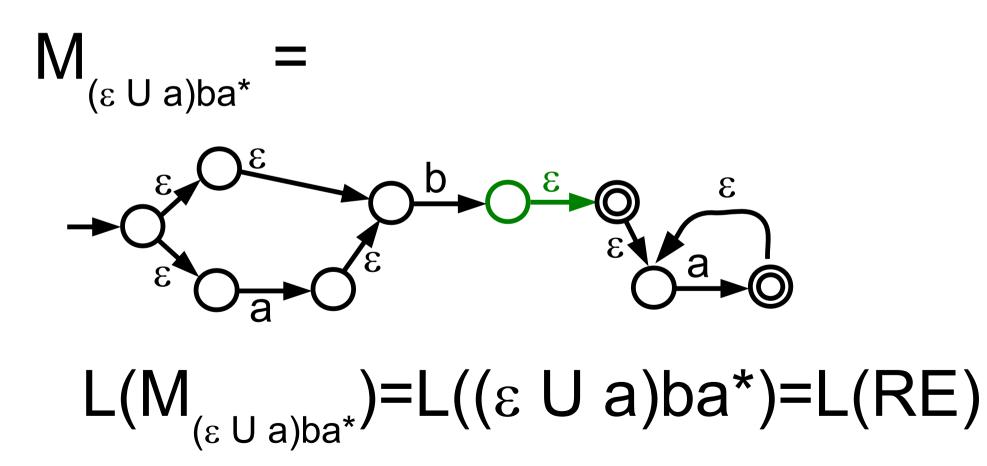


 $L(M_a)=L(a)$

 $L(M_{(\varepsilon \cup a)b})=L((\varepsilon \cup a)b)$



RE =(ε U a)ba*

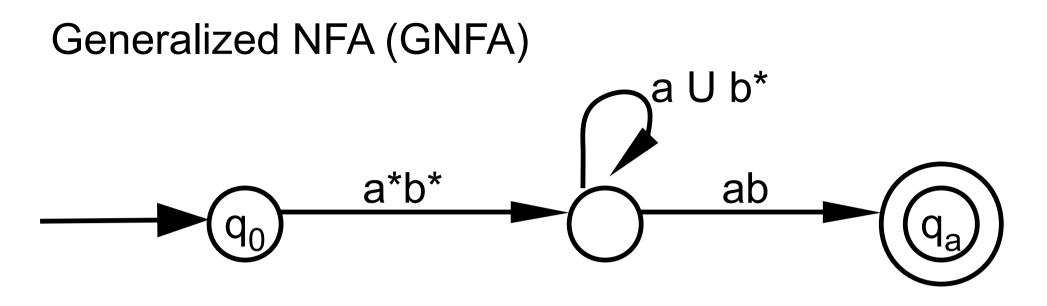


Here " \Rightarrow " means "can be converted to"

We have seen: $RE \Rightarrow NFA \Leftrightarrow DFA$

Next we see: $DFA \Rightarrow RE$

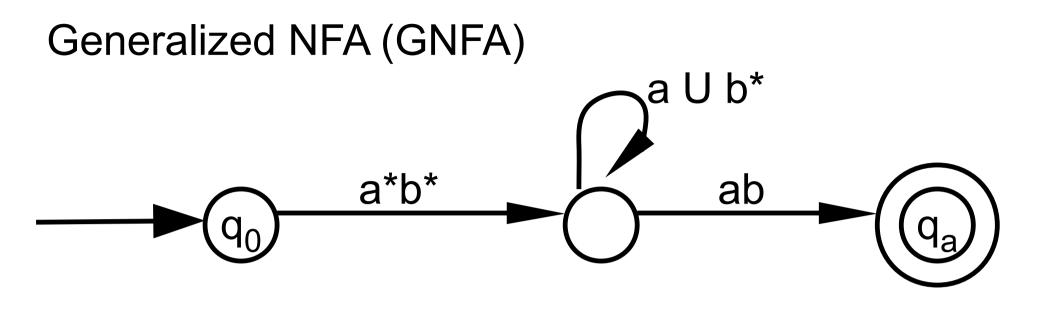
In two steps: DFA \Rightarrow Generalized NFA \Rightarrow RE



Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time



Convention:

Unique final state

Exactly one transition between each pair of states except nothing going into start state nothing going out of final state If arrow not shown in picture, label = \emptyset

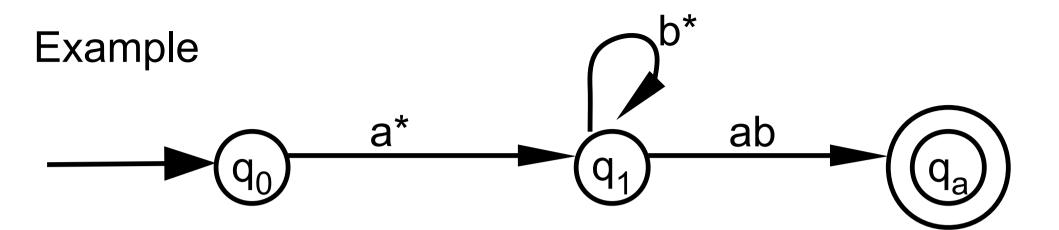
- **Definition:** A generalized finite automaton (GNFA)
- is a 5-tuple (Q, Σ , δ , q₀, q_a) where
- Q is a finite set of states
- $\boldsymbol{\Sigma}$ is the input alphabet
- δ : (Q {q_a}) X (Q {q₀}) \rightarrow Regular Expressions
- $\bullet q_0$ in Q is the start state
- ${\scriptstyle \bullet}\, q_a$ in Q is the accept state

- Definition: GNFA (Q, Σ , δ , q₀, q_a) accepts a string w if
- \exists integer k, \exists k strings w_1 , w_2 , ..., $w_k \in \Sigma^*$ such that $w = w_1 w_2 \dots w_k$

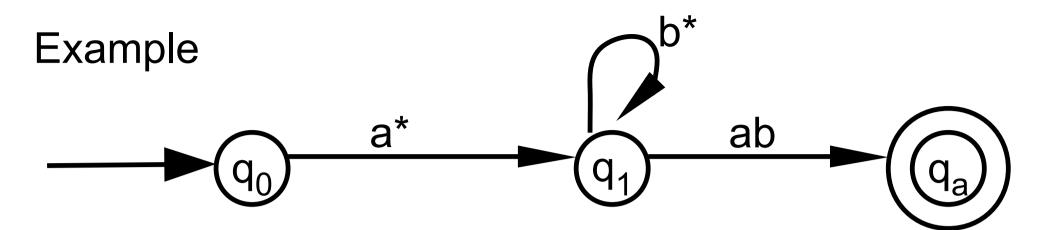
(divide w in k strings)

- \exists sequence of k+1 states $r_0, r_1, ..., r_k$ in Q such that:
- $r_0 = q_0$
- $w_{i+1} \in L(\delta(r_i, r_{i+1})) \forall 0 \le i < k$
- $r_k = q_a$

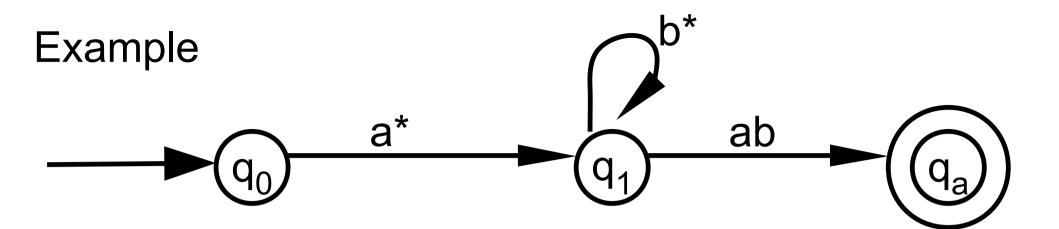
• Differences with NFA are in green



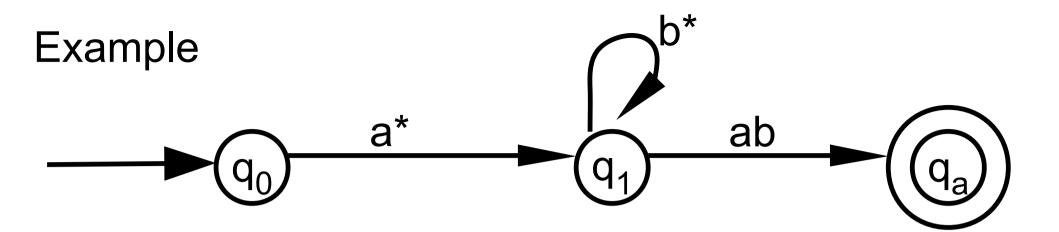
Accepts w = aaabbab w₁=?



Accepts w = aaabbab w_1 =aaa w_2 =?

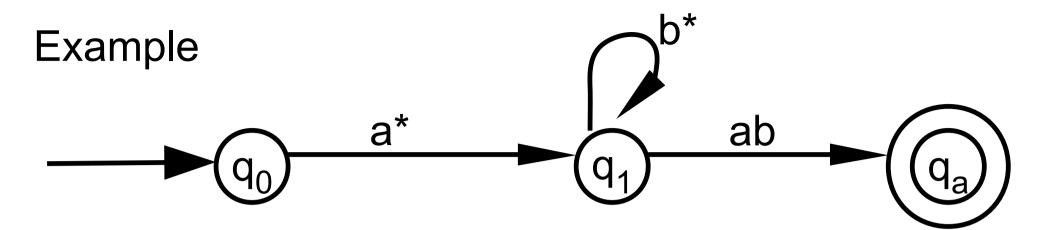


Accepts w = aaabbab w₁=aaa w₂=bb w₃=ab $r_0=q_0 r_1=?$



Accepts w = aaabbab w₁=aaa w₂=bb w₃=ab $r_0=q_0 r_1=q_1 r_2=?$

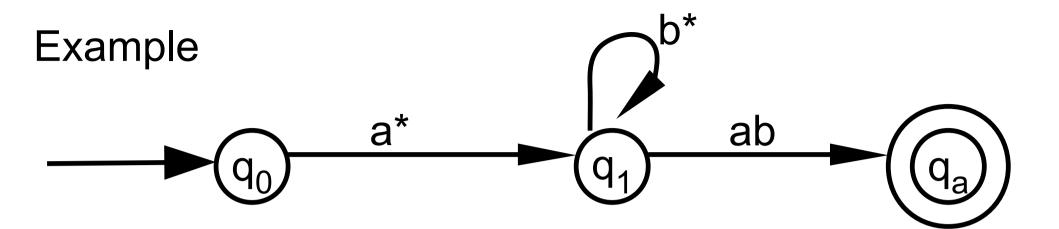
 $w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$



Accepts w = aaabbab w_1 =aaa w_2 =bb w_3 =ab $r_0=q_0$ $r_1=q_1$ $r_2=q_1$ $r_3=?$

$$w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$$

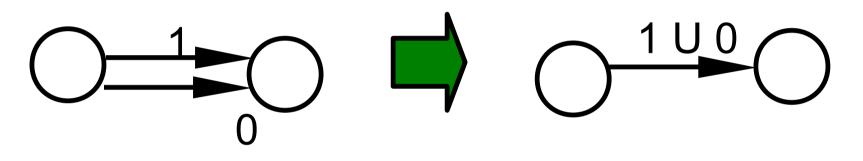
 $w_2 = bb \in L(\delta(r_1, r_2)) = L(\delta(q_1, q_1)) = L(b^*)$



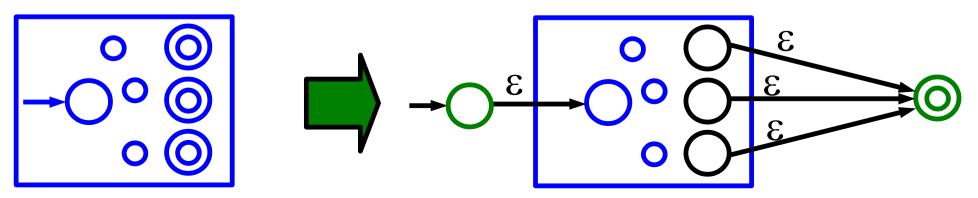
Accepts w = aaabbab

$$w_1$$
=aaa w_2 =bb w_3 =ab
 $r_0=q_0$ $r_1=q_1$ $r_2=q_1$ $r_3 = q_a$
 w_1 = aaa $\in L(\delta(r_0,r_1)) = L(\delta(q_0,q_1)) = L(a^*)$
 w_2 = bb $\in L(\delta(r_1,r_2)) = L(\delta(q_1,q_1)) = L(b^*)$
 w_3 = ab $\in L(\delta(r_2,r_3)) = L(\delta(q_1,q_a)) = L(ab)$

- Theorem: \forall DFA M \exists GNFA N : L(N) = L(M) Construction:
- To ensure unique transition between each pair:

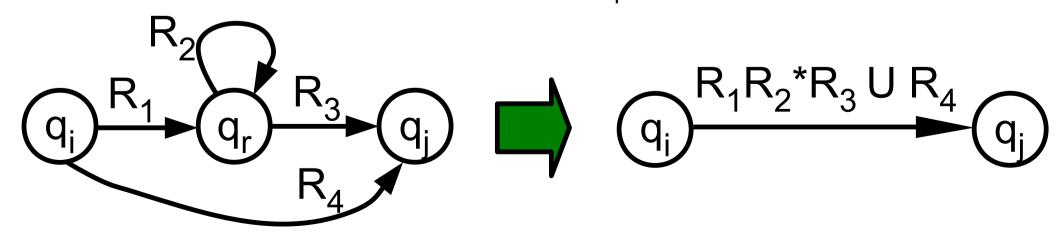


To ensure unique final state, no transitions ingoing start state, no transitions outgoing final state:



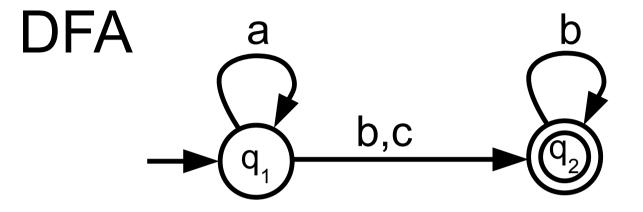
Theorem: \forall GNFA N \exists RE R : L(R) = L(N) Construction:

- If N has 2 states, then N = q_0 S q_a thus R := S
- If N has > 2 states, eliminate some state q_r ≠ q₀, q_a : for every ordered pair q_i, q_j (possibly equal) that are connected through q_i



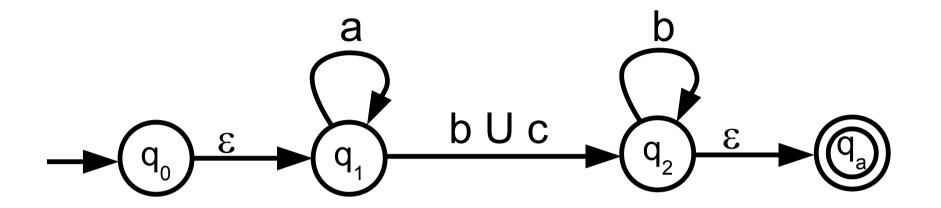
Repeat until 2 states remain

Example: DFA \rightarrow GNFA \rightarrow RE

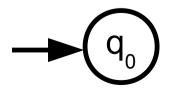


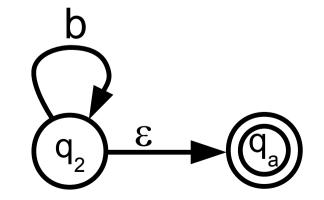
Example: DFA \rightarrow GNFA \rightarrow RE





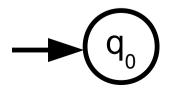
Eliminate q_1 : re-draw GNFA with all other states

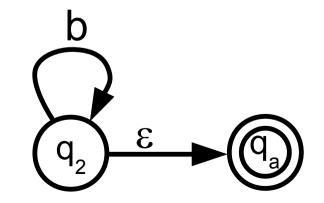


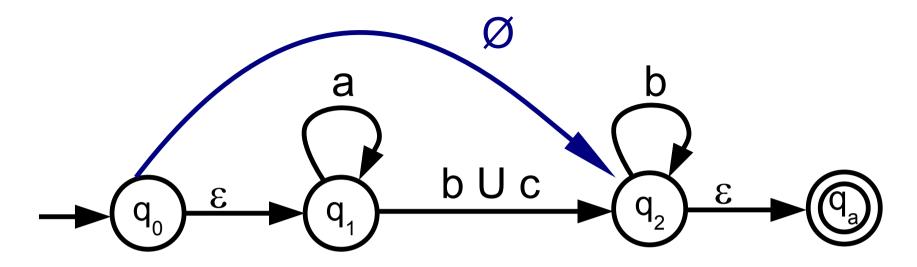




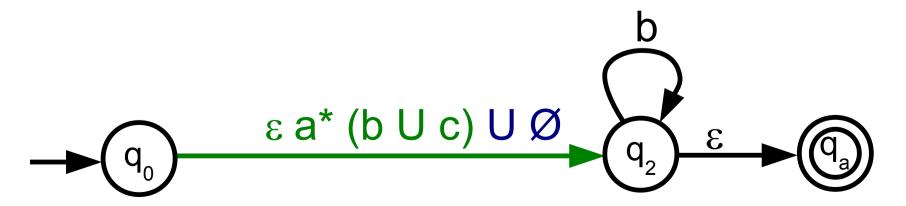
Eliminate q_1 : find a path through q_1

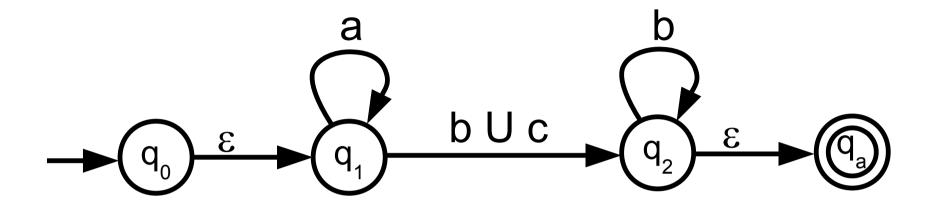




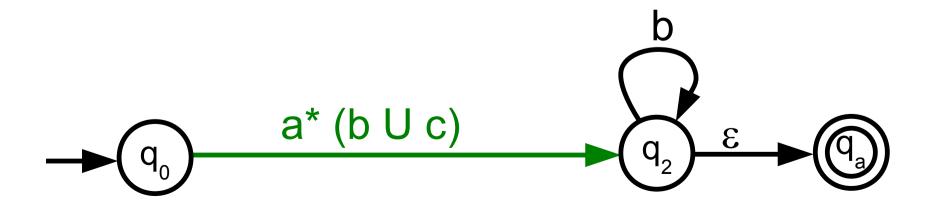


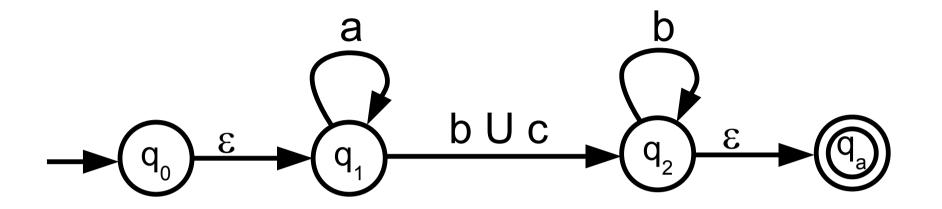
Eliminate q₁: add edge to new GNFA Don't forget: no arrow means label Ø



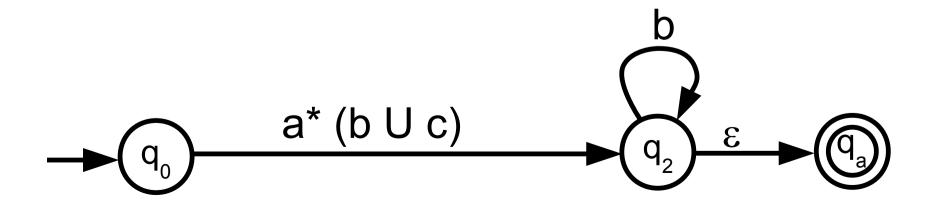


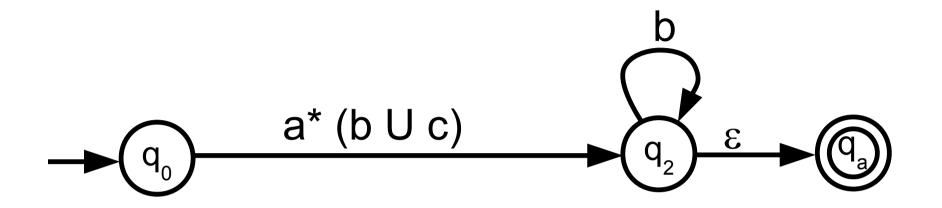
Eliminate q₁: simplify RE on new edge



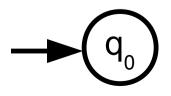


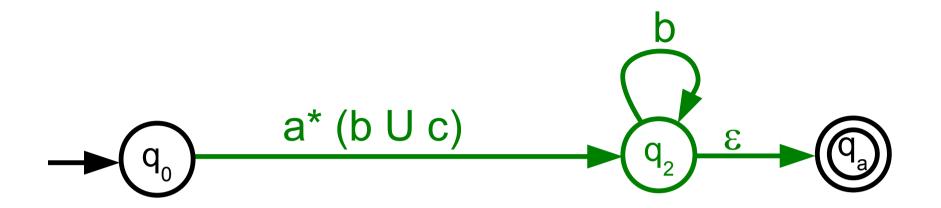
Eliminate q_1 : if no more paths through q_1 , start over



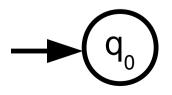


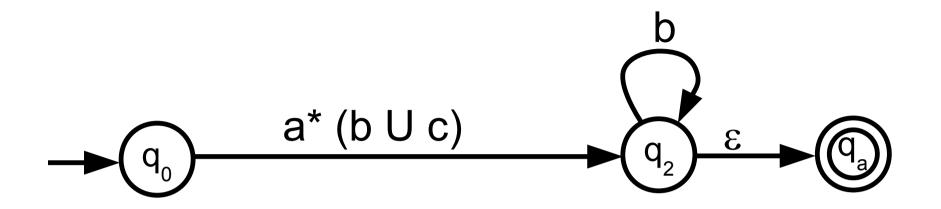
Eliminate q_2 : re-draw GNFA with all other states



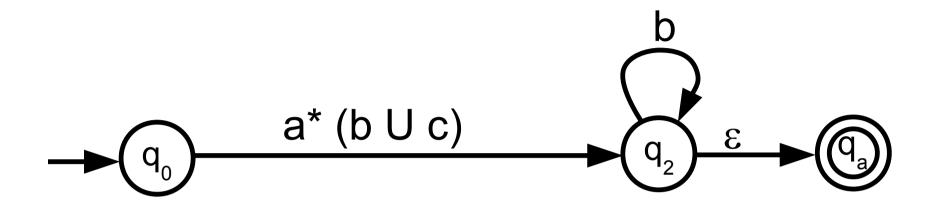


Eliminate q_2 : find a path through q_2

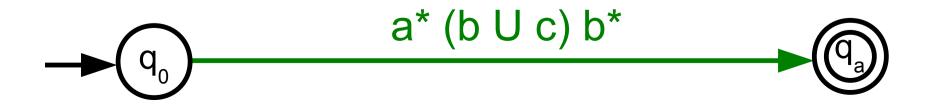


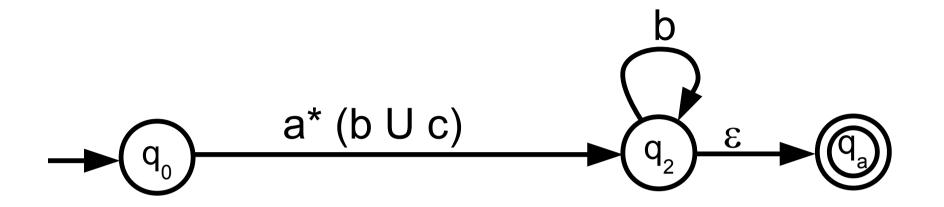


Eliminate q_2 : add edge to new GNFA

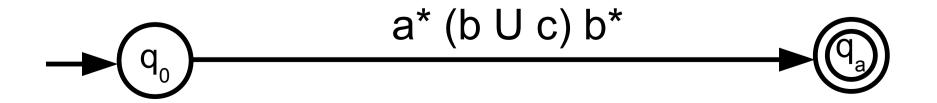


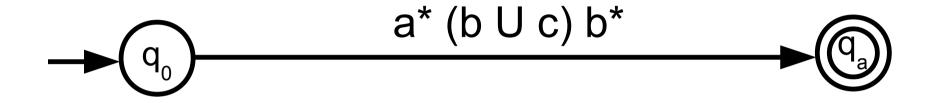
Eliminate q_2 : simplify RE on new edge





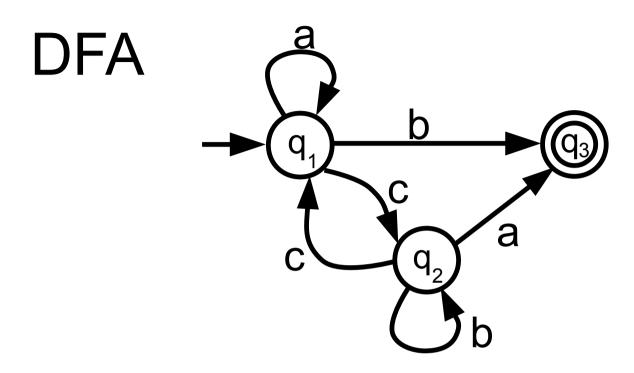
Eliminate q_2 : if no more paths through q_2 , start over

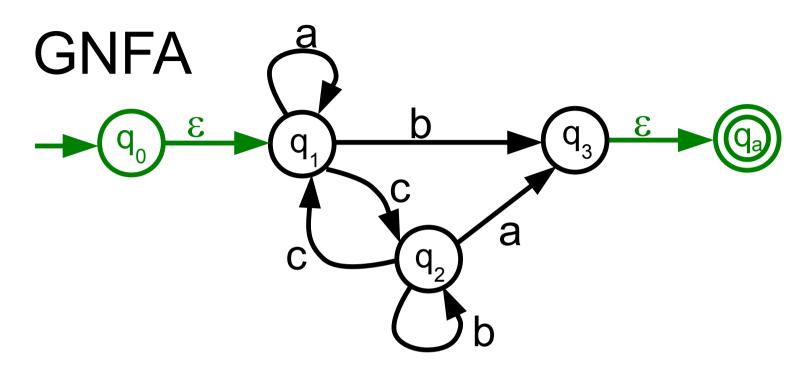


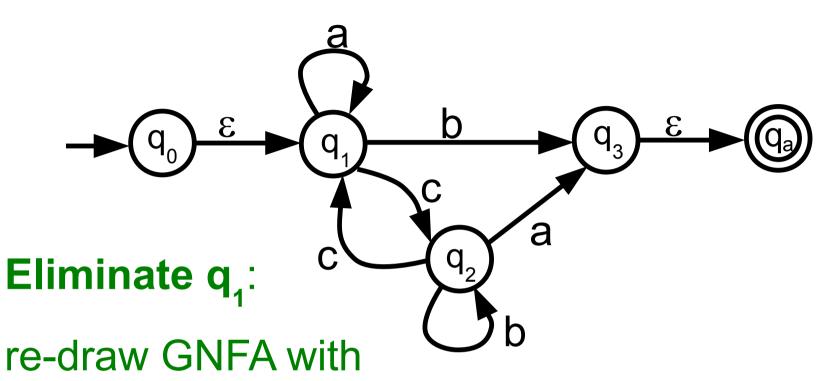


Only two states remain:

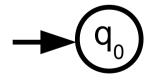
$$RE = a^{*} (b U c) b^{*}$$

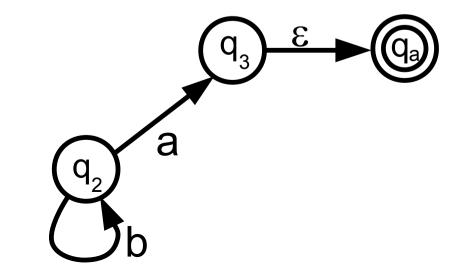


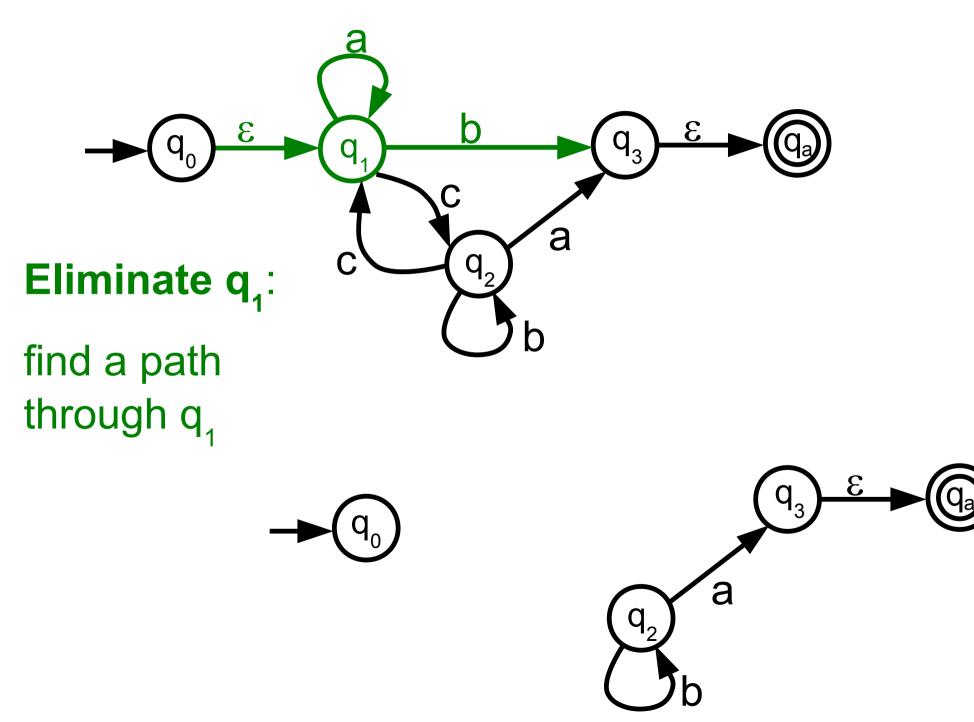


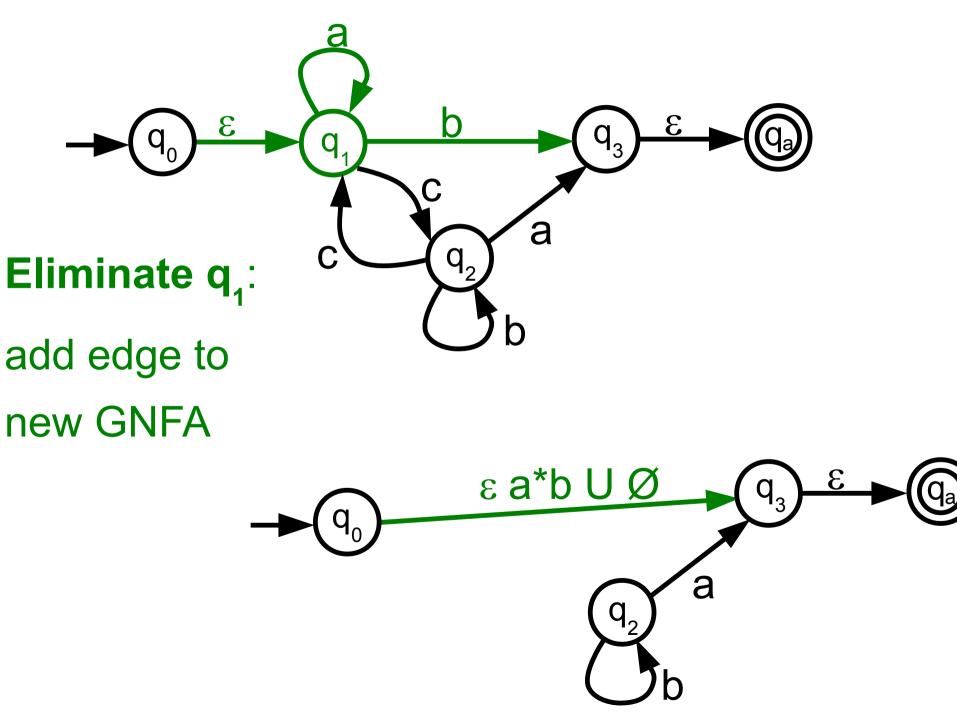


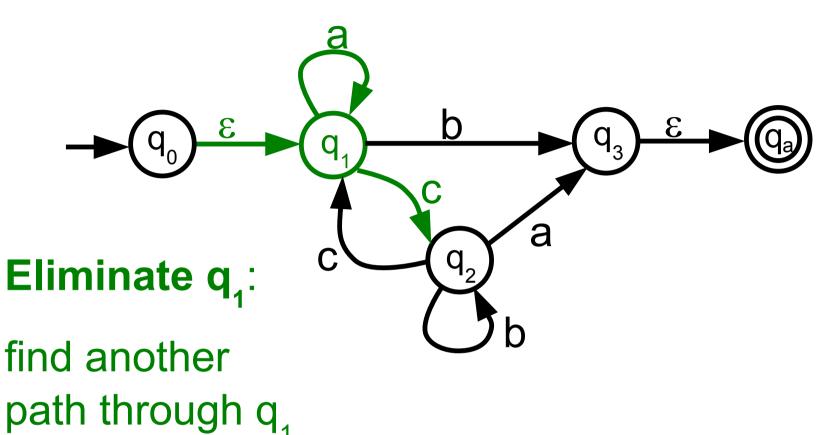
all other states

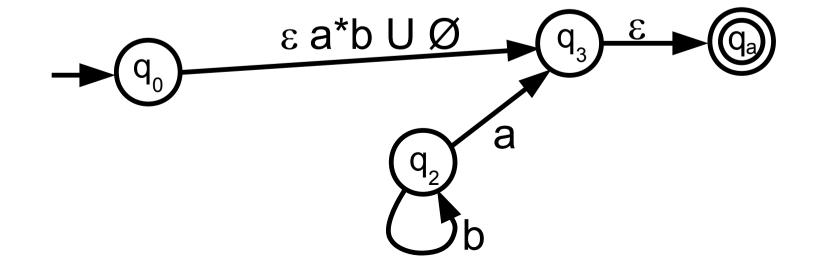


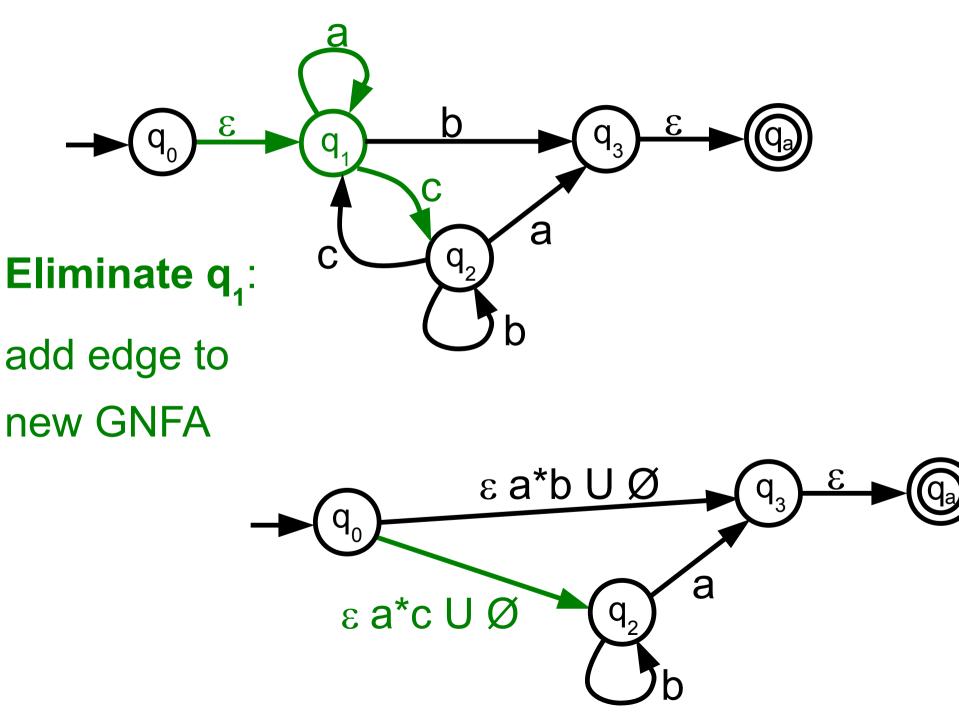


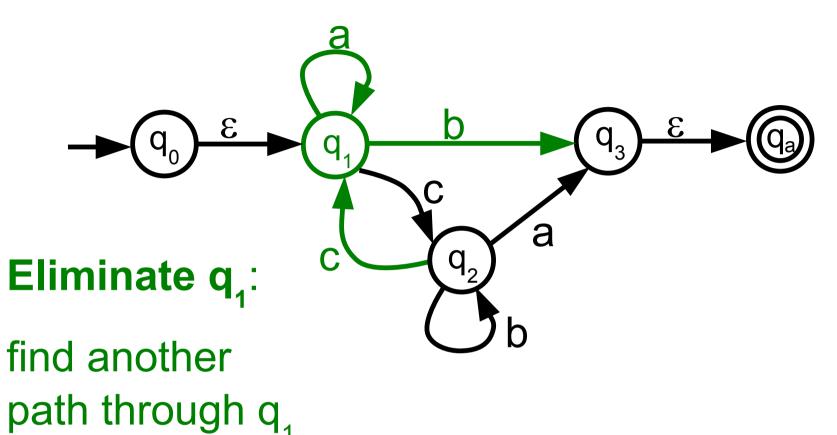


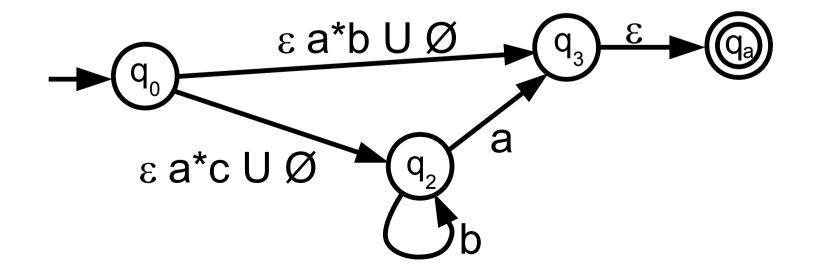


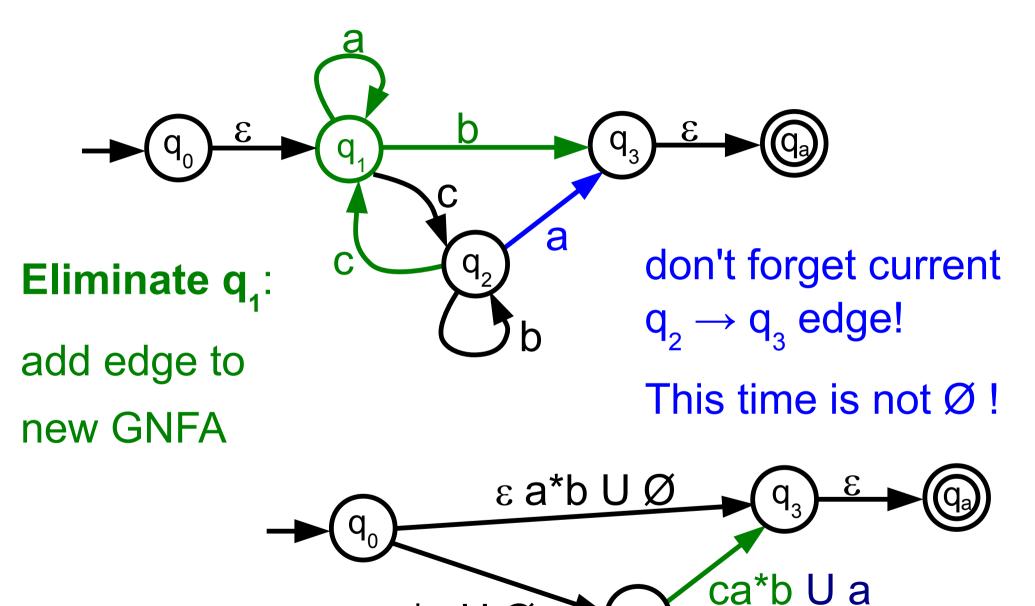






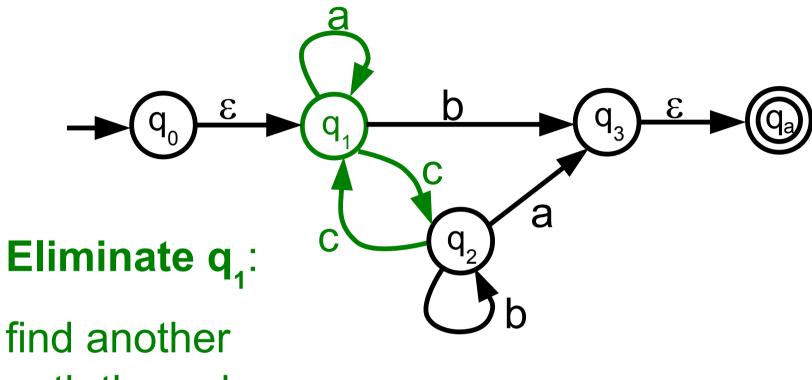




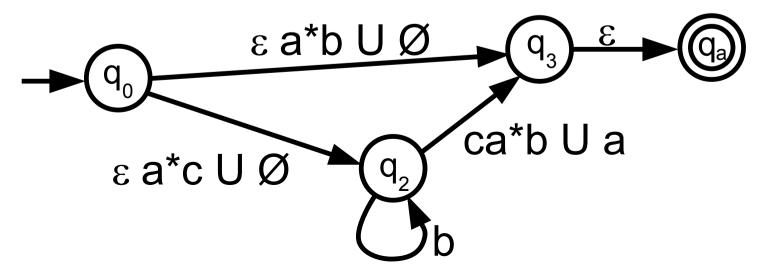


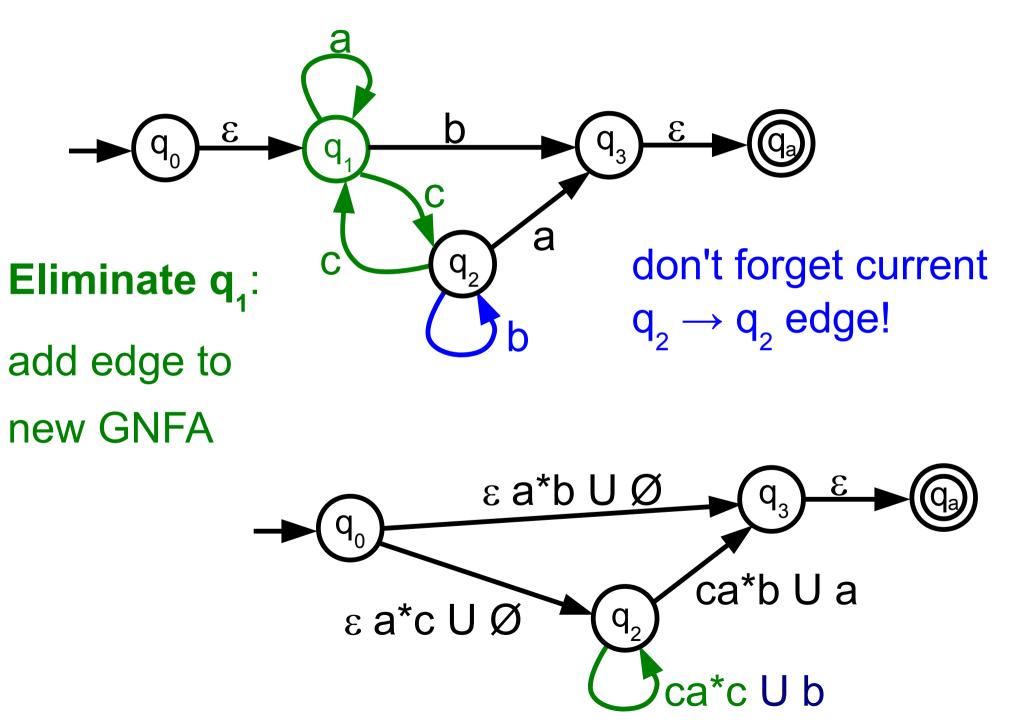
 q_2

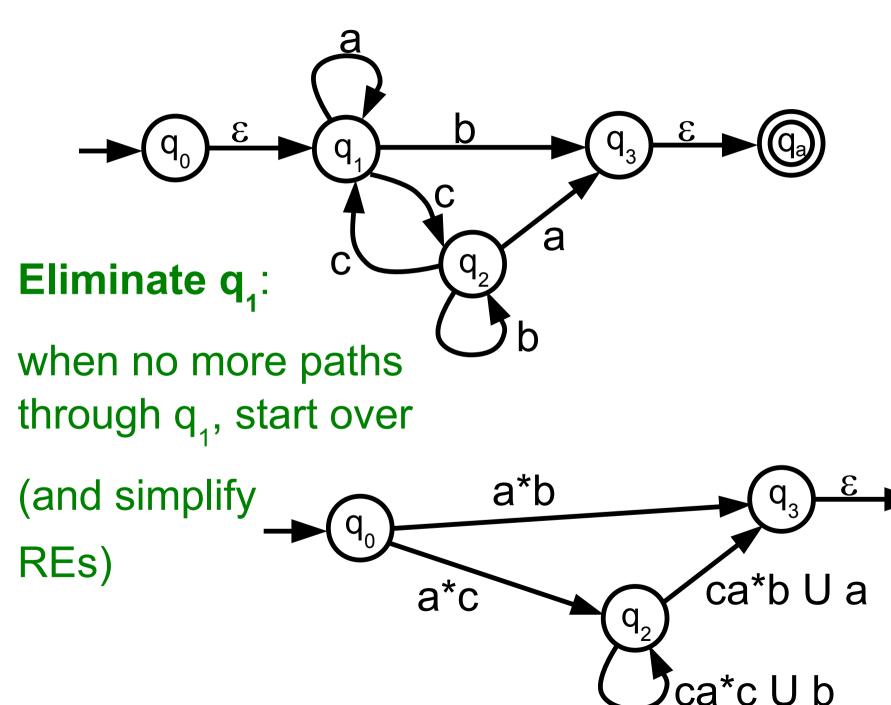
εa*cUØ

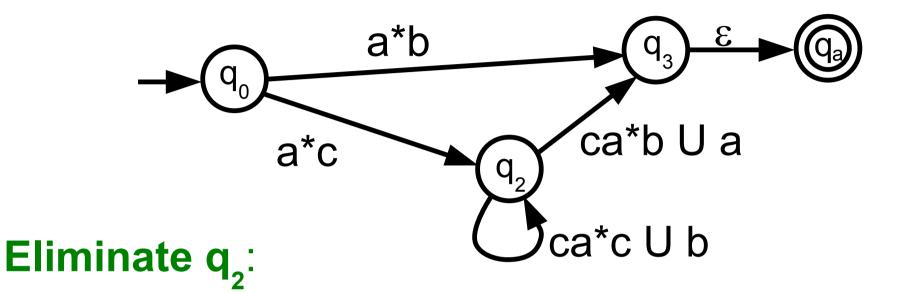


path through q₁



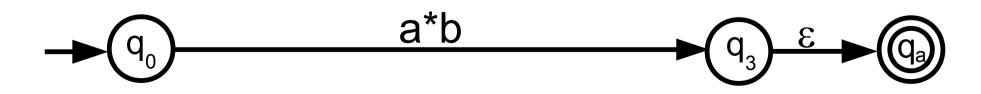


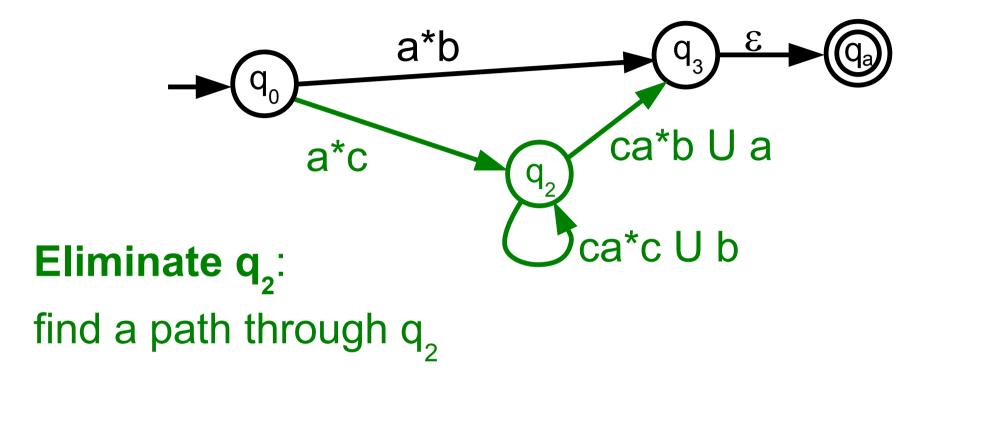


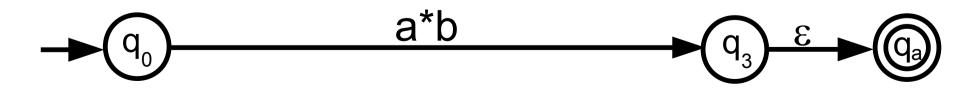


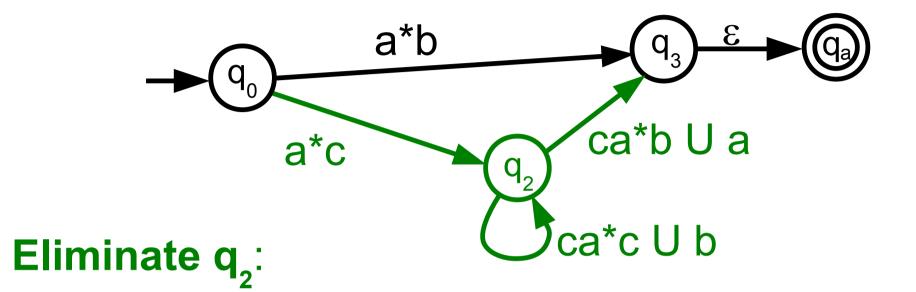
re-draw GNFA with

all other states



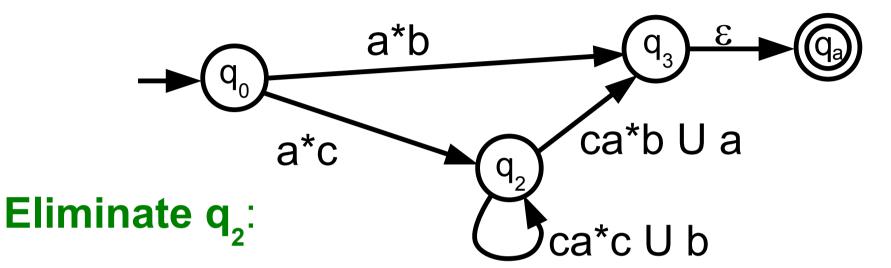




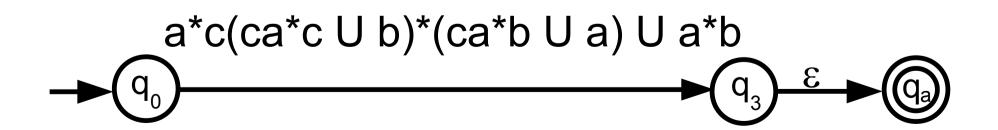


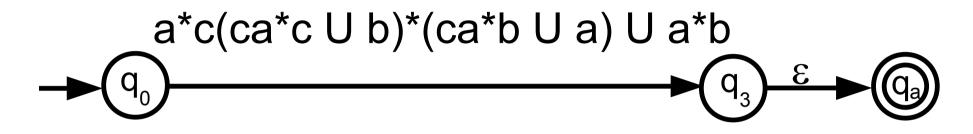
add edge to new GNFA

 $a^*c(ca^*c U b)^*(ca^*b U a) U a^*b$



when no more paths through q₂, start over

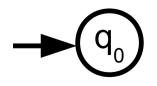


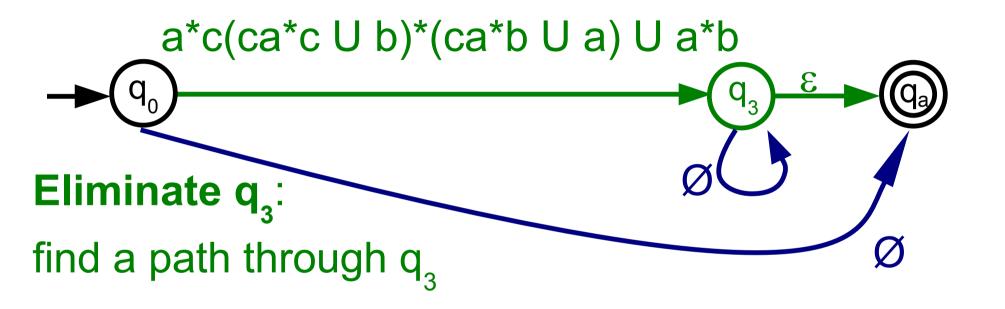


Eliminate q₃:

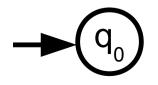
re-draw GNFA with

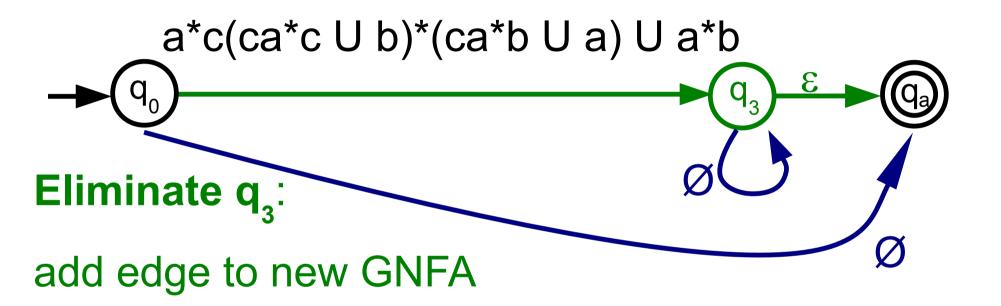
all other states

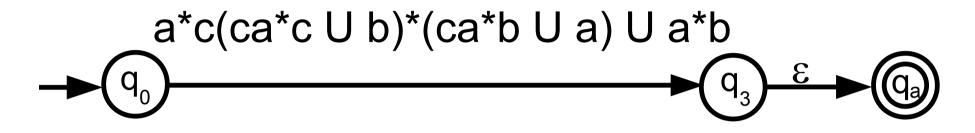




don't forget: no arrow means Ø







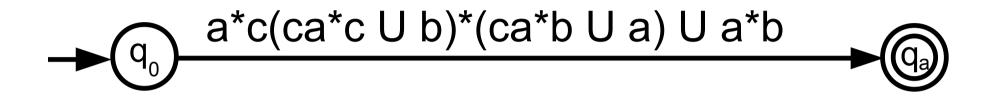
Eliminate q₃:

when no more paths through q_3 , start over

(and simplify REs)

don't forget: $\emptyset^* = \varepsilon$

a*c(ca*c U b)*(ca*b U a) U a*b



Only two states remain:

$RE = a^*c(ca^*c U b)^*(ca^*b U a) U a^*b$

Recap:

Here " \Rightarrow " means "can be converted to"

$\mathsf{RE} \Leftrightarrow \mathsf{DFA} \Leftrightarrow \mathsf{NFA}$

Any of the three recognize exactly

the regular languages (initially defined using DFA)

These conversions are used every time you enter an RE, for example for pattern matching using *grep*

- The RE is converted to an NFA
- Then the NFA is converted to a DFA
- The DFA representation is used to pattern-match

Optimizations have been devised, but this is still the general approach.

What language is NOT regular?

Is { $0^n 1^n : n \ge 0$ } = { ϵ , 01, 0011, 000111, ... } regular?

Pumping lemma:

L regular language \Rightarrow \exists p

$$\exists p \ge 0 ∀ w ∈ L, |w| \ge p \exists x,y,z : w= xyz, |y|> 0, |xy| \le p ∀ i ≥ 0 : xyiz ∈ L$$

Recall
$$y^0 = \varepsilon$$
, $y^1 = y$, $y^2 = yy$, $y^3 = yyy$, ...

Pumping lemma:L regular language \Rightarrow $\exists p \ge 0$ $\forall w \in L, |w| \ge p$ $\exists x, y, z : w = xyz, |y| > 0, |xy| \le p$ Proof Idea: $\forall i \ge 0 : xy^i z \in L$

Let $W \in L$, $|W| \ge p$.

Among the first p+1 states of the trace of M on w,

2 states must be the same **q**.

y = portion of w that brings q back to q can repeat or remove y and still accept string Pumping lemma:

L regular language $\Rightarrow |\exists|$

$$\exists p \ge 0$$
 A
 ∀ w ∈ L, |w| ≥ p
 ∃ x,y,z : w= xyz, |y|> 0, |xy|≤ p
 ∀ i ≥ 0 : xyⁱz ∈ L

Useful to prove L NOT regular. Use contrapositive: L regular language $\Rightarrow A$

> same as (not A) \Rightarrow L not regular

$$\forall p \ge 0$$
not A $\exists w \in L, |w| \ge p$ $\Rightarrow L$ not regular $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$ $\Rightarrow L$ not regular $\exists i \ge 0 : xy^iz \notin L$

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like ∀ bla ∃ bla ∀ bla ∃ bla bla means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

• Two players:

You, Adversary.

• Rules:

First Adversary says a number.

Then You say a number.

You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

You have winning strategy:

if adversary says x, you say x+1

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:

First Adversary says a number.

Then You say a number.

You win if your number is bigger.

You have winning strategy: if adversary says x, you say x+1 Claim is true

 $\forall x \exists y : y > x$

∀ ,E

Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game What is it?

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game The power set construction. Games with more moves:

Chess, Checkers, Tic-Tac-Toe

You can win if

∀ move of the Adversary

3 move You can make

∀ move of the Adversary

3 move You can make

: You checkmate

Pumping lemma (contrapositive)

$$\forall p \ge 0$$

 $\exists w \in L, |w| \ge p$
 $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$
 $\exists i \ge 0 : xy^i z \notin L$

\Rightarrow L not regular

- Rules of the game:
- Adversary picks p,
- You pick $w \in L$ of length $\geq p$,
- Adversary decomposes w in xyz, where |y| > 0, $|xy| \le p$
- You pick $i \ge 0$
- Finally, you win if $xy^i z \notin L$

Theorem: L := $\{0^n \ 1^n : n \ge 0\}$ is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0
- So xyyz = $0^{p + |y|} 1^{p}$
- Since |y| > 0, this is not of the form $0^n 1^n$

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := ?

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0

So xyyz = ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0
- So xyyz = $0^{p + |y|} 1^{p}$
- Since |y| > 0, not as many 0 as 1

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regularProof: $\forall p \ge 0$ Use pumping lemma $\exists w \in L, |w| \ge p$ Adversary moves p $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$ You move w := ? $\exists i \ge 0 : xy^iz \notin L$

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: $\forall p \ge 0$

- Use pumping lemma
- Adversary moves p
- You move $w := 0^{p+1} 1^{p}$
- Adversary moves x,y,z You move i := ?

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: $\forall p \ge 0$

- Use pumping lemma
- Adversary moves p
- You move $w := 0^{p+1} 1^p$
- ∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L
- Adversary moves x,y,z
- You move i := 0
- You must show $xz \notin L$:
- Since $|xy| \le p$ and $w = xyz = 0^{p+1} 1^p$, y only has 0
- So $xz = 0^{p+1} |y| 1^{p}$
- Since |y| > 0, this is not of the form $0^j 1^k$ with j > k

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := 0^p1 0^p 1
- Adversary moves x,y,z
- You move i := ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := 0^p 1 0^p 1
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1 0^p 1$, y only has 0
- So xyyz = 0^{p + |y|} 1 0^p 1
- Since |y| > 0, first half of xyyz only 0, so xyyz $\notin L$

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p^2}
- Adversary moves x,y,z You move i := ?

∀ p ≥0
∃ w ∈ L,
$$|w| \ge p$$

∀ x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$
∃ i ≥ 0 : $xy^iz \notin L$

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L: Since $|xy| \le p$, $|xyyz| \le ?$

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, |xyyz| > ?

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

- ∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, $|xyyz| > p^2$
- So |xyyz| cannot be ... what ?

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, $|xyyz| > p^2$
- So |xyyz| cannot be a square. xyyz ∉ L

Big picture

- All languages
- Decidable

Turing machines

- NP
- P
- Context-free

Context-free grammars, push-down automata

• Regular

Automata, non-deterministic automata, regular expressions