-What is theory?

- Theory is when you make claims that are either True or False, but not both

Example of claims:
$1+1=2$
there is a graph with > 56 edges
all prime numbers are between 57 and 59 all regular languages are context-free

- More complicated claims are made up with logical connectives

Logical connectives

- not A
- A or B
- A and B
- A implies B also written $A \Rightarrow B$, if A then B, B if A
- You should be familiar with these, but let's clear some doubts

Or

A or B means A or B, possibly both

- Different use in everyday language:
"We shall triumph or perish"
-Intended meaning is:
"We shall triumph exclusive-or perish"
- Do not confuse or with exclusive or!

Implication

A	B	A implies B
False	False	True
False	True	True
True	False	False
True	True	True

Only False when A True and B False, True otherwise " $1=0 \Rightarrow$ the earth is flat" is True (False \Rightarrow False)

- $A \Rightarrow B$ same as: $(\operatorname{not} A)$ or B
$(\operatorname{not} B) \Rightarrow(\operatorname{not} A) \quad$ (contrapositive)

Different meaning in everyday language:

- "You go out if you finish your homework"

$$
A \quad B
$$

- Logically means $B \Rightarrow A$, can go out and not having finished homework!
- Intended meaning: $A \Rightarrow B$
"You go out only if you finish your homework"
- Do not confuse $A \Rightarrow B$ with $B \Rightarrow A$!

Do you understand implication?

- Know for true: Each card has a number on one side and a letter on the other.
- Suppose I claim: If a card has a vowel on one side, then it has an even number on the other side
- Which cards must you turn to know if I lie or not?

De Morgan's Laws:

$\neg(A \wedge B)$ is equivalent to $(\neg A) \vee(\neg B)$
$\neg(A \vee B)$ is equivalent to $(\neg A) \wedge(\neg B)$

There are two quantifiers:
\exists
\forall

there exists

for all
same thing as AND
same thing as OR
few things
many (infinite) things

Example:

قa prime $x>5$
same as
6 is prime OR 7 is prime OR 8 is prime OR ...
$\forall x, x<y$
same as
$1<y$ AND $2<y$ AND $3<y$ AND ...

De Morgan's Laws for quantifiers:

$\neg \exists x A(x)$ is equivalent to $\forall x \neg A(x)$
$\neg \forall x A(x)$ is equivalent to $\exists x \neg A(x)$

Sets, Functions:

- Sets are just different notation to express the same claims we construct using logical connectives and quantifiers.

This redundant notation turns out to be useful.
$(x=1) \vee(x=16) \vee(x=23) \Leftrightarrow x \in\{1,16,23\}$
x is even
A(x)

$$
\begin{array}{ll}
\Leftrightarrow & x \in\{x \mid x \text { is even }\} \\
\Leftrightarrow & x \in\{x \mid A(x)\}
\end{array}
$$

With this in mind, sets become straightforward.
-When are two sets equal?
When the defining claims are equivalent: $\{x \mid A(x)\}=\{x \mid B(x)\} \quad$ same as $\quad A(x) \Leftrightarrow B(x)$

This shows that order and repetitions do not matter, for example $\{b, a, a\}=\{a, b\}$, because

$$
\begin{aligned}
& (x=b) \vee(x=a) \vee(x=a) \text { and } \\
& (x=a) \vee(x=b) \text { are equivalent claims }
\end{aligned}
$$

-When is a set contained in another?

When its defining claim implies the defining claim of the latter:

$$
\begin{aligned}
& \{x \mid A(x)\} \subseteq\{x \mid B(x)\} \Leftrightarrow A(x) \Rightarrow B(x) \\
& \{x \mid A(x)\} \supseteq\{x \mid B(x)\} \Leftrightarrow B(x) \Rightarrow A(x)
\end{aligned}
$$

$\{x \mid A(x)\} \cup\{x \mid B(x)\}=\{x \mid A(x) \vee B(x)\}$
$\{x \mid A(x)\} \cap\{x \mid B(x)\}=\{x \mid A(x) \wedge B(x)\}$
$\overline{\{x \mid A(x)\}} \quad=\{x \mid \neg A(x)\}$
$\begin{array}{ll}U_{i}\left\{x \mid A_{i}(x)\right\} & =\left\{x \mid \exists i A_{i}(x)\right\} \\ \cap_{i}\left\{x \mid A_{i}(x)\right\} & =\left\{x \mid \forall i A_{i}(x)\right\}\end{array}$

The empty set is denoted \varnothing

It can be defined as $\quad \varnothing=\{\mathrm{x}: 1+1=3\}$

The empty set is a subset of any set:

$$
\varnothing \subseteq\{x: A(x)\} \quad \text { always }
$$

because $1+1=3 \Rightarrow A$ for any A

Powerset(A): Set of all subsets of A.

Example:
$\operatorname{Powerset}(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$

Size of a set A : $|A|=$ number of elements in it Example: $|\{1,2,3\}|=3$

Fact: $\quad|\operatorname{Powerset}(A)|=2^{|A|}$
Example: $|\operatorname{Powerset}(\{1,2,3\})|=2^{3}=8$

Important sets:

$\mathbb{N}=\{0,1,2,3, \ldots\}$
Natural numbers
$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \quad$ Integer numbers
$\mathbb{R}=\{0,2.5748954, \pi, \sqrt{ } 2,-17, \ldots\}$ Real numbers

These are all infinite sets: contain an infinite number of elements

A function from set A to set B is written $f: A \rightarrow B$ is a way to associate to EVERY element a $\in A$

ONE element $f(a) \in B$
A is called domain, B range

Example: $f:\{0,1\} \rightarrow\{a, b, c\}$ defined as $f(0)=a, f(1)=c$
$f: N \rightarrow N$ defined as $f(n)=n+1$
$f: Z \rightarrow Z$ defined as $f(n)=n^{2}$

Some $b \in B$ may not be 'touched,' but every $a \in A$ must be

Tuples: Ordered sequences of elements

Example: $(5,2)$
(7, 8, -1)
($\varnothing,\{4,5\}, 8,21$) 4-tuple

Order matters: $(a, b) \neq(b, a)$

By contrast, $\quad\{a, b\}=\{b, a\}$

Construct tuples from sets via Cartesian product

$$
\begin{aligned}
A \times B & =\text { set of pairs }(a, b): a \in A \text { and } b \in B \\
& =\{(a, b): a \in A \text { and } b \in B\}
\end{aligned}
$$

$A \times B \times C=\{(a, b, c): a \in A$ and $b \in B$ and $c \in C\}$

$$
A^{k}=A \times A X \ldots \times A \quad(k \text { times })
$$

Example

$$
\begin{aligned}
\{q, r, s\} \times\{0,1\}= & \{(q, 0),(q, 1),(r, 0),(r, 1),(s, 0),(s, 1)\} \\
\{a, b\}^{3}=\{ & (a, a, a),(a, a, b),(a, b, a),(a, b, b) \\
& (b, a, a),(b, a, b),(b, b, a),(b, b, b)\}
\end{aligned}
$$

Strings

Strings are like tuples,
but written without brackets and commas

Example: (h, e, l, l, o) is written as hello
$(0,1,0) \quad$ is written as 010

Strings

An alphabet Σ is a finite, non-empty set.
We call its elements symbols.
Example: $\Sigma=\{0,1\} \quad$ (the binary alphabet)
$\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$ (English language alphabet)

A string over an alphabet Σ is a finite, ordered sequence of symbols from Σ
Example: 010101000 a string over $\Sigma=\{0,1\}$ hello a string over $\Sigma=\{a, b, \ldots, z\}$

A string w is a substring of a string x if the symbols in w appears consecutively in x

Example: aba is a substring of aaabbaaaababbb 00 is a substring of 111100010010100

The length of a string w is the number of symbols in it Length is denoted $|\mathrm{w}|$
Example: |hello| = $5 \quad|001|=3$

We denote by Σ^{i} the set of strings of length i
Example: $\{0,1\}^{2}=\{00,01,10,11\}$
hello $\in\{a, b, \ldots, z\}^{5}$
$001 \in\{0,1\}^{3}$

The empty string is denoted ε
(never in Σ)
Its length is $0:|\varepsilon|=0$

We denote by Σ^{*} the set of all strings over Σ of any length, including ε

Example: $\{0,1\}^{*}=\{\varepsilon, 0,1,001,10101010, \ldots\}$ = all binary strings

$$
\begin{aligned}
\left\}^{*}\right. & =\{\varepsilon, \text { a, aa, aaa, aaaa, } \ldots\} \\
& =\text { all strings containing only a } \\
\varnothing^{*} & =\{\varepsilon\}
\end{aligned}
$$

Note: $\Sigma^{*}=\{\varepsilon\} \cup\left(U_{i} \Sigma^{i}\right)=\{\varepsilon\} \cup \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} U \ldots$
Σ^{*} is an infinite set

A language over Σ is a set of strings over Σ

Example: $\left\{w: w \in\{0,1\}^{*}\right.$ and ends with 1$\}$

$$
=\{01,1,11111,010101011, \ldots\}
$$

$\left\{w: w \in\{a, b, \ldots, z\}^{*}\right.$ and $\left.|w|>3\right\}$
$=\{$ aaaa, abab, zytr, ...\}

What are we going to compute?

In this class we ask how to compute functions

$$
\mathrm{f}: \Sigma^{*} \rightarrow\{\text { accept, reject }\}
$$

We do this for:

- Simplicity
- Sufficient to study fundamental questions, such as: are there functions that computers cannot compute?

