• What is theory?

 Theory is when you make claims that are either True or False, but not both Example of claims:

1+1 = 2

there is a graph with > 56 edges all prime numbers are between 57 and 59 all regular languages are context-free

 More complicated claims are made up with logical connectives

Logical connectives

- not A also written $!A, A, \neg A, A$
- A or B also written $A \lor B, A \cup B, ...$
- A and B also written A \wedge B, A & B, ...
- A implies B also written $A \Rightarrow B$, if A then B, B if A

 You should be familiar with these, but let's clear some doubts

A or B means A or B, possibly both

Different use in everyday language:
 "We shall triumph or perish"

Intended meaning is:
"We shall triumph exclusive-or perish"

• Do not confuse or with exclusive or!

Implication		A	В	A implies B
		False	False	True
		False	True	True
A⇒B	means if A then B	True	False	False
		True	True	True

Only False when A True and B False, True otherwise

" $1 = 0 \Rightarrow$ the earth is flat" is True (False \Rightarrow False)

• A \Rightarrow B same as: (not A) or B (not B) \Rightarrow (not A) (contrapositive) Different meaning in everyday language:

"You go out if you finish your homework"

B

Α

- Logically means B \Rightarrow A, can go out and not having finished homework!
 - Intended meaning: A ⇒ B
 "You go out only if you finish your homework"
 - Do not confuse $A \Rightarrow B$ with $B \Rightarrow A$!

Do you understand implication?

- Know for true: Each card has a number on one side and a letter on the other.
- Suppose I claim: If a card has a vowel on one side, then it has an even number on the other side

• Which cards **must** you turn to know if I lie or not?

De Morgan's Laws:

 $\neg(A \land B)$ is equivalent to $(\neg A) \lor (\neg B)$ $\neg(A \lor B)$ is equivalent to $(\neg A) \land (\neg B)$ There are two quantifiers:

∃a prime x > 5 same as 6 is prime OR 7 is prime OR 8 is prime OR ...

 $\forall x, x < y$

same as 1 < y AND 2 < y AND 3 < y AND ...

De Morgan's Laws for quantifiers:

$\neg \exists x A(x)$ is equivalent to $\forall x \neg A(x)$ $\neg \forall x A(x)$ is equivalent to $\exists x \neg A(x)$

Sets, Functions:

- Sets are just different notation to express the same claims we construct using logical connectives and quantifiers.
- This redundant notation turns out to be useful.

$$\begin{array}{ll} (x=1)\lor(x=16)\lor(x=23) \Leftrightarrow & x\in\{1,\,16,\,23\,\}\\ x \text{ is even} & \Leftrightarrow & x\in\{x|\,x \text{ is even}\,\}\\ A(x) & \Leftrightarrow & x\in\{x|\,A(x)\,\} \end{array}$$

With this in mind, sets become straightforward.

When are two sets equal?
 When the defining claims are equivalent:

 {x| A(x)} = {x| B(x)} same as A(x) ⇔ B(x)

This shows that order and repetitions do not matter, for example {b, a, a} = {a, b}, because $(x = b) \lor (x = a) \lor (x = a)$ and $(x = a) \lor (x = b)$ are equivalent claims • When is a set contained in another?

When its defining claim implies the defining claim of the latter:

$\{x|A(x)\} \subseteq \!\!\{x|B(x)\} \Leftrightarrow A(x) \Rightarrow B(x)$

${x|A(x)} \supseteq {x|B(x)} \Leftrightarrow B(x) \Rightarrow A(x)$

 $U_{i} \{x | A_{i}(x)\} = \{x | \exists i A_{i}(x)\}$ $\cap_{i} \{x | A_{i}(x)\} = \{x | \forall i A_{i}(x)\}$

The empty set is denoted \emptyset

It can be defined as $\emptyset = \{x : 1+1=3\}$

The empty set is a subset of any set: $\emptyset \subseteq \{ x : A(x) \}$ always

because $1+1=3 \Rightarrow A$ for any A

Powerset(A): Set of all subsets of A.

Example:

 $Powerset(\{1,2,3\}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\} \}$

Size of a set A: |A| = number of elements in it Example: | { 1,2,3 } | = 3

Fact: | Powerset(A) | = $2^{|A|}$ Example: |Powerset({1,2,3})| = $2^3 = 8$

Important sets:

 $\mathbb{N} = \{0, 1, 2, 3, ...\}$ Natural numbers

 $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Integer numbers

 $\mathbb{R} = \{0, 2.5748954, \pi, \sqrt{2}, -17, ...\}$ Real numbers

These are all infinite sets: contain an infinite number of elements

A **function** f from set A to set B is written $f : A \rightarrow B$ is a way to associate to EVERY element $a \in A$ ONE element $f(a) \in B$

A is called domain, B range

- Example: f : {0,1} \rightarrow {a,b,c} defined as f(0)=a, f(1)=c
 - $f: N \rightarrow N$ defined as f(n) = n+1
 - $f: Z \rightarrow Z$ defined as $f(n) = n^2$

Some $b \in B$ may not be `touched,' but every $a \in A$ must be

Tuples: Ordered sequences of elements

Order matters: $(a, b) \neq (b, a)$

By contrast, $\{a, b\} = \{b, a\}$

Construct tuples from sets via Cartesian product

 $\begin{array}{l} \mathsf{A} \,\mathsf{X} \,\mathsf{B} \ = \mbox{set of pairs } (a, \, b): a \in \mbox{A and } b \in \mbox{B} \\ &= \{(a, \, b): a \in \mbox{A and } b \in \mbox{B} \} \\ \mathsf{A} \,\mathsf{X} \,\mathsf{B} \,\mathsf{X} \,\mathsf{C} \ = \{(a, \, b, \, c): a \in \mbox{A and } b \in \mbox{B and } c \in \mbox{C} \} \\ & \mathsf{A}^{\mathsf{k}} \ = \mbox{A} \,\mathsf{X} \,\mathsf{A} \,\mathsf{X} \dots \,\mathsf{X} \,\mathsf{A} \ \ (k \ times) \end{array}$

Example

 $\{q,r,s\} X \{0,1\} = \{ (q,0), (q,1), (r,0), (r,1), (s,0), (s,1) \} \\ \{a,b\}^3 = \{ (a,a,a), (a,a,b), (a,b,a), (a,b,b), (b,a,a), (b,a,a), (b,a,a), (b,b,a), (b,b,b) \}$

Strings

Strings are like tuples, but written without brackets and commas

Example: (h, e, l, l, o) is written as hello (0, 1, 0) is written as 010

Strings

An alphabet Σ is a finite, non-empty set.

We call its elements symbols.

Example: $\Sigma = \{0,1\}$ (the binary alphabet)

Σ = {a,b,..., z} (English language alphabet)

A string over an alphabet Σ is a finite, ordered sequence of symbols from Σ

Example: 010101000a string over $\Sigma = \{0,1\}$ helloa string over $\Sigma = \{a,b,...,z\}$

A string w is a substring of a string x if the symbols in w appears consecutively in x

Example: aba is a substring of aaabbaaaababbb 00 is a substring of 111100010010100 The length of a string w is the number of symbols in it Length is denoted |w|Example: |hello| = 5 |001|=3

We denote by Σ^{i} the set of strings of length i Example: $\{0,1\}^{2} = \{00, 01, 10, 11\}$ hello $\in \{a,b,..., z\}^{5}$ $001 \in \{0,1\}^{3}$

The empty string is denoted ϵ (never in Σ) Its length is 0: $|\epsilon| = 0$ We denote by Σ^* the set of all strings over Σ of any length, including ϵ

Note: $\Sigma^* = \{ \epsilon \} \cup (\bigcup_i \Sigma^i) = \{ \epsilon \} \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots$

 Σ^* is an infinite set

A language over Σ is a set of strings over Σ

Example: { w : w \in {0,1}* and ends with 1 } = { 01, 1, 11111, 010101011, ...}

{w : w
$$\in$$
 {a,b, ..., z}* and |w| > 3}
= {aaaa, abab, zytr, ...}

What are we going to compute?

In this class we ask how to compute functions $f: \Sigma^* \to \{accept, reject\}$

We do this for:

- Simplicity
- Sufficient to study fundamental questions, such as: are there functions that computers cannot compute?